Lecture 2 Particle in an isotropic potential

22
YS โ€“ 2019-20 โ€“ C2 1 Lecture 2 Particle in an isotropic potential - The angular momentum in Quantum Mechanics -

Transcript of Lecture 2 Particle in an isotropic potential

YS โ€“ 2019-20 โ€“ C2

1

Lecture 2

Particle in an isotropic potential

- The angular momentum in Quantum Mechanics -

YS โ€“ 2019-20 โ€“ C2

2

The angular momentum in physics

ิฆโ„’ = ิฆ๐‘Ÿ ร— ิฆ๐‘

โ„’ = ๐‘š๐‘Ÿ๐‘ฃโŠฅ

โ€ข In an isotropic potential ๐‘‰(๐‘Ÿ), ิฆโ„’ is a constant of motion. The

particle moves in a plane that contains the centre of the

potential, and the area ิฆ๐’œ swept by ิฆ๐‘Ÿ is swept at a constant rate : ฮค๐‘‘๐’œ

๐‘‘๐‘ก = ฮคโ„’ 2๐‘š

โ€ข Total energy of the particle : ๐ธ =1

2๐‘š๐‘ฃ๐‘Ÿ

2 +๐“›๐Ÿ

2๐‘š๐‘Ÿ2+ ๐‘‰(๐‘Ÿ)

Veff(๐‘Ÿ)

The problem is equivalent to a 1D problem, where ิฆโ„’ is set by

some initial conditions

ิฆโ„’

O

mass ๐‘š

ิฆ๐‘Ÿ

ิฆ๐‘

YS โ€“ 2019-20 โ€“ C2

3

The effective potential

Total energy of the particle : ๐ธ =1

2๐‘š๐‘ฃ๐‘Ÿ

2 +๐“›๐Ÿ

2๐‘š๐‘Ÿ2+ ๐‘‰(๐‘Ÿ)

Veff(๐‘Ÿ)

Energy

๐ธO

Elliptical orbit ิฆ๐‘Ÿ

๐‘Ÿ

Apogee

Perigee

๐“›1

๐“›2 > ๐“›1

YS โ€“ 2019-20 โ€“ C2

4

The orbital angular momentum

Classical approach : ิฆโ„’ = ิฆ๐‘Ÿ ร— ิฆ๐‘ =๐‘ฅ๐‘ฆ๐‘ง

ร—

๐‘๐‘ฅ๐‘๐‘ฆ๐‘๐‘ง

Quantum approach : ๐ฟ = ๐‘… ร— ๐‘ƒ =๐‘‹๐‘Œ๐‘

ร—๐‘ƒ๐‘‹๐‘ƒ๐‘Œ๐‘ƒ๐‘

=๐‘Œ๐‘ƒ๐‘ โˆ’ ๐‘๐‘ƒ๐‘Œ๐‘๐‘ƒ๐‘‹ โˆ’ ๐‘‹๐‘ƒ๐‘๐‘‹๐‘ƒ๐‘Œ โˆ’ ๐‘Œ๐‘ƒ๐‘‹

๐ฟ๐‘‹, ๐ฟ๐‘Œ, ๐ฟ๐‘ are observables (i.e. hermitian operators, the eigenstates of

which form an orthonormal basis of the Hilbert space)

Commutators : เตž

๐ฟ๐‘‹, ๐ฟ๐‘Œ = ๐‘–โ„๐ฟ๐‘๐ฟ๐‘Œ, ๐ฟ๐‘ = ๐‘–โ„๐ฟ๐‘‹๐ฟ๐‘, ๐ฟ๐‘‹ = ๐‘–โ„๐ฟ๐‘Œ

and ๐ฟ2, ๐ฟ = 0

There exists a set of common eigenstates of ๐‘ณ๐Ÿ and ๐‘ณ๐’that form an orthonormal basis of the Hilbert space.

YS โ€“ 2019-20 โ€“ C2

5

The orbital angular momentum

Quantum approach : ๐ฟ = ๐‘… ร— ๐‘ƒ =๐‘‹๐‘Œ๐‘

ร—๐‘ƒ๐‘‹๐‘ƒ๐‘Œ๐‘ƒ๐‘

=๐‘Œ๐‘ƒ๐‘ โˆ’ ๐‘๐‘ƒ๐‘Œ๐‘๐‘ƒ๐‘‹ โˆ’ ๐‘‹๐‘ƒ๐‘๐‘‹๐‘ƒ๐‘Œ โˆ’ ๐‘Œ๐‘ƒ๐‘‹

๐ฟ operators in cartesian coordinates :

