Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01-...

22
CE 60130 FINITE ELEMENT METHODS- LECTURE 5 - updated 2018-01-25 P a g e 1 | 22 Lecture No. 5 () โˆ’( )=0 in ()= on ()= on โ€ข For all weighted residual methods = + ๏ฟฝ =1 โ€ข For all (Bubnov) Galerkin methods = (test = trial) Summary of Conventional Galerkin Method ( )= and ( ) = 0, = 1, on ( )= and ( ) = 0, = 1, on ิ = ๏ฟฝ ๏ฟฝโˆ’( ) < ิ , > = 0, = 1,

Transcript of Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01-...

Page 1: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 1 | 22

Lecture No. 5

๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’ ๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in ๐›บ๐›บ

๐‘†๐‘†๐ธ๐ธ(๐‘ข๐‘ข) = ๐‘”๐‘”๐ธ๐ธ on ๐›ค๐›ค๐ธ๐ธ

๐‘†๐‘†๐‘๐‘(๐‘ข๐‘ข) = ๐‘”๐‘”๐‘๐‘ on ๐›ค๐›ค๐‘๐‘

โ€ข For all weighted residual methods

๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = ๐‘ข๐‘ข๐ต๐ต + ๏ฟฝ๐›ผ๐›ผ๐‘–๐‘–๐œ™๐œ™๐‘–๐‘–

๐‘๐‘

๐‘–๐‘–=1

โ€ข For all (Bubnov) Galerkin methods

๐‘ค๐‘ค๐‘–๐‘– = ๐œ™๐œ™๐‘–๐‘– (test = trial)

Summary of Conventional Galerkin Method

๐‘†๐‘†๐ธ๐ธ(๐‘ข๐‘ข๐ต๐ต) = ๐‘”๐‘”๐ธ๐ธ and ๐‘†๐‘†๐ธ๐ธ(๐œ™๐œ™๐‘–๐‘–) = 0, ๐‘–๐‘– = 1,๐‘๐‘ on ๐›ค๐›ค๐ธ๐ธ

๐‘†๐‘†๐‘๐‘(๐‘ข๐‘ข๐ต๐ต) = ๐‘”๐‘”๐‘๐‘ and ๐‘†๐‘†๐‘๐‘(๐œ™๐œ™๐‘–๐‘–) = 0, ๐‘–๐‘– = 1,๐‘๐‘ on ๐›ค๐›ค๐‘๐‘

ิ๐ผ๐ผ = ๐ฟ๐ฟ๏ฟฝ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ โˆ’ ๐‘๐‘(๐‘ฅ๐‘ฅ)

< ิ๐ผ๐ผ ,๐‘ค๐‘ค๐‘—๐‘— > = 0, ๐‘—๐‘— = 1,๐‘๐‘

Page 2: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 2 | 22

Fundamental Weak Weighted Residual Galerkin

โ€ข Only satisfy the essential b.c.โ€™s. This makes things a lot easier!

๐‘†๐‘†๐ธ๐ธ(๐‘ข๐‘ข๐ต๐ต) = ๐‘”๐‘”๐ธ๐ธ and ๐‘†๐‘†๐ธ๐ธ(๐œ™๐œ™๐‘–๐‘–) = 0 ๐‘–๐‘– = 1,๐‘๐‘ on ๐›ค๐›ค๐ธ๐ธ

โ€ข Only require a limited degree of functional continuity. Therefore we can piece together

functions to make up ๐œ™๐œ™๐‘–๐‘–. Again this makes the problem much easier.

โ€ข Since weโ€™re not satisfying the natural b.c.โ€™s, we also consider the error associated with the

locations where the natural b.c.โ€™s is violated:

ิ๐ผ๐ผ = ๐ฟ๐ฟ๏ฟฝ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ โˆ’ ๐‘๐‘(๐‘ฅ๐‘ฅ)

ิ๐ต๐ต,๐‘๐‘ = โˆ’๐‘†๐‘†๐‘๐‘๏ฟฝ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ + ๐‘”๐‘”๐‘๐‘

< ิ๐ผ๐ผ ,๐‘ค๐‘ค๐‘—๐‘— > +< ิ๐ต๐ต,๐‘๐‘ ,๐‘ค๐‘ค๐‘—๐‘— > = 0 ๐‘—๐‘— = 1,๐‘๐‘

This establishes the fundamental weak form. Thus we have relaxed the admissibility

conditions such that only โ€œessentialโ€ b.c.โ€™s must be satisfied.

