Lectures on Multiloop Calculations (Grozin)

225
Lectures on multiloop calculations Andrey Grozin [email protected] Institut f ¨ ur Theoretische Teilchenphysik, Universit ¨ at Karlsruhe CALC-2003, Dubna, June 13–21 – p. 1/128

description

multiloop calculations

Transcript of Lectures on Multiloop Calculations (Grozin)

  • Lectures on multiloop calculations

    Andrey Grozin

    [email protected]

    Institut fur Theoretische Teilchenphysik, Universitat Karlsruhe

    CALC-2003, Dubna, June 1321 p. 1/128

  • Plan Massless propagator diagrams

    HQET propagator diagrams

    Massive on-shell propagator diagrams

    Expansion of hypergeometric functions in

    CALC-2003, Dubna, June 1321 p. 2/128

  • Plan Massless propagator diagrams

    1 loop 2 loops 3 loops master integral G with non-integer index master integral non-planar

    HQET propagator diagrams

    Massive on-shell propagator diagrams

    Expansion of hypergeometric functions in

    CALC-2003, Dubna, June 1321 p. 2/128

  • Plan Massless propagator diagrams

    HQET propagator diagrams crash course of HQET 1 loop 2 loops 3 loops master integral (my) master integral (Beneke-Braun)

    Massive on-shell propagator diagrams

    Expansion of hypergeometric functions in

    CALC-2003, Dubna, June 1321 p. 2/128

  • Plan Massless propagator diagrams

    HQET propagator diagrams

    Massive on-shell propagator diagrams 1 loop 2 loops 2 loops, 2 non-zero masses 3 loops 3-loop HQET master integral(Czarnecki-Melnikov)

    Expansion of hypergeometric functions in

    CALC-2003, Dubna, June 1321 p. 2/128

  • Plan Massless propagator diagrams

    HQET propagator diagrams

    Massive on-shell propagator diagrams

    Expansion of hypergeometric functions in multiple values expansion example expansion algorithm

    CALC-2003, Dubna, June 1321 p. 2/128

  • Scalar integrals

    Tensor integrals can be expanded in tensor structuresCoefficients scalar integrals, projectors

    CALC-2003, Dubna, June 1321 p. 3/128

  • Scalar integrals

    Tensor integrals can be expanded in tensor structuresCoefficients scalar integrals, projectors

    Expressing scalar products in the numeratorvia the denominatorsSometimes, there are irreducible scalar products

    CALC-2003, Dubna, June 1321 p. 3/128

  • Scalar integrals

    Tensor integrals can be expanded in tensor structuresCoefficients scalar integrals, projectors

    Expressing scalar products in the numeratorvia the denominatorsSometimes, there are irreducible scalar products

    =n1 n2

    n1 + n2

    CALC-2003, Dubna, June 1321 p. 3/128

  • 1 loop

    CALC-2003, Dubna, June 1321 p. 4/128

  • Diagram

    k + p

    k

    n1

    n2

    ddk

    Dn11 Dn22

    = id/2(p2)d/2n1n2G(n1, n2)

    D1 = (k + p)2 i0 D2 = k

    2 i0

    CALC-2003, Dubna, June 1321 p. 5/128

  • Integer n1 0

    = 0

    Numerator D|n1|1

    ddk

    (k2 i0)n= 0

    Dimensionality d 2n, no dimensional parameter

    CALC-2003, Dubna, June 1321 p. 6/128

  • Fourier transform

    eipx

    (p2 i0)nddp

    (2)d=

    i22nd/2(d/2 n)

    (n)

    1

    (x2 + i0)d/2n

    eipx

    (x2 + i0)nddx =

    i2d2nd/2(d/2 n)

    (n)

    1

    (p2 i0)d/2n

    CALC-2003, Dubna, June 1321 p. 7/128

  • x space

    22(n1+n2)d(d/2 n1)(d/2 n2)

    (n1)(n2)

    1

    (x2)dn1n2

    CALC-2003, Dubna, June 1321 p. 8/128

  • x space

    22(n1+n2)d(d/2 n1)(d/2 n2)

    (n1)(n2)

    1

    (x2)dn1n2

    G(n1, n2) =

    (d/2 + n1 + n2)(d/2 n1)(d/2 n2)

    (n1)(n2)(d n1 n2)

    CALC-2003, Dubna, June 1321 p. 8/128

  • Inversion

    Euclidean momentum k0 = ikE0, k2 = k2E

    Dimensionless K = kE/p2

    ddK

    [(K + n)2]n1 [K2]n2= d/2G(n1, n2)

    n Euclidean vector, n2 = 1

    CALC-2003, Dubna, June 1321 p. 9/128

  • Inversion

    Euclidean momentum k0 = ikE0, k2 = k2E

    Dimensionless K = kE/p2

    ddK

    [(K + n)2]n1 [K2]n2= d/2G(n1, n2)

    n Euclidean vector, n2 = 1Inversion K = K /K 2

    ddK = ddK /(K 2)d

    K2 =1

    K 2(K + n)2 =

    (K + n)2

    K 2

    CALC-2003, Dubna, June 1321 p. 9/128

  • Inversion

    =

    n1

    n2

    n1

    d n1 n2

    G(n1, n2) = G(n1, d n1 n2)

    CALC-2003, Dubna, June 1321 p. 10/128

  • 2 loops

    CALC-2003, Dubna, June 1321 p. 11/128

  • Diagramk1 k2

    k1 + p k2 + p

    k1 k2n1 n2

    n3 n4n5

    ddk1 d

    dk2Dn11 D

    n22 D

    n33 D

    n44 D

    n55

    =

    d(p2)d

    niG(n1, n2, n3, n4, n5)

    D1 = (k1 + p)2 D2 = (k2 + p)

    2

    D3 = k21 D4 = k

    22 D5 = (k1 k2)

    2

    CALC-2003, Dubna, June 1321 p. 12/128

  • Trivial case n5 = 0

    n1 n2

    n3 n4

    G(n1, n2, n3, n4, 0) = G(n1, n3)G(n2, n4)

    CALC-2003, Dubna, June 1321 p. 13/128

  • Trivial case n1 = 0

    =

    n2

    n3 n4

    n5

    n5

    n3

    n2

    n4 + n3 + n5 d/2

    G(0, n2, n3, n4, n5) = G(n3, n5)G(n2, n4+n3+n5d/2)

    Inner loopG(n3, n5)

    (k22)n3+n5d/2

    Symmetric: n2 = 0, n3 = 0, n4 = 0

    CALC-2003, Dubna, June 1321 p. 14/128

  • Integration by parts

    When applied to the integrand, derivative

    k2

    n2D2

    2(k2 + p) +n4D4

    2k2 +n5D5

    2(k2 k1)

    CALC-2003, Dubna, June 1321 p. 15/128

  • Integration by parts

    When applied to the integrand, derivative

    k2

    n2D2

    2(k2 + p) +n4D4

    2k2 +n5D5

    2(k2 k1)

    Applying (/k2) k2 to the integrand and using

    k22 = D4 2(k2 + p) k2 = (p2)D2 D4

    2(k2 k1) k2 = D3 D4 D5

    we obtain

    d n2 n5 2n4 +n2D2

    ((p2)D4) +n5D5

    (D3D4)

    CALC-2003, Dubna, June 1321 p. 15/128

  • Integration by parts

    Notation

    1G(n1, n2, n3, n4, n5) = G(n1 1, n2, n3, n4, n5)

    Triangle relation[d n2 n5 2n4

    + n22+(1 4) + n55

    +(3 4)]G = 0

    CALC-2003, Dubna, June 1321 p. 16/128

  • Integration by parts

    Notation

    1G(n1, n2, n3, n4, n5) = G(n1 1, n2, n3, n4, n5)

