Lecture 3a (Shamma) 1.17.12 Permeability.ppt

download Lecture 3a (Shamma) 1.17.12 Permeability.ppt

of 73

Transcript of Lecture 3a (Shamma) 1.17.12 Permeability.ppt

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    1/73

    1

     Permeability and Seepage

     N. Sivakugan

     Flow Nets

    Philip B. Bedient

    Civil & Environmental Engineering

    Rice University

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    2/73

    2

     Permeability and Seepage

     Flow Nets

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    3/73

    SIVA

    Copyright©2001

    3

    What is permeability?

    A measure of how easily a fluid (e.g., water)can pass through a porous medium (e.g.,soils)

    Loose soil

    - easy to flow

    - high permeability

    Dense soil

    - difficult to flow

    - low permeability

    water 

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    4/73

    SIVA

    Copyright©2001

    4

     Bernoulli’s Equation

    1. Kinetic energy

    datum

    z

    fluid particle

    The energy of a fluid particle ismade of: 

    2. Strain energy

    3. Potential energy

    - due to velocity

    - due to pressure

    - due to elevation (z) with respect to a datum

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    5/73

    SIVA

    Copyright©2001

    5

     Bernoulli’s Equation

    Total head =

    datum

    z

    fluid particle

    Expressing energy in unit of length: 

    Velocity head

    +

    Pressure head

    +

    Elevation head

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    6/73

    SIVA

    Copyright©2001

    6

     Bernoulli’s Equation

    Total head =

    datum

    z

    fluid particle

    For flow through soils, velocity (and thus

    velocity head) is very small. Therefore,

    Velocity head

    +

    Pressure head

    +

    Elevation head

    0

    Total head = Pressure head + Elevation head

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    7/73SIVA

    Copyright©2001

    7

    Some NotesIf flow is from A to B, total head is higher at

    A than at B.

    water 

     AB

    Energy is dissipated inovercoming the soil

    resistance and hence

    is the head loss.

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    8/73SIVA

    Copyright©2001

    8

    Some Notes

    Pressure head = pore water pressure/w 

    Elevation head = height above the selected datum

    At any point within the flow regime:

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    9/73

    SIVA

    Copyright©2001

    9

    Some Notes

    Hydraulic gradient (i) between A and B isthe total head loss per unit length.

    water 

     AB

     AB

     B A

    TH TH i  

    length AB, along the

    stream line

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    10/73

    SIVA

    Copyright©2001

    10

     Darcy’s Law

    Velocity (v) of flow is proportional to the

    hydraulic gradient (i) – Darcy (1856)

    v = k  i

    Permeability 

    • or hydraulic conductivity

    • unit of velocity (cm/s) (ft/S)

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    11/73

    SIVA

    Copyright©2001

    11

     Large Earth Dam

    SHELL

    FOUNDATION

    SHELL

    CORE

    blanket

    filter 

    cutoff 

    crest

    riprap

    free board

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    12/73

    SIVA

    Copyright©2001

    12

     Permeability Values (cm/s)10-

    3

    10-

    6

    100

    clays gravelssandssilts

    CoarseFines

    For coarse grain soils,  k = f(e or

    D10) 

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    13/73

    SIVA

    Copyright©2001

    13

    Flow Net Theory 

    1. Streamlines  and Equipotential lines

     are .

    2. Streamlines  are parallel to no flowboundaries.

    3. Grids are curvilinear squares, where

    diagonals cross at right angles.

    4. Each stream tube carries the same

    flow.

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    14/73

    SIVA

    Copyright©2001

    14

    Flow Net Theory 

    C i h ©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    15/73

    SIVA

    Copyright©2001

    15

    Flow Net in Isotropic Soil

    Portion of a flow net is shown below

    S t r e a m  t u b e 

    C i h ©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    16/73

    SIVA

    Copyright©2001

    16

    Flow Net in Isotropic Soil

    The equation for flow nets originates

    from Darcyᾼs Law.

    Flow Net solution is equivalent to

    solving the governing equations of flow

    for a uniform isotropic aquifer with well-

    defined boundary conditions.

    C i ht©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    17/73

    SIVA

    Copyright©2001

    17

    Flow Net in Isotropic Soil

    Flow through a channel betweenequipotential lines 1 and 2 perunit width is:

     q  = K (d m

     x 1)(  h 1

    /dl )

    d m

     h1

    dl 

     q

     h2

      q

    n

    m

    C i ht©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    18/73

    SIVA

    Copyright©2001

    18

    Flow Net in Isotropic Soil

    Flow through equipotential lines 2 and 3is:

     q  = K (d m x 1)(  h 2 /dl )

    The flow net has square grids, so thehead drop is the same in each potentialdrop:   h 1 = h 2

    If there are n d such drops, then:

      h  = ( H /n )where H  is the total head loss

    between the first and last equipotentiallines.

