Lecture Bending of Plates

download Lecture Bending of Plates

of 35

Transcript of Lecture Bending of Plates

  • 8/13/2019 Lecture Bending of Plates

    1/35

    Assumptions of Thin-plate theory

    1. Before loading, the midsurface is flat.

    2. Plate thickness t is small in comparison with spanwise dimensions of

    the plate.

    3. The plate material is homogeneous, isotropic, and linearly elastic.4. A line normal to the midsurface before loading remains normal to the

    midsurface after loading.

    5. Stress normal to the midsurface szis negligible compared to sxand

    sy.

    6. Lateral deflections are small in comparison with the plate thickness,

    and the slope of the midsurface is small.

    7. The midsurface is a neutral surface, i.e., the strains ex, ey, gxyare zero.

  • 8/13/2019 Lecture Bending of Plates

    2/35

    0 Integrating, we get ( , )zw

    w w x y

    z

    e

    00 ( , )zxw u w

    u z u x yx z x

    g

    00 ( , )yzv w w

    v z v x yz y y

    g

    0Here ( , ) and ( , ) represent, respectively, the values

    of and on the midplane.

    ou x y v x y

    u v

    According to the last assumption, 0 0 0u v

  • 8/13/2019 Lecture Bending of Plates

    3/35

    andw w

    u z v z x y

    Therefore,

    2 2 2

    2 22x y xy

    w w wz z z

    x yx ye e g

    Before loading After loading

  • 8/13/2019 Lecture Bending of Plates

    4/35

    Generalized Hookes law

    x x y z Ee s s s

    y y z x Ee s s s

    z z x y Ee s s s

    xy xy Gg

    yz yz Gg

    zx zx Gg

    where

    2 (1 )

    EG

  • 8/13/2019 Lecture Bending of Plates

    5/35

    For 0, 0, 0, we getz yz zxe g g

    2 2

    2 2 2 21 1x x y

    E E w wz

    x ys e e

    2 2

    2 2 2 21 1y y x

    E E w wz

    y xs e e

    2

    1xy xy

    E wG z

    x y g

  • 8/13/2019 Lecture Bending of Plates

    6/35

    Stressresultants

    / 2

    / 2

    x x

    y yt

    xy xyt

    x zx

    y yz

    M z

    M z

    M z dz

    Q

    Q

    s

    s

  • 8/13/2019 Lecture Bending of Plates

    7/35

    Substituting the expressions for , and , we getx y xys s

    2 2

    2 2xw wM D

    x y

    2 2

    2 2y

    w wM D

    y x

    2

    1xy

    wM D

    x y

    where3

    212 (1 )

    E tD

    is the flexural rigidity of the plate

  • 8/13/2019 Lecture Bending of Plates

    8/35

    The stresses could be written as

    3

    12 xx

    M z

    ts

    3

    12 yy

    M z

    ts

    3

    12 xyxy

    M z

    t

    The maximum stresses occur on the bottom and top

    surfaces (atz = t/2) of the plate.

  • 8/13/2019 Lecture Bending of Plates

    9/35

    Load is distributed over the upper surface of the plate.

    The intensity of the load is q, so that the load acting onthe element is q dx dy.

  • 8/13/2019 Lecture Bending of Plates

    10/35

    Summation of all the forces in thez-direction

    0yx

    QQdx dy dy dx q dx dy

    x y

  • 8/13/2019 Lecture Bending of Plates

    11/35

    0yx

    QQq

    x y

    Taking moments of all the forces about x-axis, we get

    0xy y

    y

    M Mdx dy dy dx Q dx dy

    x y

    The moment of the load qand the moment due to change in

    the force Qyare neglected, since they are small quantities of

    a higher order than those retained. After simplification,

    0xy y

    y

    M MQ

    x y

  • 8/13/2019 Lecture Bending of Plates

    12/35

    Similarly, by taking moments with respect to they-axis, we get

    0

    yx x

    x

    M M

    Qy x

    Substituting the expressions of Qx, Qyand noting that

    Mxy=Myx, we obtain

    2 22

    2 22

    y xyx M MM

    qx yx y

    Or,

    4 4 4

    4 2 2 42 qw w w

    Dx x y y

    Symbolically, 4 q

    wD

    2 is the Laplacian operator

  • 8/13/2019 Lecture Bending of Plates

    13/35

    4 qwD

    To determine w, it is required to integrate this equation

    with the constants of integration dependent upon the

    appropriate boundary conditions.