    Triangle relation[d n2 n5 2n4

    + n22+(1 4) + n55

    +(3 4)]G = 0

    Applying (/k2) (k2 k1)[d n2 n4 2n5

    + n22+(1 5) + n44

    +(3 5)]G = 0

    CALC-2003, Dubna, June 1321 p. 16/128

  • Homogeneity

    Applying p (/p) we get 2(d

    ni):[2(d n3 n4 n5) n1 n2

    + n11+(1 3) + n22

    +(1 4)]I = 0

    This is the sum of the (/k2) k2 relationand the symmetric (/k1) k1 one

    CALC-2003, Dubna, June 1321 p. 17/128

  • Larin relationInsert (k1 + p)

    to the integrand:

    k1 + p(k1 + p) p

    p2p =

    (1 +

    D1 D3p2

    )p

    2

    Taking /p(32d

    ni

    )(1 +

    D1 D3p2

    )

    CALC-2003, Dubna, June 1321 p. 18/128

  • Larin relationExplicit differentiation

    d+n1D1

    2(k1 + p)2 +

    n2D2

    2(k2 + p) (k1 + p)

    2(k2 + p) (k1 + p) = D5 D1 D2

    Therefore[12d+ n1 n3 n4 n5 +

    (32d

    ni

    )(1 3)

    + n22+(1 5)

    ]G = 0

    CALC-2003, Dubna, June 1321 p. 19/128

  • Integration by parts

    G =n22

    +(5 1) + n44+(5 3)

    d n2 n4 2n5G

    n1 + n3 + n5 reduces by 1

    CALC-2003, Dubna, June 1321 p. 20/128

  • Integration by parts

    CALC-2003, Dubna, June 1321 p. 21/128

  • Integration by parts

    CALC-2003, Dubna, June 1321 p. 21/128

  • Integration by parts

    CALC-2003, Dubna, June 1321 p. 21/128

  • Topology

    1 generic topology (for all integer ni)

    Basis (all ni = 1)

    = G21 = G2

    CALC-2003, Dubna, June 1321 p. 22/128

  • Sunset

    Gn =1(

    n+ 1 nd2)n

    ((n+ 1)d2 2n 1

    )n

    (1 + n)n+1(1 )

    (1 (n+ 1))

    CALC-2003, Dubna, June 1321 p. 23/128

  • Inversion

    =

    n1 n2

    n3 n4

    n5

    n1 n2

    d n1 n3 n5

    d n2 n4 n5

    n5

    K 1 = K1/K21 , K

    2 = K2/K

    22

    (K1 K2)2 =

    (K 1 K2)

    2

    K 21 K22

    CALC-2003, Dubna, June 1321 p. 24/128

  • Inversion

    =

    n1 n2

    n3 n4

    n5

    n1 n2

    d n1 n3 n5

    d n2 n4 n5

    n5

    K 1 = K1/K21 , K

    2 = K2/K

    22

    (K1 K2)2 =

    (K 1 K2)

    2

    K 21 K22

    Z2 S6 symmetry group 1440 elements

    CALC-2003, Dubna, June 1321 p. 24/128

  • 3 loops

    CALC-2003, Dubna, June 1321 p. 25/128

  • Topologies

    3 generic topologies (for all integer ni, numerators)

    Chetyrkin, Tkachov 1981; Mincer

    CALC-2003, Dubna, June 1321 p. 26/128

  • Basis

    = G31 = G1G2

    = G3 G3G21G2

    = G1G(1, 1, 1, 1, )

    CALC-2003, Dubna, June 1321 p. 27/128

  • Inversion

    =

    =

    n1 n2

    n3 n4

    n5

    n6

    n7 n8

    n1 n2

    d n1 n3 n5 n7

    d n2 n4 n5 n8

    n5

    d n6 n7 n8

    n7 n8

    n1 n2

    n3

    n4 n5n6 n7

    n8

    n1 n2

    n3

    d n1 n3 n6

    d n2 n4 n7

    n6 n7

    d n3 n6 n7 n8

    CALC-2003, Dubna, June 1321 p. 28/128

  • InversionAll ni = 1, d = 4

    =

    CALC-2003, Dubna, June 1321 p. 29/128

  • G with non-integer indices

    CALC-2003, Dubna, June 1321 p. 30/128

  • G(1, 1, 1, 1, n)

    G(1, 1, 1, 1, n) = 2(d2 1

    )(d2 n 1

    )(n d+ 3)[

    2(d2 1

    )(d 2n 4)(n+ 1)

    (32d n 4

    ) 3F2

    (1, d 2, n d2 + 2

    n+ 1, n d2 + 3

    1) cot (d n)(d 2)]

    Kotikov 1996Kazakov 1985Broadhurst 199397

    CALC-2003, Dubna, June 1321 p. 31/128

  • G(1, 1, 1, 1, n)

    Shifting n5 by 1[(d 2n5 4)5

    + + 2(d n5 3)]G(1, 1, 1, 1, n5)

    = 21+(3 25+)G(1, 1, 1, 1, n5)

    CALC-2003, Dubna, June 1321 p. 32/128

  • G(1, 1, 1, 1, n + )

    G(1, 1, 1, 1, 2 + ) =4(1 + 3)(1 )

    1 + 2[(1 2)(1 )

    2(2 + )(1 + )2(1 4)(1 + )

    3F2

    (1, 2 2, 2 + 2

    3 + , 3 + 2

    1)+ cot 34(1 2)]

    3F2

    (1, 2 2, 2 + 2

    3 + , 3 + 2

    1) = 4(2 1)+6(43 + 32 1)+ 2(414 543 + 222 9)

    2

    +3(1245 + 2423 + 1234 883 + 302 8)3 +

    CALC-2003, Dubna, June 1321 p. 33/128

  • Non-planar diagram

    CALC-2003, Dubna, June 1321 p. 34/128

  • Gluing

    =205 +O()

    (p2)2+3

    = 205 1

    4+O(1)

    =205 +O()

    (p2)2+3

    CALC-2003, Dubna, June 1321 p. 35/128

  • HQET

    CALC-2003, Dubna, June 1321 p. 36/128

  • Lagrangian

    Single heavy quark |~p | . E, |p0 m| . E

    Light quarks and gluons |~ki| . E, |k0i| . EHQET = QCD expanded to some order in E/mResidual energy p0 = p0 m(vacuum has energym)

    Dispersion law p0 =m2 + ~p 2 m 0

    Two-component spinor Q(or 4-component 0Q = Q)

    L = Q+iD0Q+

    CALC-2003, Dubna, June 1321 p. 37/128

  • Feynman rules

    Propagator

    S(p) =1

    p0 + i0S(x) = i(x0)(~x )

    Vertex ig0 ta

    Loops vanish

    CALC-2003, Dubna, June 1321 p. 38/128

  • Covariant notations

    Lv = Qviv DQv +

    p = mv + p |p | m /vQv = Qv

    S(p) =1 + /v

    2

    1

    p v + i0

    Vertex igvta

    CALC-2003, Dubna, June 1321 p. 39/128

  • Covariant notations

    Lv = Qviv DQv +

    p = mv + p |p | m /vQv = Qv

    S(p) =1 + /v

    2

    1

    p v + i0

    Vertex igvta

    QCD propagator

    S(p) =/p+m

    p2 m2=m(1 + /v) + /p

    2mp v + p 2=

    1 + /v

    2

    1

    p v+

    Vertex igta igvta between (1 + /v)/2

    CALC-2003, Dubna, June 1321 p. 39/128

  • 1 loop

    CALC-2003, Dubna, June 1321 p. 40/128

  • Diagram

    k0 +

    k

    n1

    n2

    ddk

    Dn11 Dn22

    = id/2(2)d2n2I(n1, n2)

    D1 =k0 +

    D2 = k

    2

    CALC-2003, Dubna, June 1321 p. 41/128

  • Fourier transform

    +

    eit

    ( i0)nd

    2=

    in

    (n)tn1(t)

    0

    eittn dt =(i)n+1(n+ 1)

    ( i0)n+1

    CALC-2003, Dubna, June 1321 p. 42/128

  • Fourier transform

    +

    eit

    ( i0)nd

    2=

    in

    (n)tn1(t)

    0

    eittn dt =(i)n+1(n+ 1)

    ( i0)n+1

    x-space x2 = (it)2 (t = itE)

    22n2d/2(d/2 n2)

    (n1)(n2)(it)n1+2n2d1(t)

