Lecture5 Newton Divided DifferenceBUE

22
Week Date Topic Classification of Topic 1 9 Feb. 2010 Introductio n to Numerical Methods and Type of Errors Measuring errors, Binary representation, Propagation of errors and Taylor series 2 14 Feb. 2010 Nonlinear Equations Bisection Method 3 21 Feb. 2010 Newto n-R aphso n Meth od 4 28 Feb. 2010 Interpolation Lagrange Interpolation 5 7 March 2010 Newton's Divided Difference Method 6 14 March 2010 Differentiation Newton's Forward and B ackward Divided Difference 7 21 March 2010 Regression Least squares 8 28 March 2010 Systems of Linear Equations Gaussian Jordan 9 11 April 2010 Gaussian Seidel 10 18 April 2010 Integration Composite T rapezoidal and Simpson Rules 11 25 April2010 Ordinary Differential Equations Euler's Method 12 2 May2010 Runge -Kutta 2 nd and4 th order Method Schedule

Transcript of Lecture5 Newton Divided DifferenceBUE

Page 1: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 1/22

Week Date Topic Classification of Topic

1 9 Feb. 2010 Introduction toNumerical Methods

and Type of Errors

Measuring errors, Binary representation,Propagation of errors and Taylor series

2 14 Feb. 2010 Nonlinear Equations Bisection Method

3 21 Feb. 2010 Newton-Raphson Method

4 28 Feb. 2010 Interpolation Lagrange Interpolation

5 7 March 2010 Newton's Divided Difference Method

6 14 March 2010 Differentiation Newton's Forward and BackwardDivided Difference

7 21 March 2010 Regression Least squares

8 28 March 2010 Systems of Linear

Equations

Gaussian Jordan

9 11 April 2010 Gaussian Seidel

10 18 April 2010 Integration Composite Trapezoidal and SimpsonRules

11 25 April 2010 Ordinary Differential

Equations

Euler's Method

12 2 May2010 Runge-Kutta 2nd and4th order Method

Schedule

Page 2: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 2/22

Interpolation

Newton’s Divided Difference

Page 3: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 3/22

What is Interpolation ?

Given (x0,y0), (x1,y1), …… (xn,yn), find thevalue of ‘y’ at a value of ‘x’ that is not given.

Page 4: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 4/22

Interpolants

Polynomials are the most commonchoice of interpolants because they

are easy to:

Evaluate

Differentiate, andIntegrate.

Page 5: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 5/22

Page 6: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 6/22

Newton’s Divided Difference

Method: Given pass aLinear interpolation

linear interpolant through the data

where

),,( 00   y x ),,( 11   y x

)()( 0101   x xbb x f    

)( 00   x f b  

01

011

)()(

 x x

 x f  x f b

Page 7: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 7/22

ExampleThe upward velocity of a rocket is given as a function of 

time in Table 1. Find the velocity at t=16 seconds usingthe Newton Divided Difference method for linearinterpolation.

t v(t)

s m/s

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Table 1: Velocity as afunction of time

Figure 2: Velocity vs. time data

for the rocket example

Page 8: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 8/22

Linear Interpolation

10 12 14 16 18 20 22 24350

400

450

500

550517.35

362.78

y s

f ran g e( )

f x desired

x s1

10x s0

10 x s range x desired

1520

78.36235.517

,150   t  78.362)( 0   t v  

,201  t  35.517)( 1   t v  

)( 00   t vb     78.362  

01

011

)()(

t t 

t vt vb

 

)tt( b b)t(v 0101  

914.30

Page 9: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 9/22

Linear Interpolation (contd)

10 12 14 16 18 20 22 24350

400

450

500

550517.35

362.78

y s

f range( )

f x desired

x s1

10x s0

10 x s range x desired

)tt( b b)t(v 0101    

),15(914.3078.362     t  2015   t   

At 16t   

)1516(914.3078.362)16(   v  

69.393  m/s

Page 10: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 10/22

Quadratic Interpolation

Given ),,( 00   y x ),,( 11   y x  and ),,( 22   y x  fit a quadratic interpolant through the data.

