Lecture5-Error Sources and Position Estimation-1

download Lecture5-Error Sources and Position Estimation-1

of 33

Transcript of Lecture5-Error Sources and Position Estimation-1

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    1/33

    Satellite Navigation (AE4E08) Lecture 4

    1

    Satellite Navigation

    error sources and position estimation

    AE4E08

    Sandra Verhagen

    Course 2010 2011, lecture 5

    Picture: ESA

    1

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    2/33

    Satellite Navigation (AE4E08) Lecture 4

    2

    Todays topics

    Recap: GPS measurements and error sources

    Satellite clock and ephemeris

    Assignments VISUAL and RINEX

    Signal propagation errors: ionosphere and troposphere

    Book: Sections 5.2 5.3

    2

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    3/33

    Satellite Navigation (AE4E08) Lecture 4

    3

    Recap: Code and Carrier Phase

    measurements

    ( ) s

    ur I T c t t A

    = + + + + +

    sur I T c t t = + + + +

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    4/33

    Satellite Navigation (AE4E08) Lecture 4

    4

    Recap: error sources

    satellite:

    orbit

    clock

    instrumental delays

    signal path

    ionosphere

    troposphere

    multipath

    receiver

    clock

    instrumental delays

    other

    spoofing

    interference

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    5/33

    Satellite Navigation (AE4E08) Lecture 4

    5

    Satellite clock and ephemeris

    determined by Control Segment based on measurements

    parameters in navigation message

    Kalman filter prediction

    positions and velocities of satellites

    phase bias, frequency bias, frequency drift rate clocksprediction errors (grow with age of data)

    Currently, ranging error < 3 meter rms

    5

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    6/33

    Satellite Navigation (AE4E08) Lecture 4

    6

    Satellite clock and ephemeris

    Ephemeris: radial , along-track , cross-track errors.Which is of the three is principal error source?

    radial error

    along-track erro

    cross-track error

    predicted orbit

    true orbit

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    7/33

    Satellite Navigation (AE4E08) Lecture 4

    7

    Satellite clock and ephemeris

    Satellite clock correction:

    reference epoch

    clock offset [s] ~1 s 1 ms

    fractional frequency offset [s/s] ~10 -11 s/s

    fractional frequency drift [s/s 2] ~0 s/s 2

    relativistic correction

    r c f c f f s s t t t at t aat t t +++== 202010 )()(

    0 f a

    1 f a

    2 f a

    ct 0

    r t

    broadcast withnavigationmessage

    Misra and Enge,Section 4.2.4

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    8/33

    Satellite Navigation (AE4E08) Lecture 4

    8

    Signal propagation errors

    8

    Earth

    ionosphere

    troposphere

    40

    1,000

    20,000

    h e i g h t [ k m ]

    Above ~1,000 km: vacuumspeed of light c

    ~ 50 1,000 km: ionosphere Below 40 km: troposphere

    Atmosphere =ionosphere + troposphere

    Atmosphere changes speed anddirection of propagation

    refraction

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    9/33

    Satellite Navigation (AE4E08) Lecture 4

    9

    Signal propagation errors

    Refractive index of a medium:

    Refractive index changes along path

    Change in speed change in travel time of signal

    9

    vcn =

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    10/33

    Satellite Navigation (AE4E08) Lecture 4

    10

    Signal propagation errors

    Refractive index of a medium:

    Snells law: changing refractive index results in bending of pathpath longer than geometrical straight line

    Fermats principle of least time:transit time along curved path is shorter than for straight-line path

    10

    vcn =

    effect very small

    1n

    2n 2

    1 1 1 2 2sin sinn n =

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    11/33

    Satellite Navigation (AE4E08) Lecture 4

    11

    Signal propagation errors

    Refractive index of a medium:

    Refractive index changes along path:

    Change in speed change in travel time of signal

    11

    vcn =

    1

    ( )

    R

    S n l dl c =

    ( )n l

    dl

    S

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    12/33

    Satellite Navigation (AE4E08) Lecture 4

    12

    Signal propagation errors

    Refractive index of a medium:

    Refractive index changes along path:

    Change in speed change in travel time of signal

    Excess delay:

    12

    vcn =

    1

    ( )