    CALC-2003, Dubna, June 1321 p. 42/128

  • II(n1, n2) =(d+ n1 + 2n2)(d/2 n2)

    (n1)(n2)

    CALC-2003, Dubna, June 1321 p. 43/128

  • 2 loops

    CALC-2003, Dubna, June 1321 p. 44/128

  • Diagram I

    k1 k2

    k10 + k20 +

    k1 k2n1 n2

    n3 n4n5

    ddk1 d

    dk2Dn11 D

    n22 D

    n33 D

    n44 D

    n55

    =

    d(2)2(dn3n4n5)I(n1, n2, n3, n4, n5)

    D1 =k10 +

    D2 =

    k20 +

    D3 = k

    21 D4 = k

    22 D5 = (k1 k2)

    2

    CALC-2003, Dubna, June 1321 p. 45/128

  • Trivial case n5 = 0

    n1 n2

    n3 n4

    I(n1, n2, n3, n4, 0) = I(n1, n3)I(n2, n4)

    CALC-2003, Dubna, June 1321 p. 46/128

  • Trivial cases n1 = 0, n3 = 0

    =

    n2

    n3 n4

    n5

    n5

    n3

    n2

    n4 + n3 + n5 d/2

    I(0, n2, n3, n4, n5) = G(n3, n5)I(n2, n4+n3+n5d/2)

    CALC-2003, Dubna, June 1321 p. 47/128

  • Trivial cases n1 = 0, n3 = 0

    =

    n2

    n3 n4

    n5

    n5

    n3

    n2

    n4 + n3 + n5 d/2

    I(0, n2, n3, n4, n5) = G(n3, n5)I(n2, n4+n3+n5d/2)

    =

    n1 n2

    n4

    n5n1

    n5

    n2 + n1 + 2n5 d

    n4

    I(n1, n2, 0, n4, n5) = I(n1, n5)I(n2 + n1 +2n5 d, n4)

    CALC-2003, Dubna, June 1321 p. 47/128

  • Integration by parts

    When applied to the integrand

    k2

    n2D2

    v

    +

    n4D4

    2k2 +n5D5

    2(k2 k1)

    CALC-2003, Dubna, June 1321 p. 48/128

  • Integration by parts

    When applied to the integrand

    k2

    n2D2

    v

    +

    n4D4

    2k2 +n5D5

    2(k2 k1)

    Applying (/k2) k2, (/k2) (k2 k1) and usingk2v/ = D2 1, 2(k2 k1) k2 = D3 D4 D5:

    d n2 n5 2n4 +n2D2

    +n5D5

    (D3 D4)

    d n2 n4 2n5 +n2D2

    D1 +n4D4

    (D3 D5)

    CALC-2003, Dubna, June 1321 p. 48/128

  • Integration by parts

    [d n2 n5 2n4 + n22

    + + n55+(3 4)

    ]I = 0[

    d n2 n4 2n5 + n22+1 + n44

    +(3 5)]I = 0

    CALC-2003, Dubna, June 1321 p. 49/128

  • Integration by parts

    [d n2 n5 2n4 + n22

    + + n55+(3 4)

    ]I = 0[

    d n2 n4 2n5 + n22+1 + n44

    +(3 5)]I = 0

    Applying (/k2) v[2n22

    + + n44+(2 1) + n55

    +(2 1)]I = 0

    CALC-2003, Dubna, June 1321 p. 49/128

  • Homogeneity

    Applying (d/d) to n1n2I:[2(d n3 n4 n5) n1 n2 + n11

    + + n22+]I = 0

    This is the sum of the (/k2) k2 relationand the symmetric (/k1) k1 one

    CALC-2003, Dubna, June 1321 p. 50/128

  • Homogeneity

    Applying (d/d) to n1n2I:[2(d n3 n4 n5) n1 n2 + n11

    + + n22+]I = 0

    This is the sum of the (/k2) k2 relationand the symmetric (/k1) k1 oneThe (/k2) (k2 k1) relation minus 1

    times thehomogeneity relation:[

    d n1 n2 n4 2n5 + 1

    (2(d n3 n4 n5) n1 n2 + 1

    )1

    + n44+(3 5)

    ]I = 0

    CALC-2003, Dubna, June 1321 p. 50/128

  • Integration by parts

    I =

    (2(d n3 n4 n5) n1 n2 + 1)1 + n44

    +(5 3)

    d n1 n2 n4 2n5 + 1I

    n1 + n3 + n5 reduces by 1

    CALC-2003, Dubna, June 1321 p. 51/128

  • Diagram J

    k2

    k1

    k10 + k10 + k20 +

    k20 + n1 n3

    n2

    n4

    n5ddk1 d

    dk2Dn11 D

    n22 D

    n33 D

    n44 D

    n55

    =

    d(2)2(dn4n5)J(n1, n2, n3, n4, n5)

    D1 =k10 +

    D2 =

    k20 +

    D3 =(k1 + k2)0 +

    D4 = k

    21 D5 = k

    22

    CALC-2003, Dubna, June 1321 p. 52/128

  • Partial fractioning

    Trivial cases: n3 = 0, n1,2 = 0Denominators are linearly dependent:

    D1 +D2 D3 = 1

    J = (1 + 2 3)J

    n1 + n2 + n3 reduces by 1Numerator (k1 k2)

    n not a problem

    CALC-2003, Dubna, June 1321 p. 53/128

  • Topologies

    2 generic topologies (for all integer ni)

    Broadhurst, Grozin 1991

    CALC-2003, Dubna, June 1321 p. 54/128

  • Topologies

    2 generic topologies (for all integer ni)

    Broadhurst, Grozin 1991

    Basis (all ni = 1)

    = I21 = I2

    CALC-2003, Dubna, June 1321 p. 54/128

  • Sunset

    In =(1 + 2n)n(1 )

    (1 n(d 2))2n

    CALC-2003, Dubna, June 1321 p. 55/128

  • 3 loops

    CALC-2003, Dubna, June 1321 p. 56/128

  • Topologies

    Grozin 2000Grinder

    CALC-2003, Dubna, June 1321 p. 57/128

  • Basis

    = I31 = I1I2

    = I3

    I3I21I2

    I3G21G2

    = G1I(1, 1, 1, 1, )

    = I1J(1, 1,1 + 2, 1, 1)

    CALC-2003, Dubna, June 1321 p. 58/128

  • J with non-integer indices

    CALC-2003, Dubna, June 1321 p. 59/128

  • J(1, 1, n, 1, 1)

    0

    t1t2

    tn

    0

  • J(1, 1, n, 1, 1)

    0

    t1t2

    tn

    0

  • J(1, 1, n, 1, 1)

    0

    t1t2

    1n

    J(1, 1, n, 1, 1) =(n 2d+ 6)2(d/2 1)

    (n)J

    J =

    0

  • J(1, 1, n, 1, 1)

    0

    t1t2

    1n

    J(1, 1, n, 1, 1) =(n 2d+ 6)2(d/2 1)

    (n)J

    J =

    0

  • J(1, 1, n, 1, 1)

    (1 xt)2d =k=0

    (d 2)kk!

    (xt)k

    (x)k =k1i=0

    (x+ i) =(x+ k)

    (x)

    CALC-2003, Dubna, June 1321 p. 62/128

  • J(1, 1, n, 1, 1)

    (1 xt)2d =k=0

    (d 2)kk!

    (xt)k

    (x)k =k1i=0

    (x+ i) =(x+ k)

    (x)

    J = (n)k=0

    (d 2)k(n d+ k + 3)(n+ k + 1)

    =1

    n(n d+ 3)

    k=0

    (d 2)k(n d+ 3)k(n+ 1)k(n d+ 4)k

    CALC-2003, Dubna, June 1321 p. 62/128

  • J(1, 1, n, 1, 1)

    3F2

    (a1, a2, a3b1, b2

    x) = k=0

    (a1)k(a2)k(a3)k(b1)k(b2)k

    xk

    k!

    (1)k = k!

