Lecture Slides: Lecture Mechanics

60
1 Challenge the future P-L-3 Mechanics The Modelling Team Department of Design Engineering Faculty of Industrial Design Engineering Delft University of Technology

description

The lecture slides of lecture Mechanics of the Modelling Course of Industrial Design of the TU Delft

Transcript of Lecture Slides: Lecture Mechanics

Page 1: Lecture Slides: Lecture Mechanics

1Challenge the future

P-L-3

Mechanics

The Modelling Team Department of Design Engineering

Faculty of Industrial Design EngineeringDelft University of Technology

Page 2: Lecture Slides: Lecture Mechanics

2Challenge the future

Contents

• Systems

• Key components of Mechanical Systems

• Spring

• Damper

• Mass-Spring-Damper Systems

• Applications in product design

Page 3: Lecture Slides: Lecture Mechanics

3Challenge the future

Aim

KnowledgeKnowledge

InsightInsight

CommunicationCommunication

To develop a basic understanding of the properties of mass-spring-damper system and its applications in product designs

To demonstrate that such a system might be modeled so as to provide useful data for designs

To communicate with experts in their professional languages

1

2

3

Page 4: Lecture Slides: Lecture Mechanics

4Challenge the future

Systems

Page 5: Lecture Slides: Lecture Mechanics

5Challenge the future

Repetition: What is a system?

System consists of a set of interacting or interdependent system components (or sub-systems)

System

-Structure & interconnectivity-Boundary-Input & Output-Surroundings

Page 6: Lecture Slides: Lecture Mechanics

6Challenge the future

Example of a system

Tyre

Saddle

Tyre

Courtesy of http://www.cycle9.com/carrboro-chapel-hill-store/batavus-bicycles-lets-go-dutch/Courtesy of http://www.batavus.nl

Page 7: Lecture Slides: Lecture Mechanics

7Challenge the future

System response

Boundary

Inputs Outputs

Courtesy of http://www.batavus.nlCourtesy of http://reviews.mtbr.com/blog/tag/Cycle-Solutions/

Velocity in the vertical direction

Displacement in the vertical direction

Page 8: Lecture Slides: Lecture Mechanics

8Challenge the future

System response

Boundary

Inputs Outputs

Courtesy of http://www.batavus.nlCourtesy of http://www.utilitycycling.org/2009/08/cycling-services/

Velocity in the vertical direction

Displacement in the vertical direction

Page 9: Lecture Slides: Lecture Mechanics

9Challenge the future

System response

Boundary

Inputs Outputs

Courtesy of http://www.batavus.nlCourtesy of http://www.utilitycycling.org/2009/08/cycling-services/

Velocity in the vertical direction

Displacement in the vertical direction

Page 10: Lecture Slides: Lecture Mechanics

10Challenge the future

What are components of the bike’s model?

Tyre

Saddle

Tyre

Courtesy of http://www.batavus.nl

Page 11: Lecture Slides: Lecture Mechanics

11Challenge the future

Components - Spring

Page 12: Lecture Slides: Lecture Mechanics

12Challenge the future

Component - Spring

Ref. http://en.wikipedia.org/wiki/Spring_(device)

A spring is an elastic object used to store mechanical energy

Spring

2 m

eter

s 40

0 N

2 m

eter

s 40

0 N

Page 13: Lecture Slides: Lecture Mechanics

13Challenge the future

Model a spring

Courtesy of http://en.wikipedia.org/wiki/Spring_(device)

Page 14: Lecture Slides: Lecture Mechanics

14Challenge the future

Rehearsal: Bungee jumping

Courtesy of http://www.youtube.com/watch?v=sriUfHuHSXY

Page 15: Lecture Slides: Lecture Mechanics

15Challenge the future

Components

Spring

Human.

Air.

► Earth Bungee jumping system

Page 16: Lecture Slides: Lecture Mechanics

16Challenge the future

Cause-effect

Spring

Inertia force Stretchthe spring

Pull the person back

GravityMass of the person Air friction

Slow down the motion

Effect

Cause

0 =0

101

000

Page 17: Lecture Slides: Lecture Mechanics

17Challenge the future

Modelling using Maple®

Page 18: Lecture Slides: Lecture Mechanics

18Challenge the future

The solution

Page 19: Lecture Slides: Lecture Mechanics

19Challenge the future

The solution

Displacement

Acceleration

Velocity

Page 20: Lecture Slides: Lecture Mechanics

20Challenge the future

The solution

The amplitude is getting smaller, 

Why? 