    Also we can write

    2 2

    2

    2 21 1x y

    w wM M D D w

    x y

    Or, the moment function 2

    1

    x yM MM D w

    Shear forcesx y

    M MQ Q

    x y

    2 2

    2 2

    M Mp

    x y

    2 2

    2 2

    w w M

    Dx y

  • 8/13/2019 Lecture Bending of Plates

    14/35

    Boundary conditions

    Built-in edge 0 and 0x a

    x a

    wwx

    Simply-supported edge

    2 2

    2 20 and 0

    x a

    x a

    w ww

    x y

    The second condition is analogous to

    2

    2

    20 or also 0

    x ax a

    ww

    x

    which do not involve Poissons ratio .

  • 8/13/2019 Lecture Bending of Plates

    15/35

    Boundary conditions

    Free edge 0 0 0x xy xx a x ax aM M Q

    Kirchhoff showed that these three boundary conditions proposed

    by Poisson are too many and that two conditions are sufficient forthe complete determination of the delfection w.

  • 8/13/2019 Lecture Bending of Plates

    16/35

    Boundary conditions

    Free edge

    xy

    x

    x a

    MQ

    y

    0xy

    x x

    x a

    MV Q

    y

  • 8/13/2019 Lecture Bending of Plates

    17/35

    Boundary conditions

    Therefore for a free edge at x= a

    3 3

    3 22 1 0

    x a

    w w

    x x y

    For zero bending moments along the free edge requires

    2 2

    2 20

    x a

    w wx y

  • 8/13/2019 Lecture Bending of Plates

    18/35

    Example

    Determine the deflection and stress in a very long and narrowrectangular plate if it is simply supported at edgesy = 0 andy =b.

    (a) The plate carries a nonuniform loading expressed by

    0

    ( ) sin y

    p y pb

    (b) The plate is under a uniform loadp0. Letp0= 10 kPa, b = 0.4 m,

    t = 10 mm,= 1/3, and E = 200 GPa.

    x

    y

    b

  • 8/13/2019 Lecture Bending of Plates

    19/35

    2 2

    2 2x

    w wM D

    x y

    2 2

    2 2y

    w wM D

    y x

    2

    1xyw

    M D

    x y

    where3

    212 (1 )

    E tD

    is the flexural rigidity of the plate

  • 8/13/2019 Lecture Bending of Plates

    20/35

    4 4 4

    4 2 2 42

    qw w w

    Dx x y y

    4

    4

    d w p

    dx D

  • 8/13/2019 Lecture Bending of Plates

    21/35

    The stresses could be written as

    3

    12x

    x

    M z

    ts 312

    yy M z

    ts 312

    xyxy M z

    t

    The maximum stresses occur on the bottom and top

    surfaces (atz = t/2) of the plate.

    2

    1

    x yM MM D w

    Shear forcesx y

    M MQ Q

    x y

  • 8/13/2019 Lecture Bending of Plates

    22/35

    23 2

    1

    2

    y

    yz

    Q z

    t t

    23 2

    1

    2

    xzx

    Q z

    t t

    3

    3 2 2 1 2

    4 3 3z

    p z z

    t ts

    The maximum shear stress, as in the case of a rectangular beam,

    occurs atz= 0, and can be expressed as

    ,max

    3

    2

    y

    yz

    Q

    t ,max

    3

    2

    xzx

    Q

    t

  • 8/13/2019 Lecture Bending of Plates

    23/35

    Naviers Solution for Simply Supported

    Rectangular Plates

    In general, the solution of the

    bending problem involves the

    following Fourier Series for

    load and deflection.

    1 1

    ( , ) sin sinmnm n

    m x n yp x y p

    a b

    1 1

    ( , ) sin sinmnm n

    m x n yw x y a

    a b

    wherepmnand amnrepresent undetermined coeffiecients.

  • 8/13/2019 Lecture Bending of Plates

    24/35

    This approach was introduced by Navier in 1820. The deflection

    must satisfy the following boundary conditions.

    2

    20 0 ( 0, )ww x x a

    x

    2

    20 0 ( 0, )

    ww y y b

    y

    12

    1, 2

    2sin sin

    m n

    x yaa b

  • 8/13/2019 Lecture Bending of Plates

    25/35

    Determination ofpmn

    1 1

    ( , ) sin sinmnm n

    m x n yp x y p

    a b

    Multiply each side by sin sin and integrate

    between limits (0, ) and (0, ).

    m x n ya b

    a b

    0 0

    0 01 1

    ( , )sin sin

    sin sin sin sin

    a b

    a b

    mn

    m n

    m x n yp x y dx dya b

    m x n y m x n yp dx dy

    a b a b

  • 8/13/2019 Lecture Bending of Plates

    26/35

    It can be shown that

    0

    0 ( )

    sin sin / 2 ( )

    a m mm x m x

    dx a m ma a

    0

    0 ( )sin sin

    / 2 ( )

    b n nn y n ydy

    b n nb b

    Therefore, after simplification, we can wrtite

    0 0

    4( , )sin sin

    a b

    mn

    m x n yp p x y dx dy

    ab a b

  • 8/13/2019 Lecture Bending of Plates

    27/35

    Evaluation of amn

    1 1

    ( , ) sin sinmnm n

    m x n yw x y a

    a b

    Substitute the expression of deflection into the plate bending equation.