    CALC-2003, Dubna, June 1321 p. 63/128

  • J(1, 1, n, 1, 1)

    3F2

    (a1, a2, a3b1, b2

    x) = k=0

    (a1)k(a2)k(a3)k(b1)k(b2)k

    xk

    k!

    (1)k = k!

    J =1

    n(n d+ 3)3F2

    (1, d 2, n d+ 3

    n+ 1, n d+ 4

    1)J(1, 1, n, 1, 1) =

    (n 2d+ 6)2(d/2 1)

    (n d+ 3)(n+ 1)

    3F2

    (1, d 2, n d+ 3

    n+ 1, n d+ 4

    1)CALC-2003, Dubna, June 1321 p. 63/128

  • J(n1, n2, n3, n4, n5)

    J(n1, n2, n3, n4, n5) =

    (n1 + n2 + n3 + 2(n4 + n5 d))

    (n1 + n3 + 2n4 d)

    (n1 + n2 + n3 + 2n4 d)

    (d/2 n4)(d/2 n5)

    (n4)(n5)(n1 + n3)

    3F2

    (n1, d 2n5, n1 + n3 + 2n4 d

    n1 + n3, n1 + n2 + n3 + 2n4 d

    1)Grozin 2000

    CALC-2003, Dubna, June 1321 p. 64/128

  • J(1, 1, n + 2, 1, 1)

    Shifting n3 by 1: (1 1 2 + 3)J = 0

    CALC-2003, Dubna, June 1321 p. 65/128

  • J(1, 1, n + 2, 1, 1)

    Shifting n3 by 1: (1 1 2 + 3)J = 0

    J(1, 1, 2 + 2, 1, 1) =1

    3(d 4)(d 5)(d 6)(2d 9)

    (1 + 6)2(1 )

    (1 + 2)3F2

    (1, 2 2, 1 + 4

    3 + 2, 2 + 4

    1)3F2

    (1, 2 2, 1 + 4

    3 + 2, 2 + 4

    1) = 2 + 6(22 + 3)+12(103 112 + 6)

    2 + 24(284 + 553 272 + 9)3

    +48(945 1623 1544 + 1353 452 + 12)4 +

    CALC-2003, Dubna, June 1321 p. 65/128

  • I with non-integer indices

    CALC-2003, Dubna, June 1321 p. 66/128

  • I(1, 1, 1, 1, n)

    0 vt1v(t1 t)

    x

    Euclidean x-space ( = d/2 1)

    t0

    dt1

    ddx

    1

    (x2)d/2n [(x vt1)2] [(x+ v(t t1))2]

    =2d/2

    (d/2)It2(nd)+5

    CALC-2003, Dubna, June 1321 p. 67/128

  • I(1, 1, 1, 1, n)

    0 vt1v(t1 t)

    x

    Euclidean x-space ( = d/2 1)

    t0

    dt1

    ddx

    1

    (x2)d/2n [(x vt1)2] [(x+ v(t t1))2]

    =2d/2

    (d/2)It2(nd)+5

    I(1, 1, 1, 1, n) =2

    (2(n d+ 3))(d/2 n)2(d/2 1)

    (d/2)(n)I

    ddx =2d/2

    (d/2)xd1dx dx

    dx = 1

    CALC-2003, Dubna, June 1321 p. 67/128

  • Gegenbauer polynomials

    0 vtv(t 1)

    x

    I =

    10

    dt

    0

    dx dxx2n1

    [(x vt)2] [(x+ v(1 t))2]

    CALC-2003, Dubna, June 1321 p. 68/128

  • Gegenbauer polynomials

    0 vtv(t 1)

    x

    I =

    10

    dt

    0

    dx dxx2n1

    [(x vt)2] [(x+ v(1 t))2]

    1

    [(x y)2]=

    1

    max2(x, y)

    k=0

    T k(x, y)Ck (x y)

    T (x, y) = min

    (x

    y,y

    x

    )CALC-2003, Dubna, June 1321 p. 68/128

  • Gegenbauer polynomials

    dx Ck1(a x)C

    k2(b x) = k1k2

    + k1Ck1(a b)

    Ck (1) = (1)kCk (1) = (1)

    k(2+ k)

    k! (2)

    CALC-2003, Dubna, June 1321 p. 69/128

  • I(1, 1, 1, 1, n)

    I =d 2

    (d 2)

    10

    dt

    k=0

    (1)k

    k!

    (d+ k 2)

    d+ 2k 2Ik(t)

    CALC-2003, Dubna, June 1321 p. 70/128

  • I(1, 1, 1, 1, n)

    I =d 2

    (d 2)

    10

    dt

    k=0

    (1)k

    k!

    (d+ k 2)

    d+ 2k 2Ik(t)

    Ik(t) =

    0

    dxx2n1 [T (x, t)T (x, 1 t)]k

    [max(x, t)max(x, 1 t)]d2

    CALC-2003, Dubna, June 1321 p. 70/128

  • I(1, 1, 1, 1, n)

    I =d 2

    (d 2)

    10

    dt

    k=0

    (1)k

    k!

    (d+ k 2)

    d+ 2k 2Ik(t)

    Ik(t) =

    0

    dxx2n1 [T (x, t)T (x, 1 t)]k

    [max(x, t)max(x, 1 t)]d2

    t < 12 : Ik(t) =

    t0

    dxx2n1

    [xt

    x1t

    ]k[t(1 t)]d2

    +

    1tt

    dxx2n1

    [tx

    x1t

    ]k[x(1 t)]d2

    +

    1t

    dxx2n1

    [tx1tx

    ]k[x2]d2

    CALC-2003, Dubna, June 1321 p. 70/128

  • I(1, 1, 1, 1, n)

    I =d 2

    (d 2n 2)(d 2)

    1/20

    dt

    k=0

    (1)k

    k!(d+ k 2)

    [td+2n+k+2(1 t)dk+2

    n+ ktk(1 t)2d+2nk+4

    d n+ k 2

    ]

    CALC-2003, Dubna, June 1321 p. 71/128

  • I(1, 1, 1, 1, n)

    I(1, 1, 1, 1, n) = 2

    (d

    2 1

    )

    (d

    2 n 1

    )[

    (2n 2d+ 6)

    (2n d+ 3)(n+ 1)3F2

    (1, d 2, 2n d+ 3

    n+ 1, 2n d+ 4

    1)

    (d n 2)2(n d+ 3)

    (d 2)

    ]

    CALC-2003, Dubna, June 1321 p. 72/128

  • I(1, 1, 1, 1, n)

    I(1, 1, 1, 1, n) =(d2 1

    )(d2 n 1

    )(d 2)[

    2(2n d+ 3)(2n 2d+ 6)

    (n d+ 3)(3n 2d+ 6)

    3F2

    (n d+ 3, n d+ 3, 2n 2d+ 6

    n d+ 4, 3n 2d+ 6

    1) (d n 2)2(n d+ 3)

    ]Beneke, Braun 1994

    CALC-2003, Dubna, June 1321 p. 73/128

  • I(1, 1, 1, 1, n)

    Shifting n5 by 1:[(d 2n5 4)5

    + 2(d n5 3)]I(1, 1, 1, 1, n5) =[

    (2d 2n5 7)15+ 34+5 + 13+

    ]I(1, 1, 1, 1, n5)

    CALC-2003, Dubna, June 1321 p. 74/128

  • I(1, 1, 1, 1, n + )

    I(1, 1, 1, 1, 1 + ) =4(1 )

    9(d 3)(d 4)2[(1 + 4)(1 + 6)

    (1 + 7)3F2

    (3, 3, 6

    1 + 3, 1 + 7

    1)

    2(1 + 3)(1 3)

    ]

    3F2

    (3, 3, 6

    1 + 3, 1 + 7

    1) = 1 + 5433 51344+ 54(255 + 2823)

    5 +

    CALC-2003, Dubna, June 1321 p. 75/128

  • On-shell diagrams

    CALC-2003, Dubna, June 1321 p. 76/128

  • Why?

    On-shell mass and wave-function renormalization(needed for all scattering amplitudes)

    CALC-2003, Dubna, June 1321 p. 77/128

  • Why?