๐ฟ๐‘‹ =โ„

๐‘–๐‘ฆ

๐œ•

๐œ•๐‘งโˆ’ ๐‘ง

๐œ•

๐œ•๐‘ฆ

๐ฟ๐‘Œ =โ„

๐‘–๐‘ง

๐œ•

๐œ•๐‘ฅโˆ’ ๐‘ฅ

๐œ•

๐œ•๐‘ง

๐ฟ๐‘ =โ„

๐‘–๐‘ฅ

๐œ•

๐œ•๐‘ฆโˆ’ ๐‘ฆ

๐œ•

๐œ•๐‘ฅ

YS โ€“ 2019-20 โ€“ C2

6

The orbital angular momentum

Quantum approach : ๐ฟ = ๐‘… ร— ๐‘ƒ =๐‘‹๐‘Œ๐‘

ร—๐‘ƒ๐‘‹๐‘ƒ๐‘Œ๐‘ƒ๐‘

=๐‘Œ๐‘ƒ๐‘ โˆ’ ๐‘๐‘ƒ๐‘Œ๐‘๐‘ƒ๐‘‹ โˆ’ ๐‘‹๐‘ƒ๐‘๐‘‹๐‘ƒ๐‘Œ โˆ’ ๐‘Œ๐‘ƒ๐‘‹

๐ฟ operators in spherical coordinates :

๐ฟ๐‘‹ = ๐‘–โ„ sin๐œ‘๐œ•

๐œ•๐œƒ+

cos ๐œ‘

tan ๐œƒ

๐œ•

๐œ•๐œ‘

๐ฟ๐‘Œ = ๐‘–โ„ โˆ’cos๐œ‘๐œ•

๐œ•๐œƒ+

sin ๐œ‘

tan ๐œƒ

๐œ•

๐œ•๐œ‘

๐ฟ๐‘ =โ„

๐‘–

๐œ•

๐œ•๐œ‘

๐ฟ2 = โˆ’โ„2๐œ•2

๐œ•๐œƒ2+

1

tan ๐œƒ

๐œ•

๐œ•๐œƒ+

1

๐‘ ๐‘–๐‘›2 ๐œƒ

๐œ•2

๐œ•๐œ‘2

r๐œƒ

๐œ‘๐‘ฅ

๐‘ฆ

๐‘ง

YS โ€“ 2019-20 โ€“ C2

7

The angular momentum in general

By definition : a set ิฆ๐ฝ =๐ฝ๐‘‹๐ฝ๐‘Œ๐ฝ๐‘

of observables that fulfill the following

commutation rules: เตž

๐‘ฑ๐‘ฟ, ๐‘ฑ๐’€ = ๐’Šโ„๐‘ฑ๐’๐‘ฑ๐’€, ๐‘ฑ๐’ = ๐’Šโ„๐‘ฑ๐‘ฟ๐‘ฑ๐’, ๐‘ฑ๐‘ฟ = ๐’Šโ„๐‘ฑ๐’€

Theorems:

1. ๐ฝ2, ิฆ๐ฝ = 0 There exists a set of common eigenstates of ๐ฝ2

and ๐ฝ๐‘ that form an orthornormal basis of the Hilbert space.

2. The eigenvalues of ๐ฝ2 are of the form โ„2j j + 1 , with ๐’‹ โˆˆ โ„• โˆช โ„•/2

3. The eigenvalues of ๐ฝ๐‘ are of the form ๐‘šโ„, with ๐’Ž taking

all ๐Ÿ๐’‹ + ๐Ÿ possible values in โˆ’๐’‹,โˆ’๐’‹ + ๐Ÿ,โ€ฆ , ๐’‹ โˆ’ ๐Ÿ, ๐’‹ .

YS โ€“ 2019-20 โ€“ C2

8

The angular momentum in general

Examples : ๐‘— = 1 ๐‘š โˆˆ {โˆ’1, 0, 1}

๐‘— =3

2 ๐‘š โˆˆ {โˆ’

3

2, โˆ’

1

2,1

2,3

2}

Exercise : Prove the following properties :

1. ๐ฝโˆ’๐ฝ+ = ๐ฝ2 โˆ’ โ„๐ฝ๐‘ โˆ’ ๐ฝ๐‘2, with ๐ฝ+ = ๐ฝ๐‘‹ + ๐‘–๐ฝ๐‘Œ and ๐ฝโˆ’ = ๐ฝ๐‘‹ โˆ’ ๐‘–๐ฝ๐‘Œ

2. ๐ฝ+๐ฝโˆ’ = ๐ฝ2 + โ„๐ฝ๐‘ โˆ’ ๐ฝ๐‘2,

3. โˆ’๐‘— โ‰ค ๐‘š โ‰ค ๐‘—

4. ๐ฝโˆ’ศ๐‘˜, ๐‘—, โˆ’๐‘— = 0 and ๐ฝ+ศ๐‘˜, ๐‘—, ๐‘— = 0

5. For ๐‘š > โˆ’๐‘—,

a) ๐ฝโˆ’ศ๐‘˜, ๐‘—,๐‘š is eigenstate of ๐ฝ2 with eigenvalue ๐‘—(๐‘— + 1)โ„2

b) ๐ฝโˆ’ศ๐‘˜, ๐‘—,๐‘š is eigenstate of ๐ฝ๐‘ with eigenvalue ๐‘š โˆ’ 1 โ„

6. For ๐‘š < ๐‘—,

a) ๐ฝ+ศ๐‘˜, ๐‘—,๐‘š is eigenstate of ๐ฝ2 with eigenvalue ๐‘—(๐‘— + 1)โ„2

b) ๐ฝ+ศ๐‘˜, ๐‘—,๐‘š is eigenstate of ๐ฝ๐‘ with eigenvalue ๐‘š + 1 โ„

โˆ’โ„

+โ„

0

z

YS โ€“ 2019-20 โ€“ C2

9

The angular momentum in general

Theorems:

4. The common eigenstates of ๐ฝ2 and ๐ฝ๐‘ are denoted as ศ๐‘˜, ๐‘—,๐‘š .

They form an orthonormal basis of the Hilbert space.