    C i ht©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    19/73

    SIVA

    Copyright©2001

    19

    Flow Net in Isotropic Soil

    Substitution yields:

    ᾶ 

    q  = K (d 

     x dl )(H/n )

    This equation is for one flow channel. If

    there are m such channels in the net,

    then total flow per unit width is: 

    ᾶ q  = ( m /n )K (d m  /dl )H 

    Cop right©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    20/73

    SIVA

    Copyright©2001

    20

    Flow Net in Isotropic Soil

    Since the flow net is drawn withsquares, then d m   dl , and:

    q  = ( m /n )KH 

    where:ᾶ q  = rate of flow or seepage per unit width

    ᾶ m = number of flow channels

    ᾶ n = number of equipotential drops

    ᾶ h  = total head loss in flow system

    ᾶ K  = hydraulic conductivity

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    21/73

    SIVA

    Copyright©2001

    21

    Drawing Method:

    1. Draw to a convenient scale the cross

    sections of the structure, water

    elevations, and aquifer profiles.

    2. Establish boundary conditions and draw

    one or two flow lines  and

    equipotential lines  near theboundaries.

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    22/73

    SIVA

    Copyright©2001

    22

    Method:

    3. Sketch intermediate flow lines andequipotential lines by smooth curves

    adhering to right-angle intersections and

    square grids. Where flow direction is a

    straight line, flow lines are an equal distanceapart and parallel.

    4. Continue sketching until a problem

    develops. Each problem will indicatechanges to be made in the entire net.

    Successive trials will result in a reasonably

    consistent flow net.

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    23/73

    SIVA

    Copyright©2001

    23

     Method :

    5. In most cases, 5 to 10 flow lines are

    usually sufficient. Depending on the

    number of flow lines selected, the

    number of equipotential lines willautomatically be fixed by geometry

    and grid layout.

     6. Equivalent to solving the governing

    equations of GW flow in 2-dimensions.

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    24/73

    SIVA

    Copyright©2001

    24

    Seepage Under Dams

    Flow nets for

    seepage through

    earthen dams

    Seepage underconcrete dams

    Uses boundary

    conditions (L & R)

    Requires

    curvilinear square

    grids for solution

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    25/73

    SIVA

    Copyright©2001

    25

    Two Layer Flow System withSand Below 

    Ku / K l = 1 / 50

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    26/73

    SIVA

    Copyright©2001

    26

    Two Layer Flow System withTight Silt Below 

    Flow nets for seepage from one side of a channel through two

    different anisotropic two-layer systems. a) K

    u

    / K

    l

     = 1/50 . b)

    K

    u

    / K

    l

     = 50 . Source: Todd Bear, 1961.

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    27/73

    SIVA

    Copyright©2001

    27

    Effects of Boundary Condition

    on Shape of Flow Nets

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    28/73

    SIVA

    Copyright©2001

    28

    Radial Flow:

    Contour map of the piezometric surface near Savannah,

    Georgia, 1957, showing closed contours resulting from

    heavy local groundwater pumping after USGS

    Water-

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    29/73

    SIVA

    Copyright©2001

    29

      Flow Net in a Corner:

    Streamlines  

    are at right

    angles to

    equipotential

     lines

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    30/73

    SIVA

    Copyright©2001

    30

    Flow Nets: an example

     A dam is constructed on a permeable

    stratum underlain by an impermeable

    rock. A row of sheet pile is installed at

    the upstream face. If the permeable soilhas a hydraulic conductivity of 150

    ft/day, determine the rate of flow or

    seepage under the dam.