    On-shell mass and wave-function renormalization(needed for all scattering amplitudes)

    Magnetic moments, charge radii

    CALC-2003, Dubna, June 1321 p. 77/128

  • Why?

    On-shell mass and wave-function renormalization(needed for all scattering amplitudes)

    Magnetic moments, charge radii

    QCD/HQET matching

    CALC-2003, Dubna, June 1321 p. 77/128

  • 1 loop

    k +mv

    k

    n1

    n2

    ddk

    Dn11 Dn22

    = id/2md2(n1+n2)M(n1, n2)

    D1 = m2 (k +mv)2 D2 = k

    2

    CALC-2003, Dubna, June 1321 p. 78/128

  • InversionDimensionless Euclidean momentum K = kE/m

    ddK

    (K2 2iK0)n1(K2)n2= d/2M(n1, n2)

    CALC-2003, Dubna, June 1321 p. 79/128

  • InversionDimensionless Euclidean momentum K = kE/m

    ddK

    (K2 2iK0)n1(K2)n2= d/2M(n1, n2)

    HQET K = kE/(2)ddK

    (1 2iK0)n1(K2)n2= d/2I(n1, n2)

    CALC-2003, Dubna, June 1321 p. 79/128

  • InversionDimensionless Euclidean momentum K = kE/m

    ddK

    (K2 2iK0)n1(K2)n2= d/2M(n1, n2)

    HQET K = kE/(2)ddK

    (1 2iK0)n1(K2)n2= d/2I(n1, n2)

    Inversion K = K /K 2

    K2 2iK0 =1 2iK 0

    K 2

    CALC-2003, Dubna, June 1321 p. 79/128

  • Inversion

    =

    n1

    n2

    n1

    d n1 n2

    M(n1, n2) = I(n1, d n1 n2) =

    (d n1 2n2)(d/2 + n1 + n2)

    (n1)(d n1 n2)

    CALC-2003, Dubna, June 1321 p. 80/128

  • 2 loops

    CALC-2003, Dubna, June 1321 p. 81/128

  • DiagramM

    k1 k2

    k1 +mv k2 +mv

    k1 k2n1 n2

    n3 n4n5

    ddk1 d

    dk2Dn11 D

    n22 D

    n33 D

    n44 D

    n55

    =

    dm2(d

    ni)M(n1, n2, n3, n4, n5)

    D1 = m2 (k1 +mv)

    2 D2 = m2 (k2 +mv)

    2

    D3 = k21 D4 = k

    22 D5 = (k1 k2)

    2

    CALC-2003, Dubna, June 1321 p. 82/128

  • Diagram N

    k2

    k1

    k1 +mv k1 + k2 +mv

    k2 +mvn1 n3

    n2

    n4

    n5ddk1 d

    dk2Dn11 D

    n22 D

    n33 D

    n44 D

    n55

    =

    dm2(d

    ni)N(n1, n2, n3, n4, n5)

    D1 = m2 (k1 +mv)

    2 D2 = m2 (k2 +mv)

    2

    D3 = m2 (k1 + k2 +mv)

    2

    D4 = k21 D5 = k

    22

    CALC-2003, Dubna, June 1321 p. 83/128

  • Topologies

    2 generic topologies (for all integer ni)

    Broadhurst 199092 RecursorFleischer, Tarasov 1992 SHELL2

    CALC-2003, Dubna, June 1321 p. 84/128

  • Topologies

    2 generic topologies (for all integer ni)

    Broadhurst 199092 RecursorFleischer, Tarasov 1992 SHELL2

    Basis (all ni = 1)

    CALC-2003, Dubna, June 1321 p. 84/128

  • Sunset

    Mn =(nd 4n+ 1)2(n1)(

    n+ 1 nd2)n

    ((n+ 1)d2 2n 1

    )n

    1(nd2 2n+ 1

    )n1

    (n (n 1)d2

    )n1

    (1 + (n 1))(1 + n)(1 2n)n(1 )

    (1 n)(1 (n+ 1))

    CALC-2003, Dubna, June 1321 p. 85/128

  • Sunset

    Mn =(nd 4n+ 1)2(n1)(

    n+ 1 nd2)n

    ((n+ 1)d2 2n 1

    )n

    1(nd2 2n+ 1

    )n1

    (n (n 1)d2

    )n1

    (1 + (n 1))(1 + n)(1 2n)n(1 )

    (1 n)(1 (n+ 1))

    = 1

    2

    d 2

    d 3

    CALC-2003, Dubna, June 1321 p. 85/128

  • N(1, 1, 1, 1, 1)

    N(1, 1, 1, 1, 1) =

    42(1 + )

    3(1 42)

    [2 3F2

    (1, 12 ,

    12

    32 + ,

    32

    1)+

    1

    1 + 23F2

    (1, 12 ,

    12

    32 + ,

    32 +

    1)+

    3(1 + 2)

    162

    ((1 4)(1 + 2)2(1 )

    (1 3)(1 2)(1 + ) 1

    )]

    CALC-2003, Dubna, June 1321 p. 86/128

  • N(1, 1, 1, 1, 1)

    N(1, 1, 1, 1, 1) = 2 log 23

    23 +O()

    Broadhurst, 1992

    CALC-2003, Dubna, June 1321 p. 87/128

  • Inversion

    =

    n1 n2

    n3 n4n5

    n1 n2

    d n1 n3 n5

    d n2 n4 n5

    n5

    CALC-2003, Dubna, June 1321 p. 88/128

  • 2 masses

    CALC-2003, Dubna, June 1321 p. 89/128

  • Topology

    Davydychev, Grozin 1999

    CALC-2003, Dubna, June 1321 p. 90/128

  • Topology

    Davydychev, Grozin 1999

    CALC-2003, Dubna, June 1321 p. 90/128

  • Topology

    Davydychev, Grozin 1999

    Basis (all ni = 1)

    I0 I1We could also choose a sunset diagram with index 2instead of I1

    CALC-2003, Dubna, June 1321 p. 90/128

  • I0

    I02(1 + )

    = (m2)12

    2(1 ){

    1

    1 23F2

    (1, 12 ,1 + 2

    2 , 12 +

    m2m2)

    +

    (m2

    m2

    )13F2

    (1, , 32

    3 2, 32

    m2m2)}

    CALC-2003, Dubna, June 1321 p. 91/128

  • I1

    I12(1 + )

    = (m2)2

    2{

    1

    2(1 )(1 + 2)3F2

    (1, 12 , 2

    2 , 32 +

    m2m2)

    (m2

    m2

    )11

    1 23F2

    (1, , 12

    2 2, 32

    m2m2)}

    CALC-2003, Dubna, June 1321 p. 92/128

  • I0

    I02(1 + )

    =

    m24[

    1

    22+

    5

    4+ 2(1 r2)2(L+ + L) 2 log

    2 r +11

    8

    ]m24

    [1

    2+

    3

    2 log r + 6

    ]+O()

    r = m/m

    CALC-2003, Dubna, June 1321 p. 93/128

  • I1

    I12(1 + )

    = m4

    [1

    22+

    5

    2

    + 2(1 + r)2L+ + 2(1 r)2L 2 log

    2 r +19

    2

    ]+O()

    CALC-2003, Dubna, June 1321 p. 94/128

  • L

    L+ = Li2(r) +12 log

    2 r log r log(1 + r) 162

    = Li2(r1) + log r1 log(1 + r1)

    L = Li2(1 r) +12 log

    2 r + 162

    = Li2(1 r1) + 16

    2

    = Li2(r) +12 log

    2 r log r log(1 r) + 132

    = Li2(r1) + log r1 log(1 r1)

