Lecture 3 The Halo Model - University of...

48
Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation and the Dark Sector

Transcript of Lecture 3 The Halo Model - University of...

Page 1: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Lecture 3: The Halo Model

Wayne HuTrieste, June 2002

Structure Formationand the

Dark Sector

Page 2: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Outline• Spherical Collapse

• Mass Function

Press-Schechter Formalism

Extended Press-Schechter Formalism

Halo Abundance

• Halo Bias

• Halo Profile

• Halo Model

Density Field

Baryonic Gas

Galaxies

Page 3: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Closed Universe• A spherical perturbation of radiusr behaves as aclosed universe

• Radiusr ∝ a → 0, collapse in finite time

• Friedman equationin a closed universe

1

a

da

dt= H0

(Ωma−3 + (1− Ωm)a−2

)1/2

• Parametric solution in terms of adevelopment angleθ = H0η(Ωm − 1)1/2, scaled conformal timeη

r(θ) = A(1− cos θ)

t(θ) = B(θ − sin θ)

whereA = r0Ωm/2(Ωm − 1), B = H−10 Ωm/2(Ωm − 1)3/2.

• Turn around atθ = π, r = 2A, t = Bπ.

• Collapse atθ = 2π, r → 0, t = 2πB

Page 4: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Spherical Collapse• Parametric Solution:

4

3

2

1

0.5 1 1.5 2θ/π

r/A

r/A

t/πBturn

aro

und

colla

pse

Page 5: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Correspondence• Eliminate cosmological correspondence inA andB in terms of

enclosed massM

M =4π

3r30Ωmρc =

3r30Ωm

3H20

8πG

• Related asA3 = GMB2, and to initial perturbation

limθ→0

r(θ) = A(

1

2θ2 − 1

4θ4)

limθ→0

t(θ) = B(

1

6θ3 − 1

120θ5)

• Leading Order:r = Aθ2/2, t = Bθ3/6

r =A

2

(6t

B

)2/3

• Unperturbed matter dominated expansionr ∝ a ∝ t2/3

Page 6: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Next Order• Iterater andt solutions

limθ→0

t(θ) =θ3

6B

[1− 1

20

(6t

B

)2/3]

θ ≈(

6t

B

)1/3[1 +

1

60

(6t

B

)2/3]

• Substitute back intor(θ)

r(θ) = Aθ2

2

(1− θ2

12

)

= A(

6t

B

)2/3[1− 1

20

(6t

B

)2/3]

= (6t)2/3(GM)1/3

[1− 1

20

(6t

B

)2/3]

Page 7: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Density Correspondence• Density

ρm =M

43πr3

=1

6πt2G

[1 +

3

20

(6t

B

)2/3]

• Density perturbation

δ ≡ ρm − ρm

ρm

≈ 3

20

(6t

B

)2/3

• Time→ scale factor

t =2

3H0Ω1/2m

a3/2

δ =3

20a(4BH0Ω

1/2m

)2/3

Page 8: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Spherical Collapse Relations• A andB constants→ initial cond.

B =1

2H0Ω1/2m

(3

5

ai

δi

)3/2

A =3

10

ri

δi

• Scale factora ∝ t2/3

a =(

3

4

)2/3 (3

5

ai

δi

)(θ − sin θ)2/3

• At collapseθ = 2π

acol =(

3

4

)2/3 (3

5

ai

δi

)(2π)2/3 ≈ 1.686

ai

δi

• Perturbation collapses whenlinear theorypredictsδc ≡ 1.686

Page 9: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Virialization• A real density perturbation is neither spherical nor homogeneous

• Shell crossingif δi doesn’t monotonically decrease

• Collapse does not proceed to a point but reachesvirial equilibrium

U = −2K

E = U + K = U(rmax) =1

2U(rvir)

rvir =1

2rmax

sinceU ∝ r−1. Thusθvir = 32π

• Overdensityat virialization

ρm(θ = 3π/2)

ρm(θ = 2π)= 18π2 ≈ 178

• Threshold∆v = 178 often used to define acollapsed object

Page 10: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Virialization• Schematic Picture:

4

3

2

1

0.5 1 1.5 2θ/π

r/A

r/A

t/πBturn

aro

und

virialization

Page 11: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

The Mass Function• Spherical collapsepredicts the end state as virializedhalosgiven

an initial density perturbation

• Initial density perturbation is aGaussian random field

• Compare the variance in the linear density field tothresholdδc = 1.686 to determine collapse fraction

• Combine to form themass function, the number density of halos ina rangedM aroundM .