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    31/73

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    32/73

    SIVA

    py g

    32

    Flow Nets: the solution

    Solve for the flow per unit width:

    q  = ( m /n ) K h  

    = (5/17)(150)(35)

    = 1544 ft 3/day per ft

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    33/73

    SIVA

    py g

    33

    Flow Nets: An Example

    There is an earthen dam 13 metersacross and 7.5 meters high.TheImpounded water is 6.2 meters deep,

    while the tailwater is 2.2 meters deep.The dam is 72 meters long. If thehydraulic conductivity is 6.1 x 10 -4  centimeter per second, what is the

    seepage through the dam if n = 21

    K = 6.1 x 10 -4cm/sec

    = 0.527 m/day

    Copyright©2001

    Flow Nets: the solution

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    34/73

    SIVA

    py g

    34

    Flow Nets: the solution

    From the flow net, the total head loss,

    H , is 6.2 -2.2 = 4.0 meters. There are 6 flow channels ( m ) and 21

    head drops along each flow path ( n ):

    Q = ( KmH /n ) x dam length

      = (0.527 m/day x 6 x 4m / 21) x (dam

    length) = 0.60 m 3/day per m of dam

    = 43.4 m 3/day for the entire 72-meter 

     length of the dam

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    35/73

    SIVA

    py g

    http://homepage.eircom.net/~jmcgeever/Soil%20Mechanics/Soil%20Permeability%20-%20Flow%20Nets.htm

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    36/73

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    37/73

    SIVA

    Stresses due to FlowDownward Flow

    hw

    L

    flow

    X

    soil

    z

    v = whw +

    satz

    w hw + w(L-hL)

    (z/L)

    v' = ' z + wiz

    At X,

    hL u = w hw 

    u = w

    (hw

    +L-

    h

    … as for static case

    = w hw + w(z-iz)

    = w

    (hw

    +z) -w

    iz

    Reduction due to flow

    Increase due to flow

    u =

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    38/73

    SIVA 38

    Stresses due to Flow

    flow

    Upward Flow

    hw

    LX

    soil

    z

    v = whw +

    satz

    w hw + w(L+hL)

    (z/L)

    v' = ' z - wiz

    At X,

    hL

    u = whw 

    u = w

    (hw+L+hL)

    … as for static case

    = w hw + w(z+iz)

    = w

    (hw

    +z) +w

    iz

    Increase due to flow

    Reduction due to flow

    u =

    Copyright©2001

    Q i k C di i i G l S il

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    39/73

    SIVA 39

    Quick Condition in Granular Soils

    During upward flow, at X: 

    v' = ' z - wiz

    flow

    hw

    LX

    soil

    z

    hL

      i z w

    w  

      

      '

    Critical hydraulic gradient (ic)

    If i > ic, the effective stresses is negative.

    i.e., no inter-granular contact & thus failure.

    - Quick condition

    Copyright©2001

    S T i l

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    40/73

    SIVA 40

    Seepage Terminology

    concrete dam

    impervious strata

    soil

    Stream line is simply the path of a water molecule.

    datum

    hL

    TH = 0TH = hL

    From upstream to downstream, total head steadily decreasesalong the stream line.

    Copyright©2001

    S T i l

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    41/73

    SIVA 41

    Seepage TerminologyEquipotential line is simply a contour of constant

    total head.

    concrete dam

    impervious strata

    soil

    datum

    hL

    TH = 0TH = hL

    TH=0.8

    hL

    Copyright©2001

    Fl

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    42/73

    SIVA42

     Flownet A network of selected stream lines and equipotential

    lines.

    concrete dam

    impervious strata

    soil

    curvilinearsquare

    90º

    Copyright©2001

    Q tit f S (Q)

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    43/73

    SIVA43

    Quantity of Seepage (Q)

     f 

     L N 

     N 

    khQ  ….per unit length normal to the plane

    # of flow channels

    # of equipotential drops

    impervious strata

    concrete

    dam

    h

    L

    head loss from upstream to

    downstream

    Copyright©2001

    H d t P i t X

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    44/73

    SIVA44

     Heads at a Point X 

    impervious strata

    concrete

    dam

    datum

    X

    z

    h

    LTH = hL TH = 0

    Total head = hL - # of drops from upstream x h

    h

    Elevation head = -z

    Pressure head = Total head – Elevation headd 

     L

     N h

    Copyright©2001

    Pi i i G l S il

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    45/73

    SIVA45

     Piping in Granular  Soils

    datumconcrete

    dam

    impervious strata

    soil

    h

    L

    At the downstream, near the dam,

    h = total head dropl

    l hiexit the exit hydraulic gradient

    Copyright©2001

    Pi i i G l S il

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    46/73

    SIVA46

     Piping in Granular  Soils

    datumconcrete

    dam

    impervious strata

    soil

    h

    L

    If iexit exceeds the critical hydraulic gradient (ic), firstly

    the soil grains at exit get washed away.

    no soil; all water 

    This phenomenon progresses towards the upstream, forming a

    free passage of water (“pipe”).