    L+ + L =12 Li2(1 r

    2) + log2 r + 1122

    = 12 Li2(1 r2) + 112

    2

    CALC-2003, Dubna, June 1321 p. 95/128

  • 3 loops

    CALC-2003, Dubna, June 1321 p. 96/128

  • Topologies

    CALC-2003, Dubna, June 1321 p. 97/128

  • Basis

    Melnikov, van Ritbergen 2000 SHELL3

    CALC-2003, Dubna, June 1321 p. 98/128

  • Inversion

    n1 n2 n1 n2

    n3 n4d n1 n3 n5 n7

    d n2 n4 n5 n8

    n5 n5n7 n8 n7 n8

    n6 d n6 n7 n8

    =

    n1 n3 n2 n1 n3 n2

    n4 n5d n1 n4

    n6d n2 n5 n7n6n7 n6n7

    n8 d n3 n6 n7 n8

    =

    CALC-2003, Dubna, June 1321 p. 99/128

  • Inversiond = 4

    = = 55 + 1223

    Czarnecki, Melnikov 2002

    CALC-2003, Dubna, June 1321 p. 100/128

  • Multiple values

    CALC-2003, Dubna, June 1321 p. 101/128

  • Definition

    s =n>0

    1

    ns

    CALC-2003, Dubna, June 1321 p. 102/128

  • Definition

    s =n>0

    1

    ns

    s1s2 =

    n1>n2>0

    1

    ns11 ns22

    CALC-2003, Dubna, June 1321 p. 102/128

  • Definition

    s =n>0

    1

    ns

    s1s2 =

    n1>n2>0

    1

    ns11 ns22

    s1s2s3 =

    n1>n2>n3>0

    1

    ns11 ns22 n

    s33

    CALC-2003, Dubna, June 1321 p. 102/128

  • Definition

    s =n>0

    1

    ns

    s1s2 =

    n1>n2>0

    1

    ns11 ns22

    s1s2s3 =

    n1>n2>n3>0

    1

    ns11 ns22 n

    s33

    Converges at s1 > 1

    CALC-2003, Dubna, June 1321 p. 102/128

  • Definition

    s =n>0

    1

    ns

    s1s2 =

    n1>n2>0

    1

    ns11 ns22

    s1s2s3 =

    n1>n2>n3>0

    1

    ns11 ns22 n

    s33

    Converges at s1 > 1Depth k Weight s = s1 + + sk

    CALC-2003, Dubna, June 1321 p. 102/128

  • Examples

    Weight 2

    2

    CALC-2003, Dubna, June 1321 p. 103/128

  • Examples

    Weight 2

    2

    Weight 3

    3 21

    CALC-2003, Dubna, June 1321 p. 103/128

  • Examples

    Weight 2

    2

    Weight 3

    3 21

    Weight 4

    4 31 22 211

    CALC-2003, Dubna, June 1321 p. 103/128

  • Examples

    Weight 2

    2

    Weight 3

    3 21

    Weight 4

    4 31 22 211

    Weight 5

    5 41 32 23 311 221 212 2111

    CALC-2003, Dubna, June 1321 p. 103/128

  • Stuffling

    ss1s2 =n > 0

    n1 > n2 > 0

    1

    nsns11 ns22

    CALC-2003, Dubna, June 1321 p. 104/128

  • Stuffling

    ss1s2 =n > 0

    n1 > n2 > 0

    1

    nsns11 ns22

    n

    n1 n2

    n>n1>n2>0

    1

    nsns11 ns22

    = ss1s2

    CALC-2003, Dubna, June 1321 p. 104/128

  • Stuffling

    ss1s2 =n > 0

    n1 > n2 > 0

    1

    nsns11 ns22

    n

    n1 n2

    n=n1>n2>0

    1

    nsns11 ns22

    = s+s1,s2

    CALC-2003, Dubna, June 1321 p. 104/128

  • Stuffling

    ss1s2 =n > 0

    n1 > n2 > 0

    1

    nsns11 ns22

    n

    n1 n2

    n1>n>n2>0

    1

    nsns11 ns22

    = s1ss2

    CALC-2003, Dubna, June 1321 p. 104/128

  • Stuffling

    ss1s2 =n > 0

    n1 > n2 > 0

    1

    nsns11 ns22

    n

    n1 n2

    n1>n=n2>0

    1

    nsns11 ns22

    = s1,s+s2

    CALC-2003, Dubna, June 1321 p. 104/128

  • Stuffling

    ss1s2 =n > 0

    n1 > n2 > 0

    1

    nsns11 ns22

    n

    n1 n2

    n1>n2>n>0

    1

    nsns11 ns22

    = s1s2s

    CALC-2003, Dubna, June 1321 p. 104/128

  • Stuffling

    ss1s2 =n > 0

    n1 > n2 > 0

    1

    nsns11 ns22

    = ss1s2 + s+s1,s2 + s1ss2 + s1,s+s2 + s1s2s

    CALC-2003, Dubna, June 1321 p. 104/128

  • Stuffling

    CALC-2003, Dubna, June 1321 p. 105/128

  • Examples

    22 = 22 + 4 + 22

    CALC-2003, Dubna, June 1321 p. 106/128

  • Examples

    22 = 22 + 4 + 22

    23 = 23 + 5 + 32

    CALC-2003, Dubna, June 1321 p. 106/128

  • Examples

    22 = 22 + 4 + 22

    23 = 23 + 5 + 32

    221 = 221 + 41 + 221 + 23 + 212

    CALC-2003, Dubna, June 1321 p. 106/128

  • Integral representation

    10

    dx1x1

    x10

    dx2x2

    x20

    dx3x3

    x30

    dx4x4

    xn4

    CALC-2003, Dubna, June 1321 p. 107/128

  • Integral representation

    10

    dx1x1

    x10

    dx2x2

    x20

    dx3x3

    xn3 1

    n

    CALC-2003, Dubna, June 1321 p. 107/128

  • Integral representation

    10

    dx1x1

    x10

    dx2x2

    xn2 1

    n2

    CALC-2003, Dubna, June 1321 p. 107/128

  • Integral representation

    10

    dx1x1

    xn1 1

    n3

    CALC-2003, Dubna, June 1321 p. 107/128

  • Integral representation

    1

    n4

    CALC-2003, Dubna, June 1321 p. 107/128

  • Integral representation

    1

    ns=

    1>x1>>xs>0

    dx1x1

    dxsxs

    xns

    CALC-2003, Dubna, June 1321 p. 107/128

  • Integral representation

    1

    ns=

    1>x1>>xs>0

    dx1x1

    dxsxs

    xns

    s =

    1>x1>>xs>0

    dx1x1

    dxs1xs1

    dxs1 xs

    CALC-2003, Dubna, June 1321 p. 107/128

  • Integral representation

    Short notation:

    0 =dx

    x1 =

    dx

    1 x

    CALC-2003, Dubna, June 1321 p. 108/128

  • Integral representation

    Short notation:

    0 =dx

    x1 =

    dx

    1 x

    s =

    s10 1

    CALC-2003, Dubna, June 1321 p. 108/128

  • Integral representation

    Short notation:

    0 =dx

    x1 =

    dx

    1 x

    s =

    s10 1

    s1s2 =

    s110 1

    s210 1

    CALC-2003, Dubna, June 1321 p. 108/128

  • Integral representation

    Short notation:

    0 =dx

    x1 =

    dx

    1 x

    s =

    s10 1

    s1s2 =

    s110 1

    s210 1

    s1s2s3 =

    s110 1

    s210 1

    s310 1

    CALC-2003, Dubna, June 1321 p. 108/128

  • Integral representation

    Short notation:

    0 =dx

    x1 =

    dx

    1 x

    s =

    s10 1

    s1s2 =

    s110 1

    s210 1

    s1s2s3 =

    s110 1

    s210 1

    s310 1

    Always 1 > x1 > > xs > 0

    CALC-2003, Dubna, June 1321 p. 108/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    0 1