    R

    S n l dl c =

    1 ( ) R R

    S S

    n l dl dl c

    =

    ( )n l

    dl

    S

    [ ]( ) 1 R

    S

    n l dl =

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    13/33

    Satellite Navigation (AE4E08) Lecture 4

    13

    Signal propagation errors: ionosphere

    Dispersive medium: refractive index depends on frequency of

    signal For GPS (L-band) signals: ionosphere is dispersive ,

    troposphere is not In dispersive medium: different phase (carrier) and group (code)

    velocities, and , resp.

    p p

    cn v=

    p g p g

    dncn n f v df = = +

    pv g v modulated carrier wavesuperposition of a

    group of waves ofdifferent frequencies

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    14/33

    Satellite Navigation (AE4E08) Lecture 4

    14

    Signal propagation errors: ionosphere

    ionosphere contains free electrons and ions

    ionization caused by suns radiation state depends on solaractivity

    temporal variations: during the day, peak at 2 PM local time day to day due to solar activity, geomagnetic disturbances seasonal 11-year solar cycle

    local short term effects due to traveling ionosphericdisturbances

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    15/33

    Satellite Navigation (AE4E08) Lecture 4

    15

    Signal propagation errors: ionosphere

    propagation speed depends on total electron content (TEC) =

    number of electrons in tube of 1 m2

    from receiver to satellite

    with the electron density along the path

    1 TECU (TEC Unit) = 10 16 electrons / m 2

    VTEC = TEC in vertical direction [in book TECV]

    ( ) R

    e

    S

    n l dl = TEC

    ( )en l

    [TECU]

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    16/33

    Satellite Navigation (AE4E08) Lecture 4

    16

    Global map of TEC (computed from global network of GPS receivers)

    Figure from S.M. Radicella ARPL; Data Astronomical Institute University of Berne

    Signal propagation errors: ionosphere

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    17/33

    Satellite Navigation (AE4E08) Lecture 4

    17

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    18/33

    Satellite Navigation (AE4E08) Lecture 4

    18

    Signal propagation errors: ionosphere

    highest ionospheric delay within 20 o of magnetic equator

    solar flaresmagnetic stormslarge and quickly varying electron densities, esp. polar regionsrapid fluctuations in phase and amplitude of GPS signals,called scintillation and fading , resp.may cause losses of lock

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    19/33

    Satellite Navigation (AE4E08) Lecture 4

    19

    Signal propagation errors: ionosphere

    phase advance

    2

    40.31 e p

    p

    ncn

    v f =

    ( )

    2 2

    1( ) 1

    40.3 ( )1 40.3

    R

    p pS

    Re

    S

    n l dl c

    n l dl

    c f cf

    =

    = =

    EC

    ( ) R

    e

    S

    n l dl = TEC

    2

    40.3 p I c f

    = = EC [m]

    [s]

    ( ) s

    ur I T c t t A

    = + + + + +

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    20/33

    Satellite Navigation (AE4E08) Lecture 4

    20

    Signal propagation errors: ionosphere

    group delay

    2

    40.31 p e g p

    dn nn n f

    df f

    = + = +

    2

    40.3 g I c

    f

    = = EC [m] s

    ur I T c t t = + + + +

    I I I = =

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    21/33

    Satellite Navigation (AE4E08) Lecture 4

    21

    Earth

    ionosphere

    IP

    I h

    R

    sinsin I E

    E

    h R R

    +=

    IP : ionospheric pierce point: mean ionosphere height I h

    1( )cos z

    I

    =

    Signal propagation errors: ionosphere

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    22/33

    Satellite Navigation (AE4E08) Lecture 4

    22

    Signal propagation errors: ionosphere

    obliquity factor1

    cos

    zenith angle

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    23/33

    Satellite Navigation (AE4E08) Lecture 4

    23

    Signal propagation errors: ionosphere

    zenith delay mid-latitudes:

    1-3 m at night

    5-15 m mid-afternoon

    peak solar cycle near equator:

    max. ~36 m

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    24/33

    Satellite Navigation (AE4E08) Lecture 4

    24

    Signal propagation errors: ionosphere

    1 21

    40.3 EC L

    L

    I f

    = 2 2

    2

    40.3 EC L

    L

    I f

    =

    Li

    s Li Li ur I T c t t = + + + +

    1 2 C s

    L L ua b r T c t t = + + +

    ionosphere-free combination:

    21

    122

    L L

    L

    f I

    f =

    bias removed;noise increased

    IF =

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    25/33

    Satellite Navigation (AE4E08) Lecture 4

    25

    Signal propagation errors: ionosphere

    Klobuchar model

    andbroadcasted with

    navigation message

    ~50% reductionRMS range error

    421 A

    2

    localtime [h]

    2 4

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    26/33

    Satellite Navigation (AE4E08) Lecture 4

    26

    NeQuick model (proposed for Galileo)

    3-D electron density model

    One location dependent input parameter ( Az )

    Az

    is given for Galileo in broadcast message

    Slant-TEC is compute by numerical integration along line-of-

    sight

    Compute corrections from IGS Global Ionosphere Maps (GIM)

    2-D grid of VTEC (2.5 o latitude x 5 o longitude @ 2 hours)

    Interpolate VTEC to ionospheric point at time of observation

    Map VTEC to slant direction using mapping function

    26

    Signal propagation errors: ionosphere

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    27/33

    Satellite Navigation (AE4E08) Lecture 4

    27

    Signal propagation errors: troposphere

    9 km (poles) 16 km (equator)

    Dry gases and water vapor

    Recall: non-dispersive, i.e. refraction does not depend on frequency

    Propagation speed lower than in free space:apparent range is longer (~2.5 25 m)

    Same phase and group velocities

    27

    T T T T T L L L L ==== 2121

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    28/33

    Satellite Navigation (AE4E08) Lecture 4

    28

    Signal propagation errors: troposphere

    Refractivity

    28

    610)1( = n N

    [ ] wd wd wd

    T T dl l N l N dl l N T

    N N N

    +=+==

    +=

    )()(10)(10 66

    251073.3

    64.77

    T e

    N

    T P

    N

    w

    d

    e

    T P : total pressure [mbar]

    : temperature [K]

    : partial pressure water vapor [mbar]

    if known refractivity known

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    29/33

    Satellite Navigation (AE4E08) Lecture 4

    2929

    29

    w z wd z d T el mT el mT ,, *)(*)( +=

    computedhydrostaticdelay

    mapping functions

    Unknowntroposphericzenith wet delay

    tropospheric delay

    Figure: H. van der Marel

    Signal propagation errors: troposphere

    Earth

    Receiver

    Satellite

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    30/33

    Satellite Navigation (AE4E08) Lecture 4

    30

    Signal propagation errors: troposphere

    Saastamoinen model :zenith dry and wet delays calculated from temperature, pressure andhumidity (measurements or standard atmosphere), height andlatitude

    Hopfield model :dry and wet refractivities calculated

    Dry delay in zenith direction 2.3 2.6 m at sea levelcan be predicted with accuracy of few mms

    Wet delay depends on water vapor profile along path, 0 80 cmaccuracy of models few cms

    If no actual meteorological observations available (standardatmosphere applied): total zenith delay error 5 10 cm

    30

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    31/33

    Satellite Navigation (AE4E08) Lecture 4

    Signal propagation errors: summary

    ionosphere troposphere

    height 50 1000 km 0 16 km

    variability diurnal, seasonal, solarcycle (11 yr), solar flares

    low

    zenith delay meters tens of meters 2.3 2.6 m (sea level)

    obliquity factor

    30 o

    15 o3o

    1.8

    2.53

    2

    410

    modeling error (zenith) 1 - >10 m 5 10 cm (no met. data)

    dispersive yes noall values are approximate, depending onlocation and circumstances

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    32/33

    Satellite Navigation (AE4E08) Lecture 4

    32

    Signal propagation errors

    Homework exercise:

    make plots of the different mapping functions (page173 Misra and Enge) as function of the elevation angle(ranging from 0 90 o)

    compare them with each other AND with the obliquityfactor of the ionosphere delay (slide 22)

    try to explain the differences

    more details: see assignment on blackboard

    32

  • 7/27/2019 Lecture5-Error Sources and Position Estimation-1

    33/33

    Satellite Navigation (AE4E08) Lecture 4

    Summary and outlook

    GPS measurements and error sources

    Next:Position, Velocity and Time (PVT) estimation

    33