Displacement

Acceleration

Velocity

Page 21: Lecture Slides: Lecture Mechanics

21Challenge the future

Is it different? - Trampoline

Courtesy of http://www.youtube.com/watch?v=pSazagYBCM8

Page 22: Lecture Slides: Lecture Mechanics

22Challenge the future

Components

Spring

Human.

Air.

► Earth Trampoline system

Page 23: Lecture Slides: Lecture Mechanics

23Challenge the future

Cause-effect

Spring

Inertia force Stretchthe spring

Push the person back

GravityMass of the person Air friction

Slow down the motion

Effect

Cause

0 0 0 =0

101

000

Page 24: Lecture Slides: Lecture Mechanics

24Challenge the future

Modelling using Maple®

Page 25: Lecture Slides: Lecture Mechanics

25Challenge the future

The solution

Page 26: Lecture Slides: Lecture Mechanics

26Challenge the future

The solution

Displacement

Acceleration

Velocity

Page 27: Lecture Slides: Lecture Mechanics

27Challenge the future

The solutionThe amplitude is also getting smaller. The 

same reason? 

SpeedDisplacement Acceleration

Page 28: Lecture Slides: Lecture Mechanics

28Challenge the future

Bungee jumping vs Trampoline

0 =0

0 0 0 =0

Bungee jumping

Trampoline

Page 29: Lecture Slides: Lecture Mechanics

29Challenge the future

Components - Damper

Page 30: Lecture Slides: Lecture Mechanics

30Challenge the future

Component - Damper

A damping elements resists relative velocity across them

Damper

Courtesy of http://en.wikipedia.org/wiki/Shock_absorber

Shock absorber with internal reservoir.

The components are:A - rod,B - the piston with seals,C - the cylinder,D - oil reservoir,E - floating piston,F - air chamber.

Page 31: Lecture Slides: Lecture Mechanics

31Challenge the future

Model a damper

Page 32: Lecture Slides: Lecture Mechanics

32Challenge the future

Case study: The slow closing toilet seat

Courtesy of http://www.youtube.com/watch?v=tBK1rewI8vQ

Page 33: Lecture Slides: Lecture Mechanics

33Challenge the future

System components

The toilet seat

Page 34: Lecture Slides: Lecture Mechanics

34Challenge the future

Cause-effect

Damper

Inertia moment The lid goes down

Slow downthe motion

GravityMass and

geometry of the lid

Effect

Cause

/2=0

Page 35: Lecture Slides: Lecture Mechanics

35Challenge the future

Modelling using Maple®

Page 36: Lecture Slides: Lecture Mechanics

36Challenge the future

Solving the model

Page 37: Lecture Slides: Lecture Mechanics

37Challenge the future

The solution

/2/2

Angular displacement

Angular acceleration

Angular velocity

Page 38: Lecture Slides: Lecture Mechanics

38Challenge the future

The mass-spring-damper system

Page 39: Lecture Slides: Lecture Mechanics

39Challenge the future

The mass-spring-damper system

Courtesy of http://www.taiwan-bicycle.com.tw/Pd_Detail.asp?FKindNO=F000004&SKindNO=S000671&ItemNo=I00002896

Page 40: Lecture Slides: Lecture Mechanics

40Challenge the future

The mass-spring-damper system

Courtesy of http://www.taiwan-bicycle.com.tw/Pd_Detail.asp?FKindNO=F000004&SKindNO=S000671&ItemNo=I00002896

ElasticityYoung's ModulusPoisson's RatioAnisotropy 

Damping Coefficient

Spring Damper

Regarding material

Page 41: Lecture Slides: Lecture Mechanics

41Challenge the future

The mass-spring-damper system

Courtesy http://www.airliners.net/photo/Airbus-Industrie/Airbus-A380-861/1169635/L/

Page 42: Lecture Slides: Lecture Mechanics

42Challenge the future

Case study: The skateboardThe movement in the vertical direction

Courtesy of http://skateboardingmagazine.com/blog/2009/02/01/the-worlds-largest-skateboard/

Designer: 

Rob Dyrde

The World largest skateboard

Page 43: Lecture Slides: Lecture Mechanics

43Challenge the future

System components

The skateboard

Spring

DamperAir

EarthPerson

NeglectNeglect

Neglect, why?Neglect, why?