• Halo density defined entirely by linear theory

• Fudge the result to get the right answer compared with simulations(a la Press-Schechter)!

Page 12: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Press-Schechter Formalism• Smoothlinear density density field on mass scaleM with tophat

R =(

3M

)1/3

• Result is a Gaussian random field withvarianceσ2(M)

• Fluctuations above the thresholdδc correspond tocollapsedregions. The fraction in halos> M becomes

1√2πσ(M)

∫ ∞δc

dδ exp

(− δ2

2σ2(M)

)=

1

2erfc

(ν√2

)

whereν ≡ δc/σ(M)

• Problem:even asσ(M) →∞, ν → 0, collapse fraction→ 1/2 –only overdense regionsparticipate in spherical collapse.

• Multiply by an ad hoc factor of 2!

Page 13: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Press-Schechter Mass Function• Differentiatein M to find fraction in rangedM and multiply by

ρm/M the number density of halos if all of the mass werecomposed of such halos→ differential number densityof halos

dn

d ln M=

ρm

M

d

d ln Merfc

(ν√2

)

=

√2

π

ρm

M

d ln σ−1

d ln Mν exp(−ν2/2)

• High mass:exponential cut offaboveM∗ whereσ(M∗) = δc

M∗ ∼ 1013h−1M today

• Low massdivergence: (too manyfor the observations?)

dn

d ln M∝∼ M−1

Page 14: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Top Hat RMS• RMS density reaches unity at ~8 h-1 Mpc: σ8 measure of amplitude

0.1

0.1

1

1010 1012 1014 1016 1018

1 10 100R (h–1 Mpc)

M (h–1 M )

σR

Page 15: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Non-Linear Mass Scaling• Strong function of amplitude and growth of structure (redshift)

M* (h

–1 M

)

1010

1011

1012

1013

1014

0 1 2 3z, σ8

M*(z=0,σ8)

M*(z,σ8=0.92)

Page 16: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Observational Mass Functions• SDSSoptically identifiedclusters(assumingM/L; Bahcall et al 2002)

with clusterX-ray temp. function, sensitive topower amplitudeσ28

Page 17: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Counting Halos→ Dark Energy• Halo abundance exponentially sensitive togrowth rate

Page 18: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Projected Constraints Studies of M>2.5 x 1014 M (Haiman et al. 2000; Hu & Kravstov)• All other parameters known•

0.6 0.65–1

–0.8

–0.6

–0.4

w

ΩDE

zmax=3zmax=1.0zmax=0.7

Page 19: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Projected Constraints Studies of M>2.5 x 1014 M (Haiman et al. 2000; Hu & Kravstov)• Local halo abundance known + present day cosmological params•

0.6 0.65–1

–0.8

–0.6

–0.4

w

ΩDE

zmax=3zmax=1.0zmax=0.7

Page 20: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Projected Constraints Studies of M>2.5 x 1014 M (Haiman et al. 2000; Hu & Kravstov)• Present day cosmological parameters•

0.6 0.65–1

–0.8

–0.6

–0.4

w

ΩDE

zmax=3zmax=1.0zmax=0.7

Page 21: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Projected Constraints Studies of M>2.5 x 1014 M (Haiman et al. 2000; Hu & Kravstov)• Present day cosmological parameters + sample variance•

0.6 0.65–1

–0.8

–0.6

–0.4

w

ΩDE

zmax=3zmax=1.0zmax=0.7

Page 22: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Extended Press-Schechter Formalism• A region that isunderdensewhen smoothed on the scaleM may

beoverdenseon a scale of alargerM

• If smoothing is a tophat ink-space, independence ofk-modesimplies fluctuation executes arandom walk

δc

δ

R(M)M2

Press-Schechter prescription

collapsed

uncollapsed

Page 23: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Extended Press-Schechter Formalism• For each trajectory that lies above threshold atM2, there is an

equivalent trajectorythat is its mirror image reflected aroundδc

• Press-Schechter ignored this branch. It supplies themissing factorof 2

δc

δ

R(M)M2 M1

equal probability

collapsed

uncollapsed

first upcrossing

Page 24: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Conditional Mass Function• Extended Press-Schechter also gives theconditional mass

function, useful formerger histories.

