Lecture 4 - Strain Gages II

download Lecture 4 - Strain Gages II

of 36

Transcript of Lecture 4 - Strain Gages II

  • 7/27/2019 Lecture 4 - Strain Gages II

    1/36

    !"#$%&"'(%')%&*+#+,-.*$&+/.

    Department of Strength of Materialsand Structural Engineering

    Experimental Mechanics ofAdvanced Materials

    and Structures

    Semester Fall 2013

    Marco A. Prez

    Lecture 4 Strain gages: instrumentation

    and data analysis (Part II)

  • 7/27/2019 Lecture 4 - Strain Gages II

    2/36

    Syllabus

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    3/36

    Contents Todays lecture

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.@?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Selection criteria for strain gages Types of strain gages Uniaxial and biaxial stress states Technical data The Wheatstone bridge circuit Strain measurements analysis Summary References

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    4/36

    Selection criteria for strain gages

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.2?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    The questions that should be considered during the selectionof a type of strain gage, arise due to the variety of straingage applications and due to the conditions affecting thestrain gages during service. There is no strain gage thatfulls all requirements. For this reason numerous different

    strain gages are available and are supplemented with specialtypes when required. The selection system presented hererequires the user to analyse his measurement problem. Tworequirements must be fullled:

    1. The measurement task must have a clear objectiveand the details of the process and its boundaryconditions must be known.

    2. The strain gage characteristicsmust be known.

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    5/36

    Types of strain gages

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.A?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Strain gages are available in various

    shapes and sizes. Apart fromdifferent lengths of the measuringgrid there are various designs andpositions for the connections.

    There is also a difference betweenlinear strain gages in single anddouble (parallel) arrangements, Xrosettes with measurement gridaxes at 90 to one another, Rrosettes with 3 measuring gridaxes arranged at certain angles toone another, strain gage chainsand numerous other special shapes.

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    6/36

    Types of strain gages

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.I?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    7/36

    Types of strain gages

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.J?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    8/36

    Types of strain gages

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.K?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    9/36

    It is formed by a multiple strain gages withcrossinggrid axes. X rosettes (2measuringgrids whose axes intersect at 90) are used forthe investigation of biaxial stress conditions

    with known principal directions. R rosettes(3measuring grids) are used for the analysis ofbiaxial stress conditions where the maindirections are unknown, both qualitatively and

    quantitively. There are two basic shapes whichdiffer due to the angular interval between theirmeasuring grids: 0/45/90 and 0/60/120.With star or cross-shaped rosettes themeasuring grids are arranged over one another.

    Types of strain gages

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.L?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    10/36

    150

    300300

    600

    750

    900

    1050

    150

    450450

    600

    750

    900

    1050

    00

    !

    00

    !

    015

    !

    030

    !

    In uniaxial stress state, the

    maximum of the tension orcompression stresses acts inthe direction in which the forceacts. In all other directions the

    stresses are smaller and followthe relationship:

    Uniaxial and biaxial stress states

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.MN?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    11/36

    In problems in experimental analysis the uniaxial stress stateis more the exception rather than the rule.

    For reliable results in uniaxialtest the active direction ofthe force must be knownand the strain must be measured in

    this direction. If this direction is unknown or only knownapproximately, then the measurements and their evaluationshould be carried out with the biaxial stress state withunknown principal directions.

    The biaxial stress state is met far more often and itsdetermination should not be undertaken with the simplemethod used for the uniaxial stress state; this would lead tosignicant errors.

    Uniaxial and biaxial stress states

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.MM?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    12/36

    Uniaxial and biaxial stress states

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.M>?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    13/36

    Uniaxial and biaxial stress states

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.M@?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    14/36

    Uniaxial and biaxial stress states

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.M2?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    15/36

    Uniaxial and biaxial stress states

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.MA?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    16/36

    Uniaxial and biaxial stress states

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.MI?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    17/36

    1+$(.#+ 2 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    18/36

    Technical data

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.MK?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    19/36

    Technical data

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.ML?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    20/36

    Technical data

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>N?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    21/36

    Technical data

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>M?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    22/36

    Technical data

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>>?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    23/36

    Technical data

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>@?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    24/36

    The Wheatstonebridge can be used

    for the determination of relativechanges in resistance. For strainmeasurements, R1 = R2and R3 = R4.