    0 1= 22

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    0

    01

    1= 31

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    0

    0 11 = 31

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    0

    0 11

    = 31

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    0

    01

    1 = 31

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    0 1

    0 1 = 22

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    = 431 + 222

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    22 =

    1>x1>x2>0

    01

    1>x

    1>x

    2>0

    01

    = 431 + 222

    23 = 6311 + 3221 + 212

    CALC-2003, Dubna, June 1321 p. 109/128

  • Shuffling

    CALC-2003, Dubna, June 1321 p. 110/128

  • Duality

    xi 1 xi: 0 11 > x1 > xs > 0: opposite order

    CALC-2003, Dubna, June 1321 p. 111/128

  • Duality

    xi 1 xi: 0 11 > x1 > xs > 0: opposite order

    3 =

    001 =

    011 = 21

    CALC-2003, Dubna, June 1321 p. 111/128

  • Duality

    xi 1 xi: 0 11 > x1 > xs > 0: opposite order

    3 =

    001 =

    011 = 21

    4 =

    0001 =

    0111 = 211

    CALC-2003, Dubna, June 1321 p. 111/128

  • Duality

    5 =

    00001 =

    01111 = 2111

    CALC-2003, Dubna, June 1321 p. 112/128

  • Duality

    5 =

    00001 =

    01111 = 2111

    41 =

    00011 =

    00111 = 311

    CALC-2003, Dubna, June 1321 p. 112/128

  • Duality

    5 =

    00001 =

    01111 = 2111

    41 =

    00011 =

    00111 = 311

    32 =

    00101 =

    01011 = 221

    CALC-2003, Dubna, June 1321 p. 112/128

  • Duality

    5 =

    00001 =

    01111 = 2111

    41 =

    00011 =

    00111 = 311

    32 =

    00101 =

    01011 = 221

    23 =

    01001 =

    01101 = 212

    CALC-2003, Dubna, June 1321 p. 112/128

  • Weight 4

    4 = 211 31 22

    CALC-2003, Dubna, June 1321 p. 113/128

  • Weight 4

    4 = 211 31 22

    22 = 4 + 222 22 =344

    22 = 431 + 222 31 =144

    2 =2

    64 =

    4

    90

    CALC-2003, Dubna, June 1321 p. 113/128

  • Weight 5

    5 = 2111 41 = 311 32 = 221 23 = 212

    CALC-2003, Dubna, June 1321 p. 114/128

  • Weight 5

    5 = 2111 41 = 311 32 = 221 23 = 21223 = 32 + 23 + 523 = 641 + 332 + 2323 = 221 = 41 + 232 + 223

    CALC-2003, Dubna, June 1321 p. 114/128

  • Weight 5

    5 = 2111 41 = 311 32 = 221 23 = 21223 = 32 + 23 + 523 = 641 + 332 + 2323 = 221 = 41 + 232 + 223

    41 = 25 23

    32 = 11

    25 + 323

    23 =9

    25 223

    CALC-2003, Dubna, June 1321 p. 114/128

  • Expanding

    hypergeometric functions in

    Example

    CALC-2003, Dubna, June 1321 p. 115/128

  • Step 1

    Example

    F =n=0

    (2 2)n(2 + 2)n(3 + )n(3 + 2)n

    CALC-2003, Dubna, June 1321 p. 116/128

  • Step 1

    Example

    F =n=0

    (2 2)n(2 + 2)n(3 + )n(3 + 2)n

    (2 + 2)n(3 + 2)n

    =2 + 2

    n+ 2 + 2

    CALC-2003, Dubna, June 1321 p. 116/128

  • Step 1

    Example

    F =n=0

    (2 2)n(2 + 2)n(3 + )n(3 + 2)n

    (2 + 2)n(3 + 2)n

    =2 + 2

    n+ 2 + 2

    (2 2)n =(1 2)n+1

    1 2

    (3 + )n =(1 + )n+2

    (1 + )(2 + )

    CALC-2003, Dubna, June 1321 p. 116/128

  • Step 1

    F =2(2 + )(1 + )2

    1 2F = 2(2 + 9+ )F

    F =n=0

    1

    n+ 2 + 2

    (1 2)n+1(1 + )n+2

    CALC-2003, Dubna, June 1321 p. 117/128

  • Step 1

    F =2(2 + )(1 + )2

    1 2F = 2(2 + 9+ )F

    F =n=0

    1

    n+ 2 + 2

    (1 2)n+1(1 + )n+2

    (1 + )n = n!Pn() Pn() =n

    n=1

    (1 +

    n

    )

    CALC-2003, Dubna, June 1321 p. 117/128

  • Step 1

    F =2(2 + )(1 + )2

    1 2F = 2(2 + 9+ )F

    F =n=0

    1

    n+ 2 + 2

    (1 2)n+1(1 + )n+2

    (1 + )n = n!Pn() Pn() =n

    n=1

    (1 +

    n

    )

    F =n=0

    1

    (n+ 2)(n+ 2 + 2)

    Pn+1(2)

    Pn+2()

    CALC-2003, Dubna, June 1321 p. 117/128

  • Step 2

    Expanding in and partial-fractioning

    1

    (n+ 2)(n + 2 + 2)=

    1

    (n+ 2)2

    2

    (n+ 2)3+

    CALC-2003, Dubna, June 1321 p. 118/128

  • Step 2

    Expanding in and partial-fractioning

    1

    (n+ 2)(n + 2 + 2)=

    1

    (n+ 2)2

    2

    (n+ 2)3+

    F =n=0

    1

    (n+ 2)2Pn+1(2)

    Pn+2() 2

    n=0

    1

    (n+ 2)3+O(2)

    =n=2

    1

    n2Pn1(2)

    Pn() 2

    n=2

    1

    n3+O(2)

    CALC-2003, Dubna, June 1321 p. 118/128

  • Step 3

    Pn() =(1 +

    n

    )Pn1()

    Expanding and partial-fractioning

    CALC-2003, Dubna, June 1321 p. 119/128

  • Step 3

    Pn() =(1 +

    n

    )Pn1()

    Expanding and partial-fractioning

    F =n=2

    1

    n2Pn1(2)

    Pn1() 3

    n=2

    1

    n3+O(2)

    CALC-2003, Dubna, June 1321 p. 119/128

  • Step 3

    Pn() =(1 +

    n

    )Pn1()

    Expanding and partial-fractioning

    F =n=2

    1

    n2Pn1(2)

    Pn1() 3

    n=2

    1

    n3+O(2)

    Step 4

    F =n=1

    1

    n2Pn1(2)

    Pn1() 1 3(3 1)+O(

    2)

    CALC-2003, Dubna, June 1321 p. 119/128

  • Step 5

    Pn1() =

    n>n>0

    (1 +

    n

    )= 1+ z1(n)+ z11(n)

    2 +

    CALC-2003, Dubna, June 1321 p. 120/128

  • Step 5

    Pn1() =

    n>n>0

    (1 +

    n

    )= 1+ z1(n)+ z11(n)

    2 +

    zs(n) =

    n>n1>0

    1

    ns

    CALC-2003, Dubna, June 1321 p. 120/128

  • Step 5

    Pn1() =

    n>n>0

    (1 +

    n

    )= 1+ z1(n)+ z11(n)

    2 +

    zs(n) =

    n>n1>0

    1

    ns

    zs1s2(n) =

    n>n1>n2>0

    1

    ns11 ns22

    CALC-2003, Dubna, June 1321 p. 120/128

  • Step 5

    Pn1() =

    n>n>0

    (1 +

    n

    )= 1+ z1(n)+ z11(n)

    2 +

    zs(n) =

    n>n1>0

    1

    ns

    zs1s2(n) =

    n>n1>n2>0

    1

    ns11 ns22

    Stuffling

    zs(n)zs1s2(n) = zss1s2(n) + zs+s1,s2(n)

    + zs1ss2(n) + zs1,s+s2(n) + zs1s2s(n)CALC-2003, Dubna, June 1321 p. 120/128

  • Step 5

    Pn1(2)

    Pn1()=

    1 2z1(n)+

    1 + z1(n)+ = 1 3z1(n)+

    CALC-2003, Dubna, June 1321 p. 121/128

  • Step 5

    Pn1(2)

    Pn1()=

    1 2z1(n)+

    1 + z1(n)+ = 1 3z1(n)+

    F =n>0

    1

    n2 3

    n>n1>0

    1

    n2n1 1 3(3 1)+

    = 2 1 3(21 + 3 1)+

    CALC-2003, Dubna, June 1321 p. 121/128

  • Step 5

    Pn1(2)