• Given a halo of massM1 exists atz1, what is the probability that itwas part of a halo of massM2 at z2

(1+z1)δc

(1+z2)δcδ

R(M)M2 M1

Page 25: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Conditional Mass Function• Same as before but with theorigin translated.

• Conditional mass function is mass function withδc andσ2(M)

shifted

(1+z1)δc

(1+z2)δcδ

R(M)M2 M1

Page 26: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Merger Simulation• Simulationby Andrey Kravstov

Page 27: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Magic “2” resolved?• Spherical collapse is defined for areal-spacenotk-space

smoothing. Random walk is only aqualitative explanation.

• Modern approach: think of spherical collapse as motivating afitting form for the mass function

ν exp(−ν2/2) → A[1 + (aν2)−p]√

aν2 exp(−aν2/2)

Sheth-Torman 1999, a = 0.75, p = 0.3. or a completely empiricalfitting

dn

d ln M= 0.301

ρm

M

d ln σ−1

d ln Mexp[−| ln σ−1 + 0.64|3.82]

Jenkins et al 2001. Choice is tied up with the question:what is themass of a halo?

Page 28: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Numerical Mass Function• Example of difference inmass definition(from Hu & Kravstov 2002)

1014

10–8

10–7

10–6

10–5

10–4

1015 1016

M (h–1 M )

n(>M

) (h

3 Mpc

–3)

∆180 (wrt mean)∆666

Jenkins et al

Ωm =Γ =0.15; flat; h=0.65; σ8=1.07

Page 29: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Halo Bias• If halos are formed without regard to the underlying density

fluctuation and move under thegravitational fieldthen theirnumber density is anunbiased tracerof the dark matter densityfluctuation (

δn

n

)halo

=

(δρ

ρ

)

• Howeverspherical collapsesays the probability of forming a halodepends on theinitial density field

• Large scale densityfield acts as “background” enhancement ofprobability of forming a halo or “peak”

• Peak-BackgroundSplit (Mo & White 1997)

Page 30: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Peak-Background Split• Schematic Picture:

3

2

1

0

x

δc

Large Scale "Background"

Enhanced "Peaks"

Page 31: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Perturbed Mass Function• Density fluctuationsplit

δ = δb + δp

• Lowersthethresholdfor collapse

δcp = δc − δb

so thatν = δcp/σ

• Taylor expandnumber densitynM ≡ dn/d ln M

nM +dnM

dδb

δb . . . = nM

[1 +

(ν2 − 1)

σν

]if mass function is given byPress-Schechter

nM ∝ ν exp(−ν2/2)

Page 32: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Halo Bias• Halos arebiased tracersof the “background” dark matter field with

a biasb(M) that is given by spherical collapse and the form of themass function

δnM

nM

= [1 + b(M)] δ

• For Press-Schechter

b(M) = 1 +ν2 − 1

δc

• Improved by the Sheth-Torman mass function

b(M) = 1 +aν2 − 1

δc

+2p

δc[1 + (aν2)p]

with a = 0.75 andp = 0.3 to match simulations.

Page 33: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Numerical Bias• Example ofhalo biasfrom a simulation (fromHu & Kravstov 2002)

1014 1015

M180 (h–1 M )

<b(M

)> =

<ξhm

/ξm

m>

2

4

6

8

PS-based: MW96, J99ST99

Page 34: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

What is a Halo?• Mass function and halo bias depend on the definition ofmass of a

halo

• Agreement with simulations depend on howhalos are identified

• Otherobservables(associated galaxies,X-ray, SZ) depend on thedetails of the density profile

• Fortunately, simulations have shown that halos take on a nearuniversal formin their density profileat least on large scales.

Page 35: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

NFW Halo• Density profilewell-described by (Navarro, Frenk & White 1997)

ρ(r) =ρs

(r/rs)(1 + r/rs)2

102

101

1

10-1

10-2

10-2 10-1 101 1021

10-3

10-4

r/rs

ρ/ρs

M/Ms

Page 36: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Transforming the Masses• NFW profile gives a way of transforming different mass definitions

1014

10–8

10–7

10–6

10–5

10–4

1015 1016

M (h–1 M )

n(>M

) (h

3 Mpc

–3)

∆180 (wrt mean)∆666

Jenkins et al.Rescaled

Ωm =Γ =0.15; flat; h=0.65; σ8=1.07

Page 37: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Lack of Concentration?• NFW parameters may be recast intoMv, the mass of a halo out to

thevirial radiusrv where the overdensity wrt mean reaches∆v = 180.