โ€ข The Interior and Boundary Error (for the natural boundary) must go to zero by requiring ๐‘ค๐‘ค๐‘—๐‘—

to the orthogonal to these combined errors. Hence we are no longer โ€œclampingโ€ the natural

b.c. down at the time we set up our sequence but we are โ€œdrivingโ€ the natural b.c. error to

zero as the number of trial functions increases.

Page 3: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 3 | 22

โ€ข Expanding out the fundamental weak form by substituting ิ๐ผ๐ผ , ิ๐ต๐ต,๐‘๐‘ and ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž.

< ๐ฟ๐ฟ(๐‘ข๐‘ข๐ต๐ต) โˆ’ ๐‘๐‘,๐‘ค๐‘ค๐‘—๐‘— > +๏ฟฝ๐›ผ๐›ผ๐‘–๐‘– < ๐ฟ๐ฟ(๐œ™๐œ™๐‘–๐‘–),๐‘๐‘

๐‘–๐‘–=1

๐‘ค๐‘ค๐‘—๐‘— >๐›บ๐›บ +< ๐‘”๐‘”๐‘๐‘ โˆ’ ๐‘†๐‘†๐‘๐‘(๐‘ข๐‘ข๐ต๐ต),๐‘ค๐‘ค๐‘—๐‘— >๐›ค๐›ค๐‘๐‘

โˆ’๏ฟฝ๐›ผ๐›ผ๐‘–๐‘– <๐‘๐‘

๐‘–๐‘–=1

๐‘†๐‘†๐‘๐‘(๐œ™๐œ™๐‘–๐‘–),๐‘ค๐‘ค๐‘—๐‘— >๐›ค๐›ค๐‘๐‘= 0 ๐‘—๐‘— = 1,๐‘๐‘

Page 4: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 4 | 22

Symmetrical Weak Weighted Residual Form

โ€ข Letโ€™s continue to relax admissibility by integrating the fundamental weak form by parts.

The โ€œhalfway pointโ€ of the integration represents the symmetrical weak formโ€.

โ€ข This integration by parts procedure:

โ€ข Reduces the required functional continuity on the approximating functions. It reduces

functional continuity requirements on the trial functions while increasing them on the

test functions. At the symmetrical weak form these requirements are balanced. Thus

this is the optimal weak form.

โ€ข Furthermore the unknown functions evaluated at the boundary disappear.

โ€ข In general the natural b.c. is only satisfied in an average sense of ๐‘๐‘ โ†’ โˆž.

โ€ข When the operator is self-adjoint, the matrix generated will still be symmetrical for both the

symmetrical and fundamental weak forms.

Page 5: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 5 | 22

Definition and Use of Localized Functions

โ€ข Split the domain up into segments over which trial/test functions are defined.

Motivation, itโ€™s easier to satisfy b.c.โ€™s for complex 2D/3D geometries since these can be

satisfied locally (for weak formulations we need only satisfy the essential b.c.โ€™s). In addition

the matrix properties will in general be much better.

โ€ข For the finite element method (FEM), we use functions defined over small subdomains, i.e.

localized functions.

โ€ข However we must ensure that we satisfy the correct degree of functional continuity. For

example, consider:

๐ฟ๐ฟ(๐‘ข๐‘ข) =๐‘‘๐‘‘2๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

๐‘Š๐‘Š(2) space is required for fundamental weak form (continuity of the function and the first

derivative and a finite second derivative).

๐‘Š๐‘Š(1) space is required for the symmetrical weak form (continuity of the function and a

finite first derivative).

โ€ข Split the domain up into segments and define trial functions within each element.

Page 6: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 6 | 22

Option 1

No functional continuity but finite function โ†’ ๐‘Š๐‘Š(0) space

(a) The simplest approximation is a histogram (i.e. constant value of the function over the

element). This defines only one unknown per โ€œfinite elementโ€.

