Lecture 20 PMF

26
7/24/2019 Lecture 20 PMF http://slidepdf.com/reader/full/lecture-20-pmf 1/26 !"#$%&" ()* +," -&.$./ 0.12" 3.&#" 4/5 $," 6"/"&41./ .7 8+- !" $%& '()* +,,) -,%'./,0 "$%" 1%",- %" $.*$ ,',2%3() 4()"%.)& 5(",)3%' ,),-*67 "$%" 4%) +, 4()2,-",0 "( 8,4$%).4%' ,),-*6 %& "$, 1%",- 9(1& 0(1)$.'': ;(- ,<%85',7 "$, =%''.)* 1%",- 4%) +, >&,0 "( ">-) % 1%",-1$,,': ?.8.'%-'67 % 5-("() *-%0.,)" 4()"%.)& 5(",)3%' ,),-*67 "$%" 4%) +, 4()2,-",0 "( 8,4$%).4%' ,),-*6 %& "$, 5-("()& 8(2, 0(1) "$, *-%0.,)": @-("() *-%0.,)"& 4%) 5(1,- "$, &6)"$,&.& (= AB@7 &('>", "-%)&5(-"7 (- -("%3() (= "$, +%4",-.%' 9%*,''>8: B$, ; C ; D  AB@%&, .& "$, 0,2.4, "$%" 4()2,-"& "$, 5-("() *-%0.,)"& "( ),4$%).4%' ,),-*67 %)0 4()2,-"& "$.& 8,4$%).4%' ,),-*6 .)"( 4$,8.4%' ,),-*6:

Transcript of Lecture 20 PMF

Page 1: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 1/26

!"#$%&" ()* +," -&.$./ 0.12" 3.&#" 4/5 $," 6"/"&41./ .7 8+-

!" $%& '()* +,,) -,%'./,0 "$%" 1%",- %" $.*$ ,',2%3() 4()"%.)& 5(",)3%' ,),-*67 "$%" 4%) +, 4()2,-",0 "(

8,4$%).4%' ,),-*6 %& "$, 1%",- 9(1& 0(1)$.'': ;(- ,<%85',7 "$, =%''.)* 1%",- 4%) +, >&,0 "( ">-) % 1%",-1$,,':

?.8.'%-'67 % 5-("() *-%0.,)" 4()"%.)& 5(",)3%' ,),-*67 "$%" 4%) +, 4()2,-",0 "( 8,4$%).4%' ,),-*6 %& "$, 5-("()&

8(2, 0(1) "$, *-%0.,)": @-("() *-%0.,)"& 4%) 5(1,- "$, &6)"$,&.& (= AB@7 &('>", "-%)&5(-"7 (- -("%3() (= "$,

+%4",-.%' 9%*,''>8: B$, ;C;D AB@%&, .& "$, 0,2.4, "$%" 4()2,-"& "$, 5-("() *-%0.,)"& "( ),4$%).4%' ,),-*67 %)0

4()2,-"& "$.& 8,4$%).4%' ,),-*6 .)"( 4$,8.4%' ,),-*6:

Page 2: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 2/26

E,%0.)* %&&.*)8,)"F G$%5",- HD

I,6 5(.)"& =-(8 "$.& ',4">-,F

@-("() 8(32, =(-4, .& % =(-8 (= &"(-,0 ,),-*6 .) +.('(*.4%' &6&",8&:

B$, ,',4"-() "-%)&5(-" 4$%.) *,),-%",& % 5-("() 8(32, =(-4,7 %)0 "$, AB@ &6)"$%&,

>&,& "$.& =(-4, "( 0-.2, "( =(-8%3() (= AB@:

B$, ;C;D AB@ &6)"$%&, 8,0.%",& "$, .)",-4()2,-&.() (= "$, 5-("() 8(32, =(-4, %)0

4$,8.4%' ,),-*6 .) "$, =(-8 (= 5$(&5$(%)$60-.0, +()0&7 >&.)* % +.)0.)*J4$%)*,8,4$%).&8:

B$, 4J-.)* (= "$, AB@ &6)"$,%&, -("%",& .) "$, 8,8+-%), %& 5-("()& 5%&& "$-(>*$ .":

B$, *'64,-('JKJ@ %)0 8%'%",J%&5%-%", &$>L',& 8,0.%", "$, ,<4$%)*, (= 46"(5'%&8.4

%)0 8."(4$()0-.%' MANO:

AB@ .& "-%)&5(-",0 =-(8 "$, 8."(4$()0-.() "( "$, 46"(&(' .) %) ,),-*6 4()&>8.)*

5-(4,&&:

P<.0%32, 5$(&5$(-6'%3() .& &(8,$(1 -,*>'%",0 +6 ),,0:

N.&&.5%3() (= "$, 5-("() *-%0.,)" 4%) ',%0 "( "$, *,),-%3() (= $,%":

Page 3: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 3/26

Discovery of Oxidative Phosphorylation and the

Mechanism of ATP SynthaseDr. Peter Mitchell was awarded the 1978Nobel Prize in Chemistry for formulating

the chemiosmotic hypothesis that

describes the process by which oxidative

phosphorylation occurs.

In 1997, Drs. Paul Boyer and John

Walker jointly received the NobelPrize in Chemistry for elucidating

the mechanism of ATP Synthase.

Boyer Walker

Mitchell

Page 4: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 4/26

9:;.$,"<"< 7.& $," #.%;=>/? .7 "="#$&./ $&4/<;.&$ $. $," <:/$,"<>< .7 8+-

@,"A>#4= #.%;=>/? ,:;.$,"<><F Q?'%",- DRSKT U',4"-()

"-%)&5(-" -,&>'"& .) % -,%432*, .)",-8,0.%",7 "$%" =(-8& AB@

+6 &>+&"-%",J',2,' 5$(&5$(-6'%3(): V>"7 $," &"4#12"

>/$"&A"5>4$" ,4< /"2"& B""/ 7.%/5C

@./7.&A41./4= #.%;=>/? ,:;.$,"<><*  Q@%>' V(6,-7 DRWXT

U',4"-() "-%)&5(-" .& 0.-,4"'6 4(>5',0 "( 4()=(-8%3()%'

4$%)*,& .) AB@ &6)"$%&,7 -,&>'3)* .) AB@ 5-(0>43():

@,"A>.<A.1# ,:;.$,"<><* DY."4$,''7 DRWDT: U',4"-()

"-%)&5(-" *,),-%",& % 5-("()J8(32, =(-4, "$%" .& >&,0 "(

*,),-%", AB@:

U01%-0 ZV.''[ ?'%",-

@%>' V(6,-

@,",- N: Y."4$,''

Page 5: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 5/26

!"#$"%& ()"*+,-. /,0.12-,+ +3,-453 6-72)"8"1 9 +- 9:

• 

!"#$%&' )* ;<=> +,0.1?",1 $+1

@ ")"*A-.1 B"CD +- E ,"F4*$.5

$+ +- E>@G

•  !"#$%&' ))* H<=>@ ?,-7

I4**$.0+" ="3JF,-5".01"

B6$+,$* <*$F 6J*)"D +,0.1?",1 $+1

@ ")"*+,-.1 +- EK ,"F4*$.5 $+

+- E>@G

• 

!"#$%&' )))* /3,-453 +3" E

*J*)"K E>@ 2,-F4*"F $.

6-72)"8"1 9 0.F 99 +,0.1?",1

$+1 @ ")"*+,-.1 +- @

6J+-*3,-7" 6G /3" 3"7"*-?0*+-, $. "0*3 6J+-*3,-7"

6 $1 ,"F4*"F LJ M ")"*+,-.G

•  !"#$%&' )+* N 6J+-*3,-7" 6

,"F4*" M O@ +- @ >@OG

,-"."/0 .-1/02&--&3 ." .4& 5/.&-#&#6-1/& 0$17&

89:

89:

8;:

89:

Q;(- X ,JT

Page 6: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 6/26

NADH + 1/2 O2 + H+ => H2O + NAD+  !G = - 53 kcal/mol 

 ADP + Pi + H+ => ATP + H2O !G = + 7.3 kcal/mol

The pH in the inter-membrane space is 1.4 units lower than in the matrix

The potential over the inter-membrane due to the charge separation is 0.14 V

8 -&.$./ 6&45>"/$ E&>2"< 8+- F:/$,"<><

Page 7: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 7/26

+"<1/? $," @,"A>.<A.1# 9:;.$,"<><

B$, -,&5.-%"(-6 4$%.) %)0 "$, AB@ &6)"$%&, %-,

+.(4$,8.4%''6 &,5%-%", &6&",8&7 '.)\,0 ()'6 +6

"$, 5-("() 8(32, =(-4,:

A) %-3]4.%' &6&",8 1%& 4-,%",0 4(85-.&,0 (=

+%4",-.(-$(0(5&.) %)0 +,,= $,%-" AB@ &6)"$%&,.) % '.5(&(8,: ^$,) '.*$" 1%& &$.),0 () "$,

&6&",87 +%4",-.(-$(0(5&.) 5>85,0 5-("()& %)0

"$, AB@ &6)"$%&, 1%& %+', "( *,),-%", AB@

=-(8 AN@ _ @.:

+," &"<%=$< .7 $,>< "G;"&>A"/$ 4&" >/#.A;41B=" H>$, $," #,"A>#4=I#.%;=>/? 4/5 $,"

#./7.&A41./4=I#.%;=>/? ,:;.$,"<"<C

Page 8: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 8/26

Reaction Catalyzed by ATP Synthase 

•  ATP is synthesized through the condensation of ADP and Pi, the reverse of hyolysis

• 

Mg2+ complexes of ADP and ATP are the actual substrates (similar to NMP kinase).

8

Page 9: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 9/26

ZE,`(.4, 1$,) ("$,- &4.,)3&"& 0( )(" +,'.,2, 1$%"6(> \)(1 "( +, "->,: !" 1.'' *.2, 6(> ,<"-% 38, "(

1(-\ () ." .) 5,%4,: ^$,) "$,6 &"%-" 4'%.8.)* "$%"

"$,6 $%2, 0.&4(2,-,0 ." +,=(-, 6(>7 '((\ =(- % ),1

5-(`,4": Z

ZN()a" 1%&", 4',%) "$.)\.)* () 0.-"6 ,)/68,&[:

J7&>4A K4#L"& ;4&1#>;4$"5 >/ $," 5><#.2"&: .7 8+- <:/$,4<"

U=-.%8 E%4\,- QDRDKJDRRDT 1%& %-3&" %)0 +.(4$,8.&" (= b,1.&$ 0,4,)": O, '.2,0

.) c.,))% %)0 $%0 `>&" *-%0>%",0 8,0.4%' &4$((' 1$,) $, 1%& =(-4,0 "( 9,, "$,

.)2%0.)* )%/.& .) DRKK: O, &5,)" "$, 1%- 6,%-& .) U)*'%)0 1(-\.)* .) % $(&5."%'7

"$,) 4%8, "( A8,-.4% %& % -,&,%-4$ %&&(4.%", %" "$, d).2,-&."6 (= Y.)),&("%: O,

'%",- 1%& %" Med7 e%',7 "$, @>+'.4 O,%'"$ E,&,%-4$ !)&3">", (= "$, 4."6 (= M,1

e(-\7 %)0 ])%''6 =(>)0,0 "$, +.(4$,8.&"-6 0,5%-"8,)" %" G(-),'':

O, 1%& =%8(>& =(- $.& 8,34>'(>& +,)4$ 1(-\ %)0 (>"&"%)0.)* )(",+((\&7 %)0 $,

4()0>4",0 -,&,%-4$ "$-(>*$(>" $.& ,)3-, '.=,:

O, 0.&4(2,-,0 "$, ;D 5%-" (= "$, AB@ &6)"$%&,7 5>-.],0 ."7 %)0 &$(1,0 "$%" ."

4(>'0 =>)43() .) AB@ &6)"$,&.& 1$,) 4(8+.),0 1."$ 8,8+-%),& "$%" $%0 "$, ;C&>+>).": +,>< ;&.2>5"5 4 <$&./? #./M&A41./ .7 0>$#,"==< #,"A>.<A.1# $,".&:C

E%4\,- 1%& %1%-0,0 "$, M%3()%' Y,0%' (= ?4.,)4, .) DRfW %)0 1%& ,',4",0 "(

"$, M%3()%' A4%0,86 (= ?4.,)4,&:

O, 0.,0 (= % &,2,-, &"-(\, %g,- % '()* ?%">-0%6 ).*$" .) "$, '%+7 RhRhRD %*, fi:

E%4\,- 4$%-%4",-./,0 j'64,-%'0,$60,JKJ@ NO7

B-%)&\,"('%&,7 %)0 AB@ &6)"$%&,:

Page 10: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 10/26

B$, AB@ ?6)"$%&, $('(,)/68, 4()&.&"& (= "1('%-*, &,43()& 4%'',0 ;C %)0 ;D 

;C .& .8+,00,0 .) "$, 8,8+-%), %)0 4()&.&"&

(= "$, 4J-.)* %)0 "$, % &>+>).":

;D .& '(4%",0 .) "$, 8."(4$()0-.%' 8%"-.< %)0

4()&.&"& (= K "7 K #, $, %, %)0 & &>+>)."&: B$, & 

&>+>)." .& &5,4.%':

;D .& "$, 4%"%'634 &,43() (= "$, $('(,)/68,

"$%" 4%"%'6/,& AB@ &6)"$,&.&:

3)3N 8+- F:/$,4<" %<"< $," "/"&?: .7 $," ;&.$./ ?&45>"/$ $. ;&.5%#" 8+-

7&.A 8E- O ->

B$, AB@ &6)"$%&, .& +,'.,2,0 "( =(-8 % 0.8,-

+%&,0 () UY &">0.,&: A &>+>)." -,=,--,0 "( %&

!;D 8,0.%",& "$, .)",-%43() +,"1,,) H AB@%&,&:

B$, `(.),0 0.8,- 4%>&,& "$, 8,8+-%), "(

4>-2,k ." .& "$(>*$" "$,6 5'%6 % -(', .) =(-8%3()

(= "$, 8."(4$()0-.%' 4-.&"%,:

Page 11: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 11/26

F$&%#$%&" .7 $," 3)3N 8+- F:/$,4<"

B$, ;D &>+>)." 4()&.&"& (= "K#K&$% 5('65,530,&: B$, &% 5('65,530,& =(-8 "$, 4,)"-%' &"%'\:

B$, ;C &>+>)." 4()4.4"& (= %7 +H7 %)0 4iJDS 5('65,530,&: !) 2,-",+-%",&7 4li: !)

8.4-((-*%).&8& 4 l DS (- DH: B$, % %)0 4 &>+>)."& =(-8 "$, 4$%)),' "$%" 5-("()& 9(1

"$-(>*$:

Page 12: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 12/26

Matrix 

Intermembrane 

+," $," 8+- F:/$,4<" >< 4A./? $," H.&=5< <A4=="<$ A.="#%=4& A.$.&<

B$, 9(1 (= 5-("()& 4%>&,& "$, -("%3() (= "$, & &>+>)."7 1$.4$ -,&>'"& .) % Z+.)0.)* 4$%)*,

8,4$%.&8 .)2('2.)* "$, 4%"%'634 # &>+>)."&:

Page 13: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 13/26

8< >$ $%&/<P $," <%B%/>$ >A;4&$< 5>Q"&"/$ ;&.;"&1"< $. $," <%B%/>$< I +P !P 4/5

R #./7.&A41./< .7

L = Loose State: Binds ADP +

Pi tightly

T = Tight State: Binds ATP

more tightly than ADP + Pi; this

favors ATP formation

O = Open State: Binds ADP or

 ATP loosely, permitting their

dissociation

subunits - Can bind ATP,but do not participate

chemically in catalysis.

subunit - Rotation

interconverts the T, L, and O

states of the 3 # 

subunits.

Page 14: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 14/26

"

#

0"#,4/><A .7 0>$.#,./5&>4= 8+- F:/$,4<"

+," S>/5>/?I@,4/?" 0"#,4/><A

The counterclockwise

(CCW) rotation of the & 

subunit leads to the

interconversion of the T,L, and O states of the # 

subunits, catalyzing the

formation and release of

 ATP from the enzyme.

J4#, <%B%/>$ ?."< $,&.%?, $," >/$"&#./2"&<>./ 7&.A !IT+ITR

Page 15: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 15/26

JG;"&>A"/$< $. $"<$ $," B>/5>/? #,4/?" A"#,4/><A

B$, -("%-6 8(3() (= "$, * &>+>)." -,'%32, "( "$, -,&" (= "$, ;D &>+>)." $%& +,,) &$(1)

>&.)* 5>-.],0 ;D: A 5('6 $.& "%* 1%& () "$, # &>+>)."7 %''(1.)* ." "( &34\ "( ).4\,'J4(%",0

*'%&&: A) %43) ]'%8,)" 1%& %L%4$,0 "( "$, & &>+>)." +6 8,%)& (= % &"-,5"%2.0.) "%*:B$, %43) ]'%8,)" 1%& 9>(-,&4,)"'6 '%+,',0 "( %''(1 2.&>%'./%3():

