Lecture Block 1: Operational Amplifier ECEN303:Analogue ...

35
Operational Amplifier XMUT303 Analogue Electronics

Transcript of Lecture Block 1: Operational Amplifier ECEN303:Analogue ...

Operational Amplifier

XMUT303 Analogue Electronics

Topics

โ€ข Basic characteristics and properties.

โ€ข Device imperfections.

โ€ข Circuit limitations.

โ€ข Design problems and solutions.

OperationalAmplifiers

โ€ข Voltage relationship:

๐‘ฃ๐‘‚ = ๐‘Ž ๐‘ฃ๐‘ƒ โˆ’ ๐‘ฃ๐‘

โ€ข Golden rules of op amp circuits:

โ€ข The output tries to force ๐‘ฃ๐‘ƒ = ๐‘ฃ๐‘ (with

negative feedback) .

โ€ข The inputs draw no current.

โ€ข The output has no impedance.

vNvP vO

Impedance

Black box model: Op-amp consists of:

โ€ข Internal input impedance (๐‘๐‘–).

โ€ข Voltage source (๐‘‰๐‘ ).

โ€ข Internal output impedance (๐‘๐‘œ).

vIZ i

vOZovS

Impedance (Input Side)

โ€ข This internal input impedance reduces the

input voltage from the source to op-amp

(input loading).

โ€ข Want ๐‘๐‘–๐‘› = โˆž for ideal op-amp.

Z s

vs

Device 1 Op-Amp

vi

Z i ๐‘ฃ๐‘– =๐‘๐‘–

๐‘๐‘– + ๐‘๐‘ ๐‘ฃ๐‘ 

Impedance (Output Side)

โ€ข Output internal impedance reduces the output

voltage driven to the load from op-amp

(output loading) โ€“ reduce efficiency.

โ€ข Want ๐‘๐‘œ๐‘ข๐‘ก = 0 for ideal op-amp.

Zo

avi

Op-Amp Device 2

vo

Z L ๐‘ฃ๐‘œ =๐‘๐‘™

๐‘๐‘™ + ๐‘๐‘œ๐‘Ž๐‘ฃ๐‘–

Impedances of Op-Amp Loading

โ€ข Inclusion of internal impedance and

measurements are required for precise op-amp

design consideration.

โ€ข For ideal op-amp, we want ๐‘๐‘–๐‘› = โˆž and ๐‘๐‘œ๐‘ข๐‘ก = 0.

viZ i

voZ o

Aocvi

Zs

vs

Device 1 Op-Amp

vi

Z i

Zo

ZLAocvi

Op-Amp Device 2

vo

Impedances of Op-Amp Loading

viZ i

vo

Z o

Aocvi

Zs

vs

Input

Source Op-Amp

vi

Z i

Zo

ZLAocvi

Op-Amp Load

vo

Put equation (1) into equation (2):

๐‘‰๐‘œ๐‘‰๐‘–

=๐‘๐‘–

๐‘๐‘  + ๐‘๐‘–

๐‘๐‘™๐‘๐‘œ + ๐‘๐‘™

๐ด๐‘œ๐‘๐‘‰๐‘ 

๐‘‰๐‘– =๐‘๐‘–

๐‘๐‘  + ๐‘๐‘–๐‘‰๐‘  (๐ธ๐‘ž. 1)

๐‘‰๐‘œ =๐‘๐‘™

๐‘๐‘œ + ๐‘๐‘™๐ด๐‘œ๐‘๐‘‰๐‘– (๐ธ๐‘ž. 2)

Impedance: Inverting Amplifier

R1

R2

vOvI

Inverting Amplifier:

๐ด =๐‘‰๐‘œ๐‘‰๐‘–

= โˆ’๐‘…2๐‘…1

1

1 + (1 + ๐‘…2/๐‘…1)/๐‘Ž

Note: finite open loop gain (๐‘Ž) of the op amp -> reduce overall gain of the amplifier.

Impedance: Non-Inverting Amplifier

Non-Inverting Amplifier:

๐ด =๐‘‰๐‘œ๐‘‰๐‘–

= 1 +๐‘…2๐‘…1

1

1 + (1 + ๐‘…2/๐‘…1)/๐‘Ž

R1

R2

vOvI

Note: finite open loop gain (๐‘Ž) of the op amp -> reduce overall gain of the amplifier.