    Pn1()=

    1 2z1(n)+

    1 + z1(n)+ = 1 3z1(n)+

    F =n>0

    1

    n2 3

    n>n1>0

    1

    n2n1 1 3(3 1)+

    = 2 1 3(21 + 3 1)+

    Result 21 = 3

    F = 2(2 + 9+ ) [2 1 3(23 1)+ ]

    = 4(2 1) + 6(43 + 32 1)+

    CALC-2003, Dubna, June 1321 p. 121/128

  • Expanding

    hypergeometric functions in

    Algorithm

    CALC-2003, Dubna, June 1321 p. 122/128

  • Step 1

    F =n=0

    i(mi + li)ni(m

    i + l

    i)n

    CALC-2003, Dubna, June 1321 p. 123/128

  • Step 1

    F =n=0

    i(mi + li)ni(m

    i + l

    i)n

    (m+ l)n =(1 + l)n+m1

    (1 + l) (m 1 + l)

    CALC-2003, Dubna, June 1321 p. 123/128

  • Step 1

    F =n=0

    i(mi + li)ni(m

    i + l

    i)n

    (m+ l)n =(1 + l)n+m1

    (1 + l) (m 1 + l)

    (1 + l)n+m1 = (n+m 1)!Pn+m1(l)

    CALC-2003, Dubna, June 1321 p. 123/128

  • Step 1

    F =n=0

    i(mi + li)ni(m

    i + l

    i)n

    (m+ l)n =(1 + l)n+m1

    (1 + l) (m 1 + l)

    (1 + l)n+m1 = (n+m 1)!Pn+m1(l)

    F =n=0

    R(n, )

    i Pn+mi1(li)i Pn+mi1(l

    i)

    CALC-2003, Dubna, June 1321 p. 123/128

  • Step 2

    Expand

    R(n, ) = R0(n) +R1(n)+

    and partial-fraction each Rj(n)

    CALC-2003, Dubna, June 1321 p. 124/128

  • Step 2

    Expand

    R(n, ) = R0(n) +R1(n)+

    and partial-fraction each Rj(n)Convergent sum combination of logarithmicallydivergent ones

    CALC-2003, Dubna, June 1321 p. 124/128

  • Step 2

    Expand

    R(n, ) = R0(n) +R1(n)+

    and partial-fraction each Rj(n)Convergent sum combination of logarithmicallydivergent onesShift indices. F = sum of terms

    n=n0

    1

    nk

    i Pn+mi(li)i Pn+mi(l

    i)

    CALC-2003, Dubna, June 1321 p. 124/128

  • Step 3

    Pn+m(l) = Pn1(l)

    (1 +

    l

    n

    )

    (1 +

    l

    n+m

    )

    CALC-2003, Dubna, June 1321 p. 125/128

  • Step 3

    Pn+m(l) = Pn1(l)

    (1 +

    l

    n

    )

    (1 +

    l

    n+m

    )

    n=n0

    R(n, )

    nk

    i Pn1(li)i Pn1(l

    i)

    CALC-2003, Dubna, June 1321 p. 125/128

  • Step 3

    Pn+m(l) = Pn1(l)

    (1 +

    l

    n

    )

    (1 +

    l

    n+m

    )

    n=n0

    R(n, )

    nk

    i Pn1(li)i Pn1(l

    i)

    Expand and partial-fraction (only affects higherorders in ). F = sum of terms

    n=n0

    1

    nk

    i Pn1(li)i Pn1(l

    i)

    CALC-2003, Dubna, June 1321 p. 125/128

  • Step 4

    Add and subtract terms with n = 1, . . . n0 1. F =sum of terms

    n=1

    1

    nk

    i Pn1(li)i Pn1(l

    i)

    and rational functions of

    CALC-2003, Dubna, June 1321 p. 126/128

  • Step 5

    Pn1(l) = 1 + z1(n)l + z11(l)2 +

    Expand, find products of z sums by the stufflingrelations

    n=1

    1

    nkzs1...sj(n) = ks1...sj

    F = expansion in coefficients combinations of multiple values

    CALC-2003, Dubna, June 1321 p. 127/128

  • Implementation

    Grozin 2000 (unpublished) REDUCE

    Moch, Uwer, Weinzierl 2002 Algorithm A

    Weinzierl 2002 C++ library nestedsums(based on GiNaC)

    CALC-2003, Dubna, June 1321 p. 128/128

    PlanPlanPlanPlanPlan

    Scalar integralsScalar integralsScalar integrals

    1 loopDiagramInteger $n_1le 0$Fourier transform$x$ space$x$ space

    InversionInversion

    Inversion2 loopsDiagramTrivial case $n_5=0$Trivial case $n_1=0$Integration by partsIntegration by parts

    Integration by partsIntegration by parts

    HomogeneityLarin relationLarin relationIntegration by partsIntegration by partsIntegration by partsIntegration by parts

    TopologySunsetInversionInversion

    3 loopsTopologiesBasisInversionInversion$G$ with non-integer indices$G(1,1,1,1,n)$$G(1,1,1,1,n)$$G(1,1,1,1,n+varepsilon )$Non-planar diagramGluingHQETLagrangianFeynman rulesCovariant notationsCovariant notations

    1 loopDiagramFourier transformFourier transform

    $I$2 loopsDiagram $I$Trivial case $n_5=0$Trivial cases $n_1=0$, $n_3=0$Trivial cases $n_1=0$, $n_3=0$

    Integration by partsIntegration by parts

    Integration by partsIntegration by parts

    HomogeneityHomogeneity

    Integration by partsDiagram $J$Partial fractioningTopologiesTopologies

    Sunset3 loopsTopologiesBasis$J$ with non-integer indices$J(1,1,n,1,1)$$J(1,1,n,1,1)$

    $J(1,1,n,1,1)$$J(1,1,n,1,1)$

    $J(1,1,n,1,1)$$J(1,1,n,1,1)$

    $J(1,1,n,1,1)$$J(1,1,n,1,1)$

    $J(n_1,n_2,n_3,n_4,n_5)$$J(1,1,n+2varepsilon ,1,1)$$J(1,1,n+2varepsilon ,1,1)$

    $I$ with non-integer indices$I(1,1,1,1,n)$$I(1,1,1,1,n)$

    Gegenbauer polynomialsGegenbauer polynomials

    Gegenbauer polynomials$I(1,1,1,1,n)$$I(1,1,1,1,n)$$I(1,1,1,1,n)$

    $I(1,1,1,1,n)$$I(1,1,1,1,n)$$I(1,1,1,1,n)$$I(1,1,1,1,n)$$I(1,1,1,1,n+varepsilon )$On-shell diagramsWhy?Why?Why?

    1 loopInversionInversionInversion

    Inversion2 loopsDiagram $M$Diagram $N$TopologiesTopologies

    SunsetSunset

    $N(1,1,1,1,1)$$N(1,1,1,1,1)$Inversion2 massesTopologyTopologyTopology

    $I_0$$I_1$$I_0$$I_1$$L_pm $3 loopsTopologiesBasisInversionInversionMultiple $zeta $ valuesDefinitionDefinitionDefinitionDefinitionDefinition

    ExamplesExamplesExamplesExamples

    StufflingStufflingStufflingStufflingStufflingStufflingStuffling

    StufflingExamplesExamplesExamples

    Integral representationIntegral representationIntegral representationIntegral representationIntegral representationIntegral representationIntegral representation

    Integral representationIntegral representationIntegral representationIntegral representationIntegral representation

    ShufflingShufflingShufflingShufflingShufflingShufflingShufflingShufflingShuffling

    ShufflingDualityDualityDuality

    DualityDualityDualityDuality

    Weight 4Weight 4

    Weight 5Weight 5Weight 5

    Expanding\[2mm]hypergeometric functions in $varepsilon $\[2mm]ExampleStep 1Step 1Step 1

    Step 1Step 1Step 1

    Step 2Step 2

    Step 3Step 3Step 3

    Step 5Step 5Step 5Step 5

    Step 5Step 5Step 5

    Expanding\[2mm]hypergeometric functions in $varepsilon $\[2mm]AlgorithmStep 1Step 1Step 1Step 1

    Step 2Step 2Step 2

    Step 3Step 3Step 3

    Step 4Step 5Implementation