Page 7: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 7 | 22

(b) We can define more complex functions over the element leading to more unknowns per

element (to represent an increased order of polynomial or function within the element).

However we still have no functional continuity between the elements and thus these

functions still are from the ๐‘Š๐‘Š(0) space.

Page 8: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 8 | 22

Option 2

The function is continuous which defines the ๐‘Š๐‘Š(1) = ๐ถ๐ถ๐‘œ๐‘œ space. This space requires no

continuity of the derivative. We define the discrete variables equal to the functional values at

the nodes. Nodes must always join up at the inter element boundaries!

(a) The simplest approximation consists of a linear approximation over each element

which involves 2 unknowns per element and 1 unknown per node: Thus over each

element:

๐‘ข๐‘ข = ๐‘๐‘๐‘œ๐‘œ + ๐‘๐‘1๐‘ฅ๐‘ฅ

Thus weโ€™ve gone from an element measure to a nodal measure.

An interpolating function defined with nodal functional values and ๐‘Š๐‘Š(1) = ๐ถ๐ถ๐‘œ๐‘œ continuity is called a Lagrange interpolating function.

Page 9: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 9 | 22

(b) We can use higher degree functions within each element (i.e. more nodes per element)

however functional continuity will still only be ๐‘Š๐‘Š(1). For example:

๐‘ข๐‘ข = ๐‘๐‘๐‘œ๐‘œ + ๐‘๐‘1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ2 + ๐‘๐‘3๐‘ฅ๐‘ฅ3

Page 10: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 10 | 22

Option 3

The function and first derivative continuous defines the ๐‘Š๐‘Š(2) = ๐ถ๐ถ1 space. In this case we

must define the function and the first derivative as nodal variables.

(a) Simplest approximation involves 2 nodes with 2 unknowns per node. Thus over each

element:

๐‘ข๐‘ข = ๐‘๐‘๐‘œ๐‘œ + ๐‘๐‘1๐‘ฅ๐‘ฅ + ๐‘๐‘2๐‘ฅ๐‘ฅ2 + ๐‘๐‘3๐‘ฅ๐‘ฅ3

Therefore u and ๐‘ข๐‘ข,๐‘ฅ๐‘ฅ are the unknowns. This involves 4 unknowns per element, 2 unknowns

per node.

Interpolating functions defined with nodal functional and first derivative values with

๐‘Š๐‘Š(2) = ๐ถ๐ถ1 continuity are called Hermite Interpolating functions.

Page 11: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 11 | 22

1st order Hermite: ๐‘ข๐‘ข and ๐‘ข๐‘ข,๐‘ฅ๐‘ฅ continuous

2nd order Hermite: ๐‘ข๐‘ข, ๐‘ข๐‘ข,๐‘ฅ๐‘ฅ and ๐‘ข๐‘ข,๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ continuous โ†’ 3 unknowns per node

Note 1

For the Galerkin method, ๐‘ค๐‘ค๐‘—๐‘— = ๐œ™๐œ™๐‘—๐‘—

โ€ข The fundamental weak form requires different order functional continuity for ๐œ™๐œ™๐‘—๐‘— as

trial functions than the ๐‘ค๐‘ค๐‘—๐‘— (or ๐œ™๐œ™๐‘—๐‘— as test) functions.

โ€ข The symmetrical weak form is obtained by integration by parts until the space

requirements for ๐œ™๐œ™๐‘—๐‘— and ๐‘ค๐‘ค๐‘—๐‘— are the same. This is the most attractive form to use. We

note that the number of unknowns has been minimized.

Page 12: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 12 | 22

Example

โ€ข Fundamental weak form:

๏ฟฝ๏ฟฝ๐‘‘๐‘‘2๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 + ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘ฅ๐‘ฅ๏ฟฝ๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๏ฟฝ๏ฟฝ๐‘”๐‘” โˆ’

๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๏ฟฝ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ

๐‘ฅ๐‘ฅ=1= 0 ๐‘—๐‘— = 1,๐‘๐‘

1

0

๐‘ค๐‘ค๐‘—๐‘— โˆˆ ๐ฟ๐ฟ2 and ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž (or ๐œ™๐œ™๐‘–๐‘–) โˆˆ ๐‘Š๐‘Š(2), ๐‘—๐‘— = 1,๐‘๐‘

