Lesson 15: Inverse Functions and Logarithms

31
. . . . . . Section 3.2 Inverse Functions and Logarithms V63.0121.034, Calculus I October 21, 2009 Announcements I Midterm course evaluations at the end of class . . Image credit: Roger Smith

description

The inverse of a function "undoes" the effect of the function. We look at the implications of that property in the derivative, as well as logarithmic functions, which are inverses of exponential functions.

Transcript of Lesson 15: Inverse Functions and Logarithms

Page 1: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Section3.2InverseFunctionsandLogarithms

V63.0121.034, CalculusI

October21, 2009

Announcements

I Midtermcourseevaluationsattheendofclass

..Imagecredit: RogerSmith

Page 2: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Outline

InverseFunctions

DerivativesofInverseFunctions

LogarithmicFunctions

Page 3: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Whatisaninversefunction?

DefinitionLet f beafunctionwithdomain D andrange E. The inverse of f isthefunction f−1 definedby:

f−1(b) = a,

where a ischosensothat f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

Page 4: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Whatisaninversefunction?

DefinitionLet f beafunctionwithdomain D andrange E. The inverse of f isthefunction f−1 definedby:

f−1(b) = a,

where a ischosensothat f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

Page 5: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Whatfunctionsareinvertible?

Inorderfor f−1 tobeafunction, theremustbeonlyone a in Dcorrespondingtoeach b in E.

I Suchafunctioniscalled one-to-oneI Thegraphofsuchafunctionpassesthe horizontallinetest:anyhorizontallineintersectsthegraphinexactlyonepointifatall.

I If f iscontinuous, then f−1 iscontinuous.

Page 6: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Graphinganinversefunction

I Thegraphof f−1

interchangesthe x and ycoordinateofeverypointonthegraphof f

I Theresultisthattogetthegraphof f−1, weneedonlyreflectthegraphof f inthediagonalline y = x.

.

.f

.f−1

Page 7: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Graphinganinversefunction

I Thegraphof f−1

interchangesthe x and ycoordinateofeverypointonthegraphof f

I Theresultisthattogetthegraphof f−1, weneedonlyreflectthegraphof f inthediagonalline y = x.

.

.f

.f−1

Page 8: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Howtofindtheinversefunction

1. Write y = f(x)

2. Solvefor x intermsof y

3. Toexpress f−1 asafunctionof x, interchange x and y

ExampleFindtheinversefunctionof f(x) = x3 + 1.

Answery = x3 + 1 =⇒ x = 3

√y− 1, so

f−1(x) = 3√x− 1

Page 9: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Howtofindtheinversefunction

1. Write y = f(x)

2. Solvefor x intermsof y

3. Toexpress f−1 asafunctionof x, interchange x and y

ExampleFindtheinversefunctionof f(x) = x3 + 1.

Answery = x3 + 1 =⇒ x = 3

√y− 1, so

f−1(x) = 3√x− 1

Page 10: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Howtofindtheinversefunction

1. Write y = f(x)

2. Solvefor x intermsof y

3. Toexpress f−1 asafunctionof x, interchange x and y

ExampleFindtheinversefunctionof f(x) = x3 + 1.

Answery = x3 + 1 =⇒ x = 3

√y− 1, so

f−1(x) = 3√x− 1

Page 11: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Outline

InverseFunctions

DerivativesofInverseFunctions

LogarithmicFunctions

Page 12: Lesson 15: Inverse Functions and Logarithms

. . . . . .

derivativeofsquareroot

Recallthatif y =√x, wecanfind

dydx

byimplicitdifferentiation:

y =√x =⇒ y2 = x

=⇒ 2ydydx

= 1

=⇒ dydx

=12y

=1

2√x

Notice 2y =ddy

y2, and y istheinverseofthesquaringfunction.

Page 13: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Theorem(TheInverseFunctionTheorem)Let f bedifferentiableat a, and f′(a) ̸= 0. Then f−1 isdefinedinanopenintervalcontaining b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

Sobyimplicitdifferentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

Page 14: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Theorem(TheInverseFunctionTheorem)Let f bedifferentiableat a, and f′(a) ̸= 0. Then f−1 isdefinedinanopenintervalcontaining b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

Sobyimplicitdifferentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

Page 15: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Outline

InverseFunctions

DerivativesofInverseFunctions

LogarithmicFunctions

Page 16: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

Page 17: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

Page 18: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

Page 19: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Logarithms

Definition

I Thebase a logarithm loga x istheinverseofthefunction ax

y = loga x ⇐⇒ x = ay

I Thenaturallogarithm ln x istheinverseof ex. Soy = ln x ⇐⇒ x = ey.

Facts

(i) loga(x · x′) = loga x + loga x

(ii) loga( xx′

)= loga x− loga x

(iii) loga(xr) = r loga x

Page 20: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Logarithmsconvertproductstosums

I Suppose y = loga x and y′ = loga x′

I Then x = ay and x′ = ay′

I So xx′ = ayay′ = ay+y′

I Therefore

loga(xx′) = y + y′ = loga x + loga x

Page 21: Lesson 15: Inverse Functions and Logarithms

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

Page 22: Lesson 15: Inverse Functions and Logarithms

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

Page 23: Lesson 15: Inverse Functions and Logarithms

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

Page 24: Lesson 15: Inverse Functions and Logarithms

. . . . . .

ExampleWriteasasinglelogarithm: 2 ln 4− ln 3.

Solution

I 2 ln 4− ln 3 = ln 42 − ln 3 = ln42

3

I notln 42

ln 3!

Example

Writeasasinglelogarithm: ln34

+ 4 ln 2

Answerln 12

Page 25: Lesson 15: Inverse Functions and Logarithms

. . . . . .

..“lawn”

.

.Imagecredit: Selva

Page 26: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

Page 27: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

Page 28: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

Page 29: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Graphsoflogarithmicfunctions

. .x

.y.y = 2x

.y = log2 x

. .(0, 1)

..(1, 0)

.y = 3x

.y = log3 x

.y = 10x

.y = log10 x

.y = ex

.y = ln x

Page 30: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Changeofbaseformulaforexponentials

FactIf a > 0 and a ̸= 1, then

loga x =ln xln a

Proof.

I If y = loga x, then x = ay

I So ln x = ln(ay) = y ln aI Therefore

y = loga x =ln xln a

Page 31: Lesson 15: Inverse Functions and Logarithms

. . . . . .

Changeofbaseformulaforexponentials

FactIf a > 0 and a ̸= 1, then

loga x =ln xln a

Proof.

I If y = loga x, then x = ay

I So ln x = ln(ay) = y ln aI Therefore

y = loga x =ln xln a