))(()()( 1020102   x x x xb x xbb x f    

)( 00   x f  b  

01

01

1

)()(

 x x

 x f   x f  b

02

01

01

12

12

2

)()()()(

 x x

 x x

 x f   x f  

 x x

 x f   x f  

b

Page 11: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 11/22

ExampleThe upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds usingthe Newton Divided Difference method for quadraticinterpolation.

t v(t)

s m/s

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Table 1: Velocity as afunction of time

Figure 2: Velocity vs. time data

for the rocket example

Page 12: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 12/22

Quadratic Interpolation (contd)

10 12 14 16 18 20200

250

300

350

400

450

500

550517.35

227.04

y s

f range( )

f x desired

2010 x s range x desired

,100   t  04.227)( 0   t v  

,151  t    78.362)( 1   t v  

,202   t  35.517)( 2   t v  

Page 13: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 13/22

Quadratic Interpolation (contd)

  )( 00   t vb    

04.227  

01

01

1

)()(

t t 

t vt vb

 1015

04.22778.362

 

148.27  

02

01

01

12

12

2

)()()()(

t t 

t t 

t vt v

t t 

t vt v

b

 1020

1015

04.22778.362

1520

78.36235.517

 

10

148.27914.30  

 

37660.0

 

Page 14: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 14/22

Quadratic Interpolation (contd)

)tt)(tt( b)tt( b b)t(v 1020102    

),15)(10(37660.0)10(148.2704.227     t t t    2010   t   

At ,16t   

)16(v2   )1516)(1016(37660.0)1016(148.2704.227    

19.392  m/s

The absolute relative approximate error a obtained between the results from the first

order and second order polynomial is

a   100x19.392

69.39319.392  

 

= 0.38502 %

Page 15: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 15/22

General Form

))(()()( 1020102   x x x xb x xbb x f    

where

Rewriting

))(](,,[)](,[][)( 1001200102   x x x x x x x f   x x x x f   x f   x f    

)(][ 000   x f   x f  b    

01

01

011

)()(],[

 x x

 x f   x f   x x f  b

 

02

01

01

12

12

02

01120122

)()()()(

],[],[],,[

 x x

 x x

 x f   x f  

 x x

 x f   x f  

 x x

 x x f   x x f   x x x f  b

 

Page 16: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 16/22

General Form

Given )1(   n  data points, nnnn   y x y x y x y x ,,,,......,,,, 111100    as

))...()((....)()( 110010   nnn   x x x x x xb x xbb x f    

where

][ 00   x f  b    

],[ 011   x x f  b    

],,[ 0122   x x x f  b    

 ],....,,[ 0211   x x x f  b nnn  

   

],....,,[ 01   x x x f  b nnn    

Page 17: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 17/22

General formThe third order polynomial, given ),,( 00   y x ),,( 11   y x ),,( 22   y x and ),,( 33   y x  is

)xx)(xx)(xx](x,x,x,x[f 

)xx)(xx](x,x,x[f )xx](x,x[f ]x[f )x(f 

2100123

1001200103

 

0b  

0 x   )( 0 x f    1

b  

],[ 01   x x f     2b  

1 x   )( 1 x f     ],,[ 012   x x x f     3b  

],[ 12   x x f     ],,,[ 0123   x x x x f    

2 x   )( 2 x f     ],,[ 123   x x x f    

],[ 23   x x f    

3

 x   )(3

 x f    

Page 18: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 18/22

Example

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds usingthe Newton Divided Difference method for cubicinterpolation.

t v(t)

s m/s

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Table 1: Velocity as afunction of time

Figure 2: Velocity vs. time data

for the rocket example

Page 19: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 19/22

Example

The velocity profile is chosen as

)tt)(tt)(tt( b)tt)(tt( b)tt( b b)t(v 21031020103  

we need to choose four data points that are closest to 16

t ,100  t    04.227)( 0   t v

 

,151  t    78.362)( 1   t v  

,202   t    35.517)( 2   t v  

,5.223   t  97.602)( 3   t v  

Page 20: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 20/22

Example

 

 b0 = 227.04; b1 = 27.148; b2 = 0.37660; b3 = 5.4347*10-3

0b  

100  t    04.227   1b  

148.27   2b  

,151  t    78.362   37660.0   3b  

914.30   3104347.5    x  

,202  t    35.517   44453.0  

248.34  

,5.223  t    97.602  

Page 21: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 21/22

Example

Hence))()(())(()()(

2103102010  t t t t t t bt t t t bt t bbt v    

)20)(15)(10(10*4347.5

)15)(10(37660.0)10(148.2704.227

3

t t t 

t t t  

At ,16

t   

)2016)(1516)(1016(10*4347.5

)1516)(1016(37660.0)1016(148.2704.227)16(

3

06.392  m/s

The absolute relative approximate error a obtained is

a   100x06.392

19.39206.392  

 

= 0.033427 %

Page 22: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 22/22

Comparison Table

Order of

Polynomial

1 2 3

v(t=16)

m/s

393.69 392.19 392.06

Absolute Relative

Approximate Error

---------- 0.38502 % 0.033427 %