Therefore we must choose ๐‘ค๐‘ค๐‘—๐‘— and ๐œ™๐œ™๐‘—๐‘— โˆˆ ๐‘Š๐‘Š(2)

The functional and first derivative must be continuous) leading to a cubic approximation

over the element with 2 unknowns per node (function value and its 1st derivative). Thus we

require Hermite interpolation

โ€ข Symmetrical Weak Form

๏ฟฝ๏ฟฝโˆ’๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘ข๐‘ข๐‘ค๐‘ค๐‘—๐‘— + ๐‘ฅ๐‘ฅ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๏ฟฝ๐‘”๐‘”๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ๐‘ฅ๐‘ฅ=1 = 0

1

0

๐‘—๐‘— = 1,๐‘๐‘

Page 13: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 13 | 22

โ€ข The opposite of the fundamental weak form is obtained by interchanging ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž and ๐‘ค๐‘ค๐‘—๐‘— and

leads to the B.E.M form

๏ฟฝ๐‘‘๐‘‘๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๏ฟฝ

0

1

+ ๏ฟฝ๐‘”๐‘”๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ๐‘ฅ๐‘ฅ=1 + ๏ฟฝ๏ฟฝ๐‘ข๐‘ข๐‘ค๐‘ค๐‘—๐‘— + ๐‘ฅ๐‘ฅ๐‘ค๐‘ค๐‘—๐‘— + ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘2๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 ๏ฟฝ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = 0

1

0

๐‘—๐‘— = 1,๐‘๐‘

Now ๐‘ค๐‘ค๐‘—๐‘— โˆˆ ๐‘Š๐‘Š(2) and ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž (or ๐œ™๐œ™๐‘—๐‘—) โˆˆ ๐ฟ๐ฟ2

Page 14: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 14 | 22

Note 2

Alternative strategy for deriving the symmetrical weak form:

โ€ข Start with standard Galerkin formulation

โ€ข Integrate by parts

โ€ข Substitute in for the specified natural b.c.

Example

โ€ข Standard Galerkin formulation

๏ฟฝ๏ฟฝ๐‘‘๐‘‘2๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 + ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘ฅ๐‘ฅ๏ฟฝ๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ = 0

1

0

โ€ข Integrate by parts:

๏ฟฝ๏ฟฝโˆ’๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘ข๐‘ข๐‘ค๐‘ค๐‘—๐‘— + ๐‘ฅ๐‘ฅ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๏ฟฝ

๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ

๐‘ฅ๐‘ฅ=0

๐‘ฅ๐‘ฅ=1

= 01

0

โ‡’

๏ฟฝ๏ฟฝโˆ’๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘ข๐‘ข๐‘ค๐‘ค๐‘—๐‘— + ๐‘ฅ๐‘ฅ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๏ฟฝ

๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ

๐‘ฅ๐‘ฅ=1โˆ’ ๏ฟฝ

๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ

๐‘ฅ๐‘ฅ=0= 0

1

0

Page 15: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 15 | 22

โ€ข However for our example case:

๐‘‘๐‘‘๐‘‘๐‘‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๏ฟฝ๐‘ฅ๐‘ฅ=1

โ‰… ๐‘”๐‘” (specified natural b.c.)

โ€ข Substituting the above equation as well as ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ๐‘ฅ๐‘ฅ=0 = 0 (since ๐œ™๐œ™๐‘—๐‘— satisfies the

homogeneous form of the essential b.c.), leads to:

๏ฟฝ๏ฟฝ๐‘‘๐‘‘๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ค๐‘ค๐‘—๐‘—๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐‘ข๐‘ข๐‘ค๐‘ค๐‘—๐‘— + ๐‘ฅ๐‘ฅ๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๏ฟฝ๐‘”๐‘”๐‘ค๐‘ค๐‘—๐‘—๏ฟฝ๐‘ฅ๐‘ฅ=1 = 0

1

0

Page 16: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 16 | 22

Note 3

For collocation we cannot use an integration by parts procedure to lower the required degree

of functional continuity as we could for Galerkin methods. This is due to the form of the

weighting functions, ๐‘ค๐‘ค๐‘—๐‘— = ๐›ฟ๐›ฟ๏ฟฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ๐‘—๐‘—๏ฟฝ (the dirac delta function) which is not differentiable.