    The Wheatstone bridge circuit

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>2?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    1+$(.#+ 2 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    25/36

    The above equation assume that all the resistance in the

    bridge change. This situation occurs for example intransducers or with test objects performing a similarfunction. In experimental stress analysis this is hardly everthe case and usually only some of the arms of the bridge

    contain activestrain gages, the remainder being made up ofbridge completion resistors. Designations for the variousforms such as (a) quarter bridge, (b) half bridge, (c)double quarter or diagonal bridge and (d) full bridgeare common place.

    The Wheatstone bridge circuit

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>A?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    5 5 : ; =

    (b)(a) (c) (d)

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    26/36

    The elementary loading cases normal (tensile,compressive loading), bending and torsion occur veryseldom, if at all, in a pure form. Usually the loading cases aresuperimposed to some extent whether this is desired or not.

    In the following the options for the determination of pureor

    combined loadings are discussed. The arrangements of thestrain gages on the object and within the Wheatstone bridgeplay a signicant role here.

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>I?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    5 5 : ; =

    Special attention should be paid to the sign

    of the measured strains.

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    27/36

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>J?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    5 5 : ; =

    This s ing l e l ong i tud ina l gageconguration will respond to bendingloads but is unaffected by torsionalloads if the gage is mounted on thecentreline. Care must be taken withhow the load is applied because it willrespond to axialloads.

    ForG

    F = 2 and =1000

    m/m:

    Bending: bridge

    ( )V

    mVG

    V

    VF

    S

    5010004

    2

    4 4321

    0 !"# ==!+!= """"

    23

    61

    wh

    PlSG

    =!

    SG1l

    P

    wh

    ! ! !

    !

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    28/36

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>K?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Because the longitudinal and thetransverse Poisson gage are inadjacent arms, the thermal effect iscompensated and the bridge output isincreasedby the factor (1+ ) as canbe proved:

    For GF =2, =0.3 and =1000m/m:

    Bending: bridge

    ( ) ( )[ ]

    ( )[ ]V

    mV

    GG

    V

    V FF

    S

    65013004

    21000301000

    4

    2

    44 1121

    0

    !! ==!""=

    =""="= #$$$$

    12

    1 23

    6

    SGSG

    SG

    wh

    Pl

    !""

    "

    #=

    =

    SG1l

    P

    wh

    SG2

    +

    -

    !!

    !

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    29/36

    12

    1 23

    6

    SGSG

    SG

    wh

    Pl

    !!

    !

    "=

    =

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.>L?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Bending: bridge

    ( ) ( )[ ]

    V

    mV

    GGG

    V

    VFFF

    S

    0120004

    2

    2444

    11121

    0

    !"# ==

    ==!!=!= """""

    SG1l

    P

    wh

    SG2

    +

    -

    The gage on the lower measure bendingstrains of opposite signs. Strainsproduced by axialloads and apparentstrain will be cancelled because the

    two are in adjacent arms of the bridge.Moreover the output will be doubleascan be proved.

    For GF = 2 and =1000m/m:!

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    30/36

    142

    31 23

    6

    SGSGSG

    SGSG

    wh

    Pl

    !!!

    !!

    "==

    ==

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.@N?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Bending: full bridge

    ( ) ( ) ( )[ ]

    V

    mVG

    GG

    V

    V

    F

    FF

    S

    0240004

    24

    4

    44

    1

    11114321

    0

    !"# ===

    =!!+!!=!+!=

    "

    """"""""

    lP

    wh

    +

    -

    This four-gage is the most popularbending beam conguration. The linearbridge output is twice that of thepreceding bridge version. Strains

    produced by axialloads and apparentstrain will be cancelled because thetwo are in adjacent arms of the bridge.

    For GF =2 and =1000m/m:!

    SG1SG3

    SG2SG4

    +

    -

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    31/36

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.@M?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Axial: 2 gages in opposite arms

    Ewh

    PSGSG

    ==31

    !!