• Concentrationparameter

c ≡ rv

rs

• CDM predictsc ∼ 10 for M∗ halos.Too centrally concentratedforgalactic rotation curves?

• Possible discrepancy has lead to the exploration ofdark matteralternatives: warm (m ∼keV) dark matter, self-interactingdark-matter, annihillating dark matter, ultra-light “fuzzy” darkmatter,. . .

Page 38: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Incredible, Extensible Halo Model• An industry developed to buildsemi-analytic modelsfor wide

variety ofcosmological observablesbased on the halo model

• Idea: associate anobservable(galaxies, gas, ...) withdark matterhalos

• Let thehalo modeldescribe the statistics of the observable

• Theoverextendedhalo model?

Page 39: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

The Halo Model• NFW halos, of abundancenM given bymass function, clustered

according to thehalo biasb(M) and thelinear theoryP (k)

• Power spectrumexample:

10

10 0

10 1

10 2

10 3

10 4∆2 (k

)

halo correlation

halo profile

linear

non-linear

-1

10 -2 10 -1 10 0 10 1

k (h Mpc -1 )

total

Page 40: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Weak Lensing and the Halo Model

• Power spectrum of shear divided into the halo masses that contribute

• Non-linear regime dominated by halo profile / individual halosincreased power spectrum variance and covariance

10 100 1000l

10–4

10–5

10–7

10–8

10–6

l(l+

1)C

l /2

πεε

log(M/M )<11

1213

14

profile

Cooray, Hu, Miralda-Escude (2000)

Page 41: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Higher Order Statistics

• Halo model for the bispectrum: S3 dominated by massive halos

Cooray & Hu (2001)

100

101

102

103

Hu & White (1999)

5 15 25 35 45 55 65 75 85σ (arcmin)

S 3

16

15

14

13

12

11

Page 42: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Halo Temperature• Motivate withisothermal distribution, correct from simulations

ρ(r) =σ2

2πGr2

• Express in terms ofvirial massMv enclosed atvirial radiusrv

Mv =4π

3r3vρm∆v =

2

Grvσ

2

• Eliminaterv, temperatureT ∝ σ2 velocity dispersion2

• ThenT ∝ M2/3v (ρm∆v)

1/3 or(Mv

1015h−1M

)=

[f

(1 + z)(Ωm∆v)1/3

T

1keV

]3/2

• Theory (X-ray weighted):f ∼ 0.75; observationsf ∼ 0.54.Difference iscrucialin determining cosmology fromclustercounts!

Page 43: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Clusters in the SZE Inverse Compton scattering of CMB off hot electrons•

Carlstrom et al. (2001)

Page 44: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Clusters in Power Spectrum? Excess in arcminute scale CMB anisotropy from CBI•

COBE

FIRSTen

SP MAX

IAB

OVROATCAIAC

Pyth

BAM

Viper

WD BIMA

MSAM

ARGO SuZIE

RING

QMAP

TOCO

Sask

BOOM

CAT

BOOM

Maxima

BOOM

CBI

VSA

DASI

10 100 1000

20

40

60

80

100

l

∆T (µ

K)

W. Hu 5/02

Page 45: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Sensitivity of SZE Power Amplitude of fluctuations•

Page 46: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Sensitivity of SZE Power Dark energy•

Page 47: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Galaxy Clustering• Associategalaxieswith halo of massM : N(M) (Seljak 2001)

Peacock (1997)compilation

10 0

10 1

10 2

10 3

10 4

∆2 (k)

10 5

-1 0.1 1 10k (h Mpc -1 )

densitygalaxy

• An explanation of the purepower law galaxy spectrum

Page 48: Lecture 3 The Halo Model - University of Chicagobackground.uchicago.edu/~whu/Presentations/trieste_print3.pdf · Lecture 3: The Halo Model Wayne Hu Trieste, June 2002 Structure Formation

Summary• Dark matter simulationswell-understood and can be modelled

with dark matterhalos

• Halo formation modelled byspherical collapse, two magicnumbersδc = 1.686 and∆v = 178

• Halo abundance described by amassfunction withexponentialhigh mass cutoff –rare clustersextremely sensitive to powerspectrum amplitude andgrowth rate→ dark energy

Possibly too many small halos orsub-structure?

• Halo clustering modelled with peak-background split leading tohalo bias

• Halo profiledescribed by NFW halos

Possibly too high centralconcentration

• Associate anobservablewith a halo→ a halo model