๐‘‘๐‘‘๐›ฟ๐›ฟ๏ฟฝ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ๐‘—๐‘—๏ฟฝ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

does not exist. Therefore it is not possible to find any weak forms!

Therefore for a 2nd order differential operator ๐ฟ๐ฟ we must use Hermite type interpolation

compared to the Galerkin Symmetrical weak form for which we only needed Lagrange type

interpolation.

Page 17: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 17 | 22

Note 4

โ€ข Summary of Advantages of Weak Forms:

โ€ข Fundamental weak form has relaxed b.c. requirements. Itโ€™s much easier to find trial/test

functions which satisfy the homogeneous form of the essential b.c. than both the essential

and natural b.c.โ€™s

โ€ข In addition when we define local trial functions on finite elements, it will be much

simpler to satisfy the essential b.c.โ€™s locally on the element level rather than on a global

level.

When using the FE method where we simply go into the matrix and set the essential b.c.

u and we need not worry about โ€œstrictlyโ€ enforcing the natural boundary condition ๐‘‘๐‘‘๐‘ข๐‘ข/๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โ€ข Symmetrical weak form has relaxed functional continuity requirements. This is very

important when defining functions over split domains (FE method).

The symmetrical weak form lowers the inter-element functional continuity requirements

and thus lowers the number of unknowns.

โ€ข In addition, part of the natural b.c. error falls out due to the way in which it was defined.

Page 18: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 18 | 22

Notes on a 4th derivative operator problem

Consider the equilibrium equation for a beam on an elastic foundation

๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘4๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ4 + ๐‘˜๐‘˜๐‘ฃ๐‘ฃ = ๐‘๐‘(๐‘ฅ๐‘ฅ)

where

v = beam displacement

E = modulus of elasticity

I = moment of inertia

k = foundation constant

p = distributed load on the beam

Page 19: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 19 | 22

Standard Galerkin

โŸจ๐ฟ๐ฟ(๐‘ฃ๐‘ฃ) โˆ’ ๐‘๐‘, ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃโŸฉ = 0

โ‡’

๏ฟฝ๏ฟฝ๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘4๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ4

+ ๐‘˜๐‘˜๐‘ฃ๐‘ฃ โˆ’ ๐‘๐‘๏ฟฝ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ = 0๐‘™๐‘™

0

โ€ข We can establish what the essential and natural b.c.โ€™s are by using the integration by parts

procedure to find:

โŸจ๐ฟ๐ฟ(๐‘ฃ๐‘ฃ), ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃโŸฉ = โŸจ๐ฟ๐ฟโˆ—(๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ), ๐‘ฃ๐‘ฃโŸฉ +

๏ฟฝ [๐น๐น1(๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ)๐บ๐บ1(๐‘ฃ๐‘ฃ) + ๐น๐น2(๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ)๐บ๐บ2(๐‘ฃ๐‘ฃ) โˆ’ ๐น๐น1(๐‘ฃ๐‘ฃ)๐บ๐บโˆ—1(๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ) โˆ’ ๐น๐น2(๐‘ฃ๐‘ฃ)๐บ๐บโˆ—2(๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ)]๐‘‘๐‘‘๐›ค๐›ค

โ€ข We perform 2 integration by parts to find the bcโ€™s (assuming EI constant):

โŸจ๐ฟ๐ฟ(๐‘ฃ๐‘ฃ), ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃโŸฉ = ๏ฟฝ๏ฟฝ๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘2๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

๐‘‘๐‘‘2๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 + ๐‘˜๐‘˜๐‘ฃ๐‘ฃ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๏ฟฝ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘™๐‘™

0

+ ๏ฟฝโˆ’๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘2๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2

๐‘‘๐‘‘๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ + ๐ธ๐ธ๐ธ๐ธ

๐‘‘๐‘‘3๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ3 ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๏ฟฝ๐‘ฅ๐‘ฅ=0

๐‘ฅ๐‘ฅ=1

Page 20: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 20 | 22

โ€ข This is halfway point of the integration by parts procedure and represent the symmetrical

weak form:

โ€ข Hence the essential b.c.โ€™ are: ๐น๐น1(๐‘ฃ๐‘ฃ) = ๐‘ฃ๐‘ฃ โ†’ displacement

๐น๐น2(๐‘ฃ๐‘ฃ) = ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅโ†’ slope

โ€ข the natural b.c.โ€™s are: ๐บ๐บ1(๐‘ฃ๐‘ฃ) = โˆ’๐ธ๐ธ๐ธ๐ธ ๐‘‘๐‘‘3๐‘‘๐‘‘

๐‘‘๐‘‘๐‘ฅ๐‘ฅ3= ๐‘„๐‘„ โ†’ applied shear

๐บ๐บ2(๐‘ฃ๐‘ฃ) = +๐ธ๐ธ๐ธ๐ธ ๐‘‘๐‘‘2๐‘‘๐‘‘

๐‘‘๐‘‘๐‘ฅ๐‘ฅ2= ๐‘€๐‘€ โ†’ applied moment

โ€ข Note that the weighting functions that are to be used in establishing the fundamental

weak form fall out of this integration by parts procedure used in establishing self-

adjointness of the operator (which also establishes b.c.โ€™s). You want terms to drop later

on!

Page 21: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 21 | 22

โ€ข Natural boundary errors

The error in the moment is:

ิ๐ต๐ตโ€ฒ = ๏ฟฝ๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘2๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 โˆ’ ๐‘€๐‘€๏ฟฝ ๏ฟฝ

๐‘‘๐‘‘๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๏ฟฝ

A error in the shear is:

ิ๐ต๐ต" = ๏ฟฝโˆ’๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘3๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ3 โˆ’ ๐‘„๐‘„๏ฟฝ {๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ}

โ€ข Weighted natural boundary errors

A moment error is weighted by a rotation:

โŸจิ๐ต๐ตโ€ฒ ,๐‘‘๐‘‘๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โŸฉ = ๏ฟฝ ๏ฟฝ๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘2๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ2 โˆ’ ๐‘€๐‘€๏ฟฝ

ฮ“๐‘๐‘

๏ฟฝ๐‘‘๐‘‘๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๏ฟฝ ๐‘‘๐‘‘ฮ“

A shear error is weighted by a displacement

โŸจิ๐ต๐ต" , ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃโŸฉ = ๏ฟฝ ๏ฟฝโˆ’๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘3๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ3 โˆ’ ๐‘„๐‘„๏ฟฝ

ฮ“๐‘๐‘

{๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ} ๐‘‘๐‘‘ฮ“

Page 22: Lecture No. 5 Lecture Notes_โ€ฆย ยท CE 60130 FINITE ELEMENT METHODS - LECTURE 5 - updated 2018- 01- 25 Page 1 | 22 . Lecture No. 5 . ๐ฟ๐ฟ(๐‘ข๐‘ข) โˆ’๐‘๐‘(๐‘ฅ๐‘ฅ) = 0 in

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 5 - u p d a t e d 2 0 1 8 - 0 1 - 2 5 P a g e 22 | 22

โ€ข Note that we must specify essential b.c.โ€™s somewhere!

โ€ข Boundary conditions must be specified in pairs for this problem

โ€ข Displacement and rotation are paired

โ€ข Shear and moment are paired

โ€ข The error/weighting products fall out of the integration by parts process. They are also

dimensionally consistent with all terms in the total error equation.

โ€ข The total error equation for this problem is the fundamental weak form

โŸจิ๐ผ๐ผ , ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃโŸฉ + โŸจิ๐ต๐ตโ€ฒ ,๐‘‘๐‘‘๐›ฟ๐›ฟ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โŸฉ + โŸจิ๐ต๐ต" , ๐›ฟ๐›ฟ๐‘ฃ๐‘ฃโŸฉ = 0

where

ิ๐ผ๐ผ = ๐ธ๐ธ๐ธ๐ธ๐‘‘๐‘‘4๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ4 + ๐‘˜๐‘˜๐‘ฃ๐‘ฃ โˆ’ ๐‘๐‘

โ€ข The symmetrical weak form is established by integrating the fundamental weak form by

parts.