^$,) AB@ 1%& &>55'.,07 "$, %43) 5-(5,'',- ">-),0 .) % 4(>)",-J4'(4\1.&, 0.-,43(): A"

'(1 AB@ "$, 8(2,8,)" 4(>'0 +, &,,) "( (44>- .) DHC 0,*-,, .)",-2%'&:

Page 16: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 16/26

-4<<4?" .7 ;&.$./< $,&.%?, $," 3) <%B%/>$ &"U%>&"< &.$41./ .7 $,"

;&.$./ #,4//"=

B$, -("%3() (= "$, 4J-.)* .) ;C 0-.2,&

"$, -("%3() (= "$, & &>+>)."& (= ;D 

B$, )>8+,- (= 5-("()& 5>85,0 0>-.)*

% &.)*', -("%3() (= "$, 4J-.)*

4(--,&5()0& "( "$, )>8+,- (= AB@

8(',4>',& &6)"$,&./,0 +6 ;D: !)

2,-",+-%",& "$,-, %-, i 4 &>+>)."&: 

mi 5-("()& 5>85,0 5,- KWCn -("%3()

(= "$, 4J-.)* 6.,'0& mK AB@ Q,2,-6 DHCn

-("%3() (= & -,',%&,& D AB@ =-(8 % # 

&>+>)."T:

B$, 8("(- ">-)& %" m DCC -5& (- W7CCC-58: B$, KSC 4. ci .) % GX 2,L,

-,0'.),& %" %+(>" S7SCC -58:

C-ring (rotor)

Matrix

A-protein (stator)Hydrophilic pockets

Page 17: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 17/26

!"#$#% '#%()*+#% !#,-". $/- 0#$1+#% #2 $/- ' 03%4

56 

7 8"#$#% -%$-". $/- 3%$-"9-9:"1%- .81*- ;*<$#8=1.93*> /1=2?*/1%%-= #2 $/- 7 .):)%3$

1%( 8"#$#%1$-. 1% 1.81"+* 1*3( 3% $/- ' .):)%3$ *#%$1*+%4 $/- 7 .):)%3$6

@6  A/3. 8"#$#%1+#% %-)$"1=3B-. $/- %-41+C- */1"4- #% $/- 1.81"$1$-D 1==#,3%4 $/3. '

.):)%3$ $# "#$1$- 1,1< 2"#9 $/- 7 .):)%3$ 1%( 3%$# $/- /<("#8/#:3* -%C3"#%9-%$ #2 $/-

3%%-" 93$#*/#%("31= 9-9:"1%-6

E6  A/- "#$1+#% #2 $/3. ' .):)%3$ *1).-. 3$. %-34/:#"3%4 8"#$#%1$-( ' .):)%3$ $# "#$1$-

2"#9 $/- 3%%-" 93$#*/#%("31= 9-9:"1%- 3%$# $/- 3%$-"21*- ,3$/ $/- 7 .):)%3$6

F6 

A/- 8"#$#%1$-( 1.81"$1$- #2 $/3. ' .):)%3$ =#.-. 3$. 8"#$#%D ,/3*/ 81..-. $/"#)4/ $/-

91$"3G /1=2?*/1%%-= 3%$# 93$#*/#%("31= 91$"3G6

!"#$%&$&'%("$ *+(,$

A/- /1=2?*/1%%-=. 1"- /<("#8/3=3*

1%( 1==#, 8"#$#% *#%()*+#%6

-(#%./

0

1

23

Page 18: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 18/26

+," A>$.#,./5&>4= A"AB&4/" >< >A;"&A"4B=" $. V8E9 4/5 V8EO 

!) "$, ,"4&$ 4/5 =>2"&7 "$, Y%'%",JA&5%-"%",

?$>L', .& >&,0 "( "-%)&=,- "$, ,',4"-()&

=-(8 MANO .) "$, 46"(5'%&8 "( % 8(',4>',

(= MANO .) "$, 8."(4$()0-.%' 8%"-.<:

!) 8%)6 3&&>,&7 "<;"#>4==: A%<#="7 "$,,',4"-()& =-(8 46"(5'%&8.4 MANO %-,

"-%)&=,--,0 "( o .) "$, 8."(4$()0-.%'