    4 4 4

    4 2 2 42

    qw w w

    Dx x y y

    where q is the load andD is the flexural rigidity of the plate.

  • 8/13/2019 Lecture Bending of Plates

    28/35

    After simplification,

    4 2 2 4

    1 1

    2 sin sin 0mnmnm n

    pm m n n m x n ya

    a a b b D a b

    This equation must apply for allxandy. Therefore,

    4 2 2 4

    2 0mnmnpm m n n

    a

    a a b b D

    Or,

    242 2

    1

    ( / ) ( / )

    mnmn

    pa

    D m a n b

    And

    242 2

    1 1

    1sin sin

    ( / ) ( / )

    mn

    m n

    p m x n yw

    D a bm a n b

  • 8/13/2019 Lecture Bending of Plates

    29/35

    Special Cases

    1. Uniformly distributed load 0( , )p x y p

    0 0

    4( , )sin sin

    a b

    mn

    m x n yp p x y dx dy

    ab a b

    0

    2

    0

    2

    41 cos 1 cos

    4

    1 1 1 1

    mn

    m n

    pp m n

    mn

    p

    mn

    Or,0

    2

    16( , 1,3, )mn

    pp m n

    mn

  • 8/13/2019 Lecture Bending of Plates

    30/35

    242 2

    1 1

    1sin sin

    ( / ) ( / )

    mn

    m n

    p m x n yw

    D a bm a n b

    Or,

    0

    262 2

    16 sin( / ) sin( / )

    ( / ) ( / )m n

    p m x a n y bw

    D mn m a n b

    ( , 1,3, )m n

    Maximum deflection occur at the centre of the plate (x=a/2, y=b/2).

    ( ) / 2 10

    max 262 2

    116

    ( / ) ( / )

    m n

    m n

    pw

    D mn m a n b

    1 / 2 1 / 2

    Note that sin( / 2) 1 and sin( / 2) 1m n

    m n

    ( , 1,3, )m n

  • 8/13/2019 Lecture Bending of Plates

    31/35

    2 2

    2 2x

    w wM D

    x y

    2 2

    2 2y

    w wM D

    y x

    2

    1xyw

    M D

    x y

    where3

    212 (1 )

    E tD

    is the flexural rigidity of the plate

  • 8/13/2019 Lecture Bending of Plates

    32/35

    2 2

    0

    242 2

    / ( / )16sin sin

    ( / ) ( / )

    x

    m n

    m a n bp m x n yM

    a bmn m a n b

    2 2

    0

    24

    2 2

    / ( / )16sin sin

    ( / ) ( / )y

    m n

    m a n bp m x n yM

    a bmn m a n b

    0

    24 2 2

    16 (1 ) 1cos cos

    ( / ) ( / )xy m n

    p m x n yM

    ab a bm a n b

  • 8/13/2019 Lecture Bending of Plates

    33/35

    2. Patch load

    ( , ) / 4p x y P cd

    1 1

    1 1

    sin siny d x c

    mny d x c

    P m x n yp dx dy

    abcd a b

    Or,

    1 1

    2

    4sin sin sin sinmn

    m x n yP m c n dp

    mncd a b a b

    0 0

    4( , )sin sin

    a b

    mn

    m x n yp p x y dx dy

    ab a b

  • 8/13/2019 Lecture Bending of Plates

    34/35

    3. Point load

    1 1

    2

    4sin sin sin sinmn

    m x n yP m c n dp

    mncd a b a b

    For patch load we wrote

    The above expression could be used for point loadby putting the limiting values of c and d to zero.

    1 14 sin sinmnm x n yP

    p

    ab a b

    Deflection

    1 1

    242 2

    sin( / ) sin( / )4sin sin

    ( / ) ( / )m n

    m x a n y bP m x n yw

    Dab a bm a n b

  • 8/13/2019 Lecture Bending of Plates

    35/35

    When the loadP is applied at the centre of the plate (x1=a/2, y1=b/2),

    the previous equation reduces to

    ( ) / 2 1 1 1

    242 2

    sin( / ) sin( / )41

    ( / ) ( / )

    m n

    m n

    m x a n y bPw

    Dab m a n b

    ( , 1,3, )m n

    Furthermore, if the plate is square (a=b), the maximum deflection,

    which occurs at the centre can be written as

    2

    max 242 2

    4 1

    m n

    P aw

    D m n

    ( , 1,3, )m n

    2 2

    maxRetaining the first nine terms 0 01142 (Exact value 0 01159 )

    Pa Pa

    w D D