๐‘˜ accounts for the degeneracy of sub-eigenspace โ„ฐ ๐‘—,๐‘š .

๐‘ฑ๐Ÿศ๐’Œ, ๐’‹,๐’Ž = ๐’‹ ๐’‹ + ๐Ÿ โ„๐Ÿศ๐’Œ, ๐’‹,๐’Ž

๐‘ฑ๐’ศ๐’Œ, ๐’‹,๐’Ž = ๐’Žโ„ศ๐’Œ, ๐’‹,๐’Ž

4. For a given value ๐‘—, the 2๐‘— + 1 sub-eigenspaces โ„ฐ(๐‘—,๐‘š) all have

the same degeneracy (๐‘”(๐‘—), independent of ๐‘š), and are

connected using the ยซ raising ยป and ยซ lowering ยป operators :

๐ฝ+ = ๐ฝ๐‘‹ + ๐‘–๐ฝ๐‘Œ and ๐ฝโˆ’ = ๐ฝ๐‘‹ โˆ’ ๐‘–๐ฝ๐‘Œ

๐ฝ+ศ๐‘˜, ๐‘—,๐‘š =โ„ ๐‘— ๐‘— + 1 โˆ’๐‘š ๐‘š + ๐Ÿ ศ๐‘˜, ๐‘—,๐‘š + ๐Ÿ

๐ฝโˆ’ศ๐‘˜, ๐‘—,๐‘š =โ„ ๐‘— ๐‘— + 1 โˆ’๐‘š ๐‘š โˆ’ ๐Ÿ ศ๐‘˜, ๐‘—,๐‘š โˆ’ ๐Ÿ๐ฝ+ศ๐‘˜, ๐‘—, ๐‘— = 0๐ฝโˆ’ศ๐‘˜, ๐‘—, โˆ’๐‘— = 0

YS โ€“ 2019-20 โ€“ C2

10

Spectrum of the orbital angular momentum

Theorem : The eigenvalues of ๐ฟ2 are โ„2๐‘™ ๐‘™ + 1 , with ๐’ โˆˆ โ„•

The common eigenstates of ๐ฟ2 and ๐ฟ๐‘ are denoted ศ๐‘™,๐‘š.

Their associated wave functions in positions space are denoted๐œ“ ๐‘Ÿ, ๐œƒ, ๐œ‘ = ๐‘… ๐‘Ÿ ๐‘Œ๐‘™

๐‘š(๐œƒ, ๐œ‘)

Solve เต๐ฟ2 ๐‘Œ๐‘™

๐‘š ๐œƒ, ๐œ‘ = ๐‘™(๐‘™ + 1)โ„2 ๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘

๐ฟ๐‘ ๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘ = ๐‘šโ„ ๐‘Œ๐‘™

๐‘š ๐œƒ, ๐œ‘

Solutions : ๐‘Œ๐‘™๐‘™ ๐œƒ, ๐œ‘ = ๐‘๐‘™ ๐‘ ๐‘–๐‘›

๐‘™๐œƒ ๐‘’๐‘–๐‘™๐œ‘ with ๐‘๐‘™ =(โˆ’1)๐‘™

2๐‘™ ๐‘™!

2๐‘™+1 !

4๐œ‹

๐‘Œ๐‘™๐‘šโˆ’1 ๐œƒ, ๐œ‘ = ๐ฟโˆ’ ๐‘Œ๐‘™

๐‘š ๐œƒ, ๐œ‘ /(โ„ ๐‘™ ๐‘™ + 1 โˆ’๐‘š(๐‘š โˆ’ 1))

Radial part Angular part

ยซ Spherical harmonic ยปเถฑ0

โˆž

๐‘Ÿ2 ๐‘… ๐‘Ÿ 2๐‘‘๐‘Ÿ = 1

เถฑ0

2๐œ‹

๐‘‘๐œ‘เถฑ0

๐œ‹

๐‘‘๐œƒ sin ๐œƒ ๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘ 2 = 1

YS โ€“ 2019-20 โ€“ C2

11

Spherical Harmonics

l = 0, m = 0

๐‘Œ00 ๐œƒ, ๐œ‘ =

1

4๐œ‹

Plot of ๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘

YS โ€“ 2019-20 โ€“ C2

12

Spherical Harmonics

l = 1, m = 0 l = 1, m = 1

๐‘Œ10 