Impedance: SummingAmplifier

Summing Amplifier:

๐‘‰๐‘œ =๐‘…๐‘“

๐‘…1๐‘‰1 +

๐‘…๐‘“

๐‘…2๐‘‰2 +โ‹ฏ

v2 vO

R 2

R fR 1v1

Impedance: DifferenceAmplifier

R1 R2

vO

v1

R3R4

v2

Difference Amplifier:

๐‘‰๐‘œ =๐‘…2๐‘…1

1 + ๐‘…1/๐‘…21 + ๐‘…3/๐‘…4

๐‘‰2 โˆ’ ๐‘‰1

Common and Differential Modes

Differential Mode:

๐‘‰๐ท๐‘€ = ๐‘‰2 โˆ’ ๐‘‰1

๐‘…๐‘–๐‘‘ = 2๐‘…1

Common Mode:

๐‘‰๐ถ๐‘€ =๐‘‰2 + ๐‘‰1

2

๐‘…๐‘–๐‘ =๐‘…1 + ๐‘…2

2

R1 R2

vO

R2R1

vD M

2

vD M

2

vCM

vDM

Analysis of difference amplifier circuit.

Non-Ideal Difference Amplifier

โ€ข Resistor mismatch: due to tolerance of the resistors used in the circuit.

โ€ข Note that โˆˆ = imbalance factor.

R1 R2(1 - โˆˆ)

vO

R2R1

vD M

2

vD M

2

vCM

vDM๐ด๐ถ๐‘€ =

๐‘…2

๐‘…1 + ๐‘…2โˆˆ

๐ด๐ท๐‘€ =๐‘…2

๐‘…11 โˆ’

๐‘…1 + 2๐‘…2

๐‘…1 + ๐‘…2

โˆˆ

2

(Eq.1)

(Eq.2)

Difference Amplifier Calibration

R1 R2

vO

R3R4

โ€”vcalib

R calib

+vcalib

Circuit calibration:

โ€ข Trimming using Howland circuit.

โ€ข Downside: increase cost of production.

Common Mode Rejection Ratio

โ€ข Common Mode Rejection Ratio (CMRR) is one of the factors used for determining signal quality in a given electronic circuit.

โ€ข Other factors: Signal gain, signal to noise ratio (SNR), total harmonic distortion (THD), etc.

โ€ข CMRR is ability of the device to reject common-mode signals, i.e. those that appear simultaneously and in-phase on both inputs.

Common Mode Rejection Ratio

โ€ข An ideal differential amplifier would have infinite

CMRR.

โ€ข However this is not achievable in practice.

โ€ข Gain equations for common & differential modes:

ACM = [R2 / (R1 + R2)] ฯต (Eq. 1)

ADM = R2/R1 [1 - (R1 + 2R2)/(R1 + R2)ฯต/2] (Eq. 2)

โ€ข For the given difference amplifier:

CMRR = 20 log10 |ADM/ACM|

CMRR โ‰ˆ 20 log10 |(1 + R2/R1)/ฯต| (Eq. 3)

Differential Mode Signalling

โ€ข Problem: GND โ‰  Earth.

โ€ข This is due to design of the circuit, analogue/ digital sections, grounding via chassis.

vO

Zg

vI

R 1 R 2

Differential Mode Signalling

โ€ข Solution: Make ๐‘ฃ๐บ common.

โ€ข This is to ensure that both of the of the top and bottom paths have common reference.

vOvI

R3R4

Zg

R1 R2

Differential Mode Signalling

Problem: Ground loop

โ€ข As source and amplifier are often far apart โ€“ voltage drop due to ground bus impedance

vO

Zg

vI

R 1 R 2

Differential Mode Signalling

โ€ข Solution: isolate source from GND through useof twisted pair cabling.

โ€ข The common mode noises will be cancelled out by each others at matching opposite pairs.

โ€ข Reduces the natural self inductance property of wire and eliminate field interferences.