    ( )V

    mVGG

    V

    VFF

    S

    0120004

    22

    44 131

    0 !"# ===+= !!!

    SG1l

    P

    w hSG3

    Because the two gages are in oppositearms, this conguration cancelsbending strains. The output will bedouble but the thermal strain isa d d i t i v e . T h e t e m p e r a t u r ecompensation is the poorest of anyconguration shown previously.

    For GF =2 and =1000m/m:! +

    +

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    32/36

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.@>?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Axial: full bridge

    l

    +

    -

    SG3

    SG4

    +

    -

    SG1SG2

    P

    w h

    This full bridge conguration withlongitudinal and Poisson gages is themost popular for axial loads. In thisconguration bendingis cancelled, the

    output is increasedand it has a goodtemperaturecompensation. Note thatboth gages on a given surface are inadjacent arms.

    For GF =2, =0.3 and =1000m/m:

    ( ) ( ) ( )[ ]

    V

    mV

    GG

    V

    VFF

    S

    3126004

    2

    44 33114321

    0

    !"# ==

    =!!+!!=!+!= "##"######

    142

    31

    SGSGSG

    SGSG

    Ewh

    P

    !"""

    ""

    #==

    ==

    !!

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    33/36

    ( )!"

    ##

    ##$

    +=

    =%=

    =%

    =

    14

    3

    43

    21

    ER

    T

    SGSG

    SGSG!"#

    Strain measurements analysis

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.@@?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    Torque: Full torsion bridge

    +

    - +

    -

    ( ) ( ) ( )[ ]

    V

    mV

    GG

    V

    VFF

    S

    0240004

    2

    44 33114321

    0

    !"# ==

    =!!+!!=!+!= """"""""

    SG3 SG4

    SG1 SG2

    TT

    rIn this full bridge torsional congurationbending and axial loads are cancelled.Also it has a good temperaturecompensation. It is the most popular

    design for torque measurement. However,very accurate gage orientation andplacement of all four gages is crucial forsuccess. For GF =2 and =1000m/m:!

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    34/36

    Summary

    UPC

    !"#$%&"'(%')%&*+#+,-.*$&+/.@2?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    In this lecture we have discussed the following topics:

    The selection criteria for strain gages is based on themeasurement task (uniaxial or biaxial stress states,

    space requirements, homogeneity of the straineld)

    and the strain gage characteristics.

    The use of the Wheatstone bridge circuit for strainmeasurements and the different congurations

    for different loadingcases.

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    35/36

    References

    !"#$%&"'(%')%&*+#+,-.*$&+/.@A?@A BC*+#)!+'("9 D+$E"')$6 %F G/H"'$+/ D"(+#)"96 "'/ 4(#.$(.#+6

    UPC

    1. Recent advances in experimental mechanics by E. E. Gdoutos, 2002.2. Springer Handbook of Experimental Solid Mechanics by William N. Sharpe

    Jr. (Editor), 2008.

    3. Handbook on Experimental Mechanics by Albert S. Kobayashi, 1993.4. Experimental mechanics of solids by Cesar A. Sciammarella and Federico

    M. Sciammarella, 2012.5. Mechanics of solids by S. S. Bhavikatti, 2010.6. An Introduction to Measurements using Strain Gages by

    Karl Hoffmann, 1989.

    7.

    Modern experimental stress analysis by James F. Doyle,2004.

    8. Modal Analysis by Jimin He and Zhi-Fang Fu, 2001.9. Harris shock and vibration handbook by Allan G. Piersol

    Thomas L. Paez, 2002

    !

    1+$(.#+ 2 3 4(#")' 5"5+67 )'6(#.!+'("8%' "'/ /"(" "'"9:6)6 ;

  • 7/27/2019 Lecture 4 - Strain Gages II

    36/36

    Cantilever beam test

    UPC

    !" Eh

    I

    Ply

    I

    M

    zz

    zGage ===

    2

    zEI

    PL

    3

    3

    =!"#

    !l

    y = 41.043x + 4E-14

    0

    50

    100

    150

    200

    250

    300

    0 1 2 3 4 5 6 7

    Str

    ainum/m

    Displacement delta (mm)

    Analytical12

    3wh

    Iz =