8,8+-%), +6 "$, j'64,-('JKJ@$(&5$%",

?$>L',: ?.)4, "$,&, ,',4"-()& ,)",- "$, UBG

0(1)&"-,%8 =-(8 G(85',< !7 D:S AB@hH, .&

(+"%.),0:18

Page 19: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 19/26

+," A4=4$"I4<;4&$4$" <,%W=" .7 ,"4&$ 4/5 =>2"& %1=>X"< $&4/<4A>/4<" "/X:A"<

Page 20: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 20/26

20

Page 21: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 21/26

Entry of ADP and Exit of ATP Is Tightly Controlled

by the ATP-ADP Translocase

• 

 ATP and ADP are membrane impermeable - ATP generated in the mitochondrialmatrix cannot diffuse into the cytoplasm.

• 

The ATP-ADP translocase catalyzes the exchange of ADP from the cytoplasm intothe mitochondrial matrix and also transfers a molecule of ATP from the

mitochondrion into the cytoplasm.

Page 22: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 22/26

K"?%=41./ .7 RGI-,.< B: >$< /""5

•  The synthesis of ATP from ADP and Pi regulates the flow of electrons throughthe electron transport chain.

•  The availability of NAD+ and FAD regulate the rate of the TCA cycle. 22

E,&5.-%"(-6 4()"-(' Q%44,5"(-

4()"-('T: B$, ',2,' (= AN@ 4()"-('&"$, UBG >&.)* .)"%4" 8."(4$()0-.%:

Page 23: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 23/26

!"#$%&'(") $+ ,-(./012 34$5&4$67'/0$" (5

!52. (" 84269$)2"25(5

•  :/99/'5 )2"26/;2 42/; <7 %"#$%&'(")

$-(./012 &4$5&4$67'/0$" +6$9 =83

57";425(5>

•  ?" <6$@" /.(&$52 055%2A ;4(5 &6$#255

$##%65 1(/ "$"54(126(") ;4269$)2"25(5>

• 

B6$@" /.(&$52 055%2 2-&6255 !"#$%&'(")

36$;2(" C D!E3CF ;4/; +$695 / #4/""2' ;4/;

/''$@5 &6$;$"5 ;$ &/55 +6$9 ;42

(";26929<6/"2 5&/#2 ;$ ;42 9/;6(-> 842

.(55(&/0$" $+ ;42 &6$;$" )6/.(2";

)2"26/;25 / '/6)2 /9$%"; $+ 42/;>

• 

842 /#01(;7 $+ <6$@" /.(&$52 055%2 #/"

<2 92/5%62. %5(") / 3$5(;6$" G9(55($"

/". E$9&%;26(H2. 8$9$)6/&47 D3G8IE8F

5#/" <7 9$"(;$6(") ;42 %&;/J2 $+ CKLI

M%$6$.2$-7)'%#$52 DCKLILNOFA /

6/.($'/<2''2. /"/'$) $+ )'%#$52>

3G8IE8 5#/" $+ / &/02"; %".26 "$69/' D'2PF /". #$'.

D6()4;F #$".(0$"5 %5(") CKLILNO> 842 ./6J 62)($"5 .2"$;2

055%2 ;4/; /<5$6< ;42 CKLILNO> !".26 #$'. #$".(0$"5A ;42

<6$@" /.(&$52 055%2 /<5$6< / '/6)2 Q%/"0;7 $+ CKLILNO /5

/ +%2' 5$%6#2 D./6J 62)($"5 $" ;42 6()4;F>

Page 24: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 24/26

Uncoupled e – transport:Energy is released, but no

ATP is generated

DNP is in some Herbicides

and fungicides

Inhibition of oxidative phosphorylation

DCCD

Thermogenin

 An uncoupler

Page 25: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 25/26

Other Transporters of

Mitochondria

Page 26: Lecture 20 PMF

7/24/2019 Lecture 20 PMF

http://slidepdf.com/reader/full/lecture-20-pmf 26/26

Summary

•  Oxidative Phosphorylation occurs in mitochondria

•  Ox-Phos depends on electron transfer

• 

The respiratory chain consists of four complexes:three are proton pumps

•  A proton gradient powers the synthesis of ATP

•  Shuttles allow movement across membranes

•  Ox-Phos is regulated by the need for ATP