    Copyright©2001

    Pi i i G l S il

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    47/73

    SIVA47

     Piping in Granular  Soils

    Piping is a very serious problem. It leads to downstream

    flooding which can result in loss of lives.

    concrete

    dam

    impervious strata

    soil

    Therefore, provide adequate safety factor against piping.

    exit 

    c piping 

    i

    i

     F   

    typically 5-6

    Copyright©2001

    Pi i F il

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    48/73

    SIVA48

     Piping FailuresBaldwin Hills Dam after it failed by

    piping in 1963. The failure occurredwhen a concentrated leak developed

    along a crack in the embankment,

    eroding the embankment fill and

    forming this crevasse. An alarm wasraised about four hours before the

    failure and thousands of people were

    evacuated from the area below the

    dam. The flood that resulted when thedam failed and the reservoir was

    released caused several millions of

    dollars in damage.

    Copyright©2001

    Pi i F il

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    49/73

    SIVA49

     Piping Failures

    Fontenelle Dam, USA (1965)

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    50/73

    SIVA50

     FiltersUsed for:

     facilitating drainage

     preventing fines from being washed away

    Used in:

     earth dams

     retaining walls

    Filter Materials:

     granular soils

     geotextiless

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    51/73

    SIVA51

    Granular Filter DesignTwo major criteria:

    (a) Retention Criteria

    (b) Permeability Criteria

    - to prevent washing out of fines

    - to facilitate drainage and thus avoid build-up of pore pressures

     Filter grains must not be too coarse

     Filter grains must not be too fine

    granular filter 

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    52/73

    SIVA52

    Granular Filter DesignRetention criteria:

    D15, filter  < 5

    D85, soil

    - after Terzaghi & Peck (1967)

    Permeability criteria:

    D15, filter  > 4

    D15, soilaverage filter pore size

    D15, filter  < 20 D15,

    soilD50, filter  < 25 D50,

    soil

    - after US Navy (1971)

    GSD Curves for the soil and filter must be parallel

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    53/73

    SIVA

    53

     Drainage Provisions in Retaining Walls

    drain pipe

    granular soil

    weep hole

    geosynthetics

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    54/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    55/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    56/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    57/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    58/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    59/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    60/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    61/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    62/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    63/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    64/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    65/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    66/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    67/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    68/73

    SIVA

    Copyright©2001

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    69/73

    SIVA

    Copyright©2001

    “del operator” i

    j

    k

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    70/73

    SIVA

     Ss  h 

     t 

     K  2h  

    v   v 

    1

     x     v 

    2

     y     v 

    3

     z  

    Gradient :

    “del operator” 

       Ґi 

     x    Ґ j

     

     y    Ґk

     

     z  

    w    Ґi  w  x 

       Ґ j  w  y 

       Ґk w  z 

     

     Divergence:

     Diffusion Equation:

    2 f     2 f 

     x 2   

     2 f 

     y 2   

     2 f 

     z 2  Laplacian:

    Copyright©2001

    “del operator” i 

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    71/73

    SIVA

     Ss  h 

     t 

     K  2h  

    v   v 

    1

     x     v 

    2

     y     v 

    3

     z  

    Gradient :

    “del operator” 

       Ґi

     x    Ґ j

     y    Ґk

     z  

    w    Ґi  w  x 

       Ґ j  w  y 

       Ґk w  z 

     

     Divergence:

     Diffusion Equation:

    2 f     2 f 

     x 2   

     2 f 

     y 2   

     2 f 

     z 2  Laplacian:

    Copyright©2001

    Ss h 

    K 2h“Diffusion Equation”

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    72/73

    SIVA

     2h

    x2 + 2h

    y2 + 2h

    z2   =

     SsKht

     1r r 

     r hr 

      + 1r 2

    2h

    2 + 

    2h

    z2  =

     SsKh

    t

     Kr 

    2hr 2

    +Kr 

    r hr 

    + Kz

    2hz2

    = Ssht

     2h

    r 2 + 1r 

    hr 

      = SsKr 

    ht

      =   STht

    Cartesian Coordinates

    Cylindrical Coordinates

    Cylindrical Coordinates,

      Radial Symmetry ∂h/∂ = 0

    Cylindrical Coordinates,

      Purely Radial Flow

      ∂h/∂ = 0 ∂h/∂z = 0

    Ss  t 

     K   h  Diffusion Equation

    Copyright©2001

    Flow beneath Dam

  • 8/18/2019 Lecture 3a (Shamma) 1.17.12 Permeability.ppt

    73/73

    Vertical x-section

    Flow toward Pumping Well,

    next to river= line source

      = constant head boundary

    Plan view

    River Channel