Page 44: Lecture Slides: Lecture Mechanics

44Challenge the future

System

Damper

Inertia force Drag themass back

Slow down the motion

SpringMass of the board

Effect

Cause

=0

Page 45: Lecture Slides: Lecture Mechanics

45Challenge the future

Modelling using Maple®

Page 46: Lecture Slides: Lecture Mechanics

46Challenge the future

Solution

Displacement

Acceleration

Velocity

The step

Page 47: Lecture Slides: Lecture Mechanics

47Challenge the future

DiscussionC=50

K=1000 K=100 K=10

DisplacementDisplacement

VelocityVelocity

AccelerationAcceleration

Page 48: Lecture Slides: Lecture Mechanics

48Challenge the future

Discussion

K=100

C=200 C=50 C=0.1

DisplacementDisplacement

VelocityVelocity

AccelerationAcceleration

Page 49: Lecture Slides: Lecture Mechanics

49Challenge the future

Consider human also as a spring and a damper, can we model the shock to the head?

21 1 2

1 1 1 2 12

( ) ( ) ( )( ( ) ( )) ( ) 0d x t dx t dx tm k x t x t cdt dt dt

22 1 2 2

2 1 1 2 1 2 2 22

( ) ( ) ( ) ( ) ( )( ( ) ( )) ( ) ( ( ) ( )) ( ) 0d x t dx t dx t dx t dy tm k x t x t c k x t y t cdt dt dt dt dt

Page 50: Lecture Slides: Lecture Mechanics

50Challenge the future

The natural frequency

2

2

( ) ( ) ( ) 0d x t dx tm c kx tdt dt

0km

2cmk

22

0 02

( ) ( )2 ( ) 0d x t dx t x tdt dt

Page 51: Lecture Slides: Lecture Mechanics

51Challenge the future

The damping ratio

Page 52: Lecture Slides: Lecture Mechanics

52Challenge the future

Resonance

Page 53: Lecture Slides: Lecture Mechanics

53Challenge the future

Case study: Tacoma Narrow bridge

Courtesy of http://www.youtube.com/watch?v=P0Fi1VcbpAI

Page 54: Lecture Slides: Lecture Mechanics

54Challenge the future

Interpret the response of a step function

Sett

ling

time

band

Mp St

eady

-sta

te

erro

r

22

0 0( ) ( )2 ( ) step

d x t dx t x t fdt dt

max

ss

ss

xAx x

22

ln

ln

A

A

21n

pt

Page 55: Lecture Slides: Lecture Mechanics

55Challenge the future

Interpret the response - 2Example: If we know the response of a mass-spring-damper system regarding a step function F(t), can we extract parameter c and k from the response?

From definitions

Maximum overshoot ratio

max

ss

ss

xAx x

Damping ratio

22

ln

ln

A

A

Natural frequency21

n

pt

Maximum overshoot ratio

max

13.28

1.3723

ss

p

xt

x

Response

2.686A

Damping ratio0.3

Natural frequency1n

0km

2

cmk

Suppose m=1kg

1 kg/m, 0.6 Ns/mk c

m

k

c

x(t)

F(t)

Page 56: Lecture Slides: Lecture Mechanics

56Challenge the future

Industrial applications

Page 57: Lecture Slides: Lecture Mechanics

57Challenge the future

The pogo-stick

Courtesy of http://connect.in.com/pogo/photos-1-1-1-9ed7a7cecf4cb85de07b7f05697bfe43.html

Question?Where is

the damper?

Page 58: Lecture Slides: Lecture Mechanics

58Challenge the future

The suspension systems (ref/auto.howstuffworks.com/)

Courtesy of http://auto.howstuffworks.com/car-suspension4.htmAI

Page 59: Lecture Slides: Lecture Mechanics

59Challenge the future

The door closer (ref. /www.usbuildersupply.com)

Courtesy of http://www.usbuildersupply.com/index.php/hardware-basics/door-closer-overview/

Page 60: Lecture Slides: Lecture Mechanics

60Challenge the future

Thank You!