R1 R2

vO

R1R2

vI

Differential Mode Signalling

โ€ข Solution: isolate source from GND through useof RF choke.

โ€ข The common mode noises will be cancelled out by each others (through out of phase pair of signals).

R1 R2

vO

R1R2

vI

T1

Design Problem

vref

R1

R(1 + )

v1

โ€ข Want to measure very small v.

โ€ข From big background voltage.

โ€ข Where R, R1 are all BIG.

โ€ข Some gain would be nice, too!

For electronic circuits used in the sensor applications, it is quite common to encounter these requirements and issues:

โ€ข Want to measure very small voltage (v) -> voltage

divisions and differential signal amplification.

โ€ข Accuracy of voltage divider depends the tolerance

of the resistors used in the circuit.

vref

R1

v1

R(1 + )

R3R2

Design Problem

โ€ข From big background voltage -> resistor bridge.

โ€ข Resistor bridge has inherent sensitivity for detecting

small voltage differences.

vref

R1

R R(1 + )

R1

v2 v1

R3

R3R2

R2

Design Problem

vref

R1

R R(1 + )

R1

v2 v1

R2 R3

v1

R3R2v2

R4

R4

โ€ข Where R, R1 are all BIG -> input buffers isolation

through voltage followers on both ends.

Design Problem

Design Problem

โ€ข Some gain would be nice, too! -> gain adjustment

trimmed/tailored towards design requirements.

โ€ข Adjustable gain for tuning the accuracy of the

measurement.

vref

R1

R R(1 + )

R1

v2 v1

R2 R3v1

R3R2v2

R4

RG

R4

Instrumentation Amplifiers

For even better performance than differenceamplifiers:

โ€ข Very high Zin.

โ€ข Very high CMRR.

R1 R2

vO

v1

R2R1v2

R3

RG

R3

vo2

vo1

Instrumentation Amplifiers

Components:

โ€ข Difference amplifier:

A2 = R2/R1

โ€ข Input buffers:

A1 = (1+2R3/ RG)

R1 R2

vO

v1

R2R1v2

R3

RG

R3

vo2

vo1

Instrumentation Amplifier Connections

โ€ข Discrete package integrated circuit.

โ€ข Sense pin e.g. remote or local.

โ€ข External reference voltage.

โ€ข External adjustable gain.

RG

Sense

Ref

R1 R2v1

R1v2

R3

RG

R3

R2Amplifier

Instrument Amplifier Application (Transducer Bridge)

โ€ข Encapsulate the stated solutions: small measurement (), imbalance impedance, imbalance voltage, and adjustable trimmed gain.

vO

vref

R1

RG

Sense

Ref

R1

R R(1 +)

v2 v1

PracticalTransducer Bridges

โ€ข Due to resistors tolerance, most of the occasions, require trimming using variable resistors.

vref

R3

R2

vO

R1

RG

Sense

Ref

R1

R R(1 +)

Two Op-Amp Instrumentation Amplifier

โ€ข Just two precision amplifiers can be configured

to create a differential to single ended

instrumentation amplifier.

๐‘ฃ๐‘œ = 1 + ๐‘…2/๐‘…1 ๐‘ฃ2 โˆ’ ๐‘ฃ1

โ€ข These op amp instrumentation amplifiers:

โ€ข Cheap.

โ€ข Asymmetric.

v1 v2

R1 R2

vO

R1R2

Two Op-Amp Instrumentation Amplifier

โ€ข Gain tuning: realised with feedback path added

to two op amp instrumentation amplifier.

๐‘ฃ๐‘œ = 1 + ๐‘…2/๐‘…1 + 2๐‘…2/๐‘…๐บ ๐‘ฃ2 โˆ’ ๐‘ฃ1

โ€ข Gain accuracy is tuned by ๐‘…๐บ .

v1 v2 vO

RG

R2 R1 R1 R2

Instrument AmplifierApplication (Active Guard)

โ€ข Use of double ended transmission, noise appears as common-mode component, hence rejected by op-amp.

โ€ข CMRR degradation with frequency due to RC imbalance.

R1 R2

vO

R2R1

R3

RG

R3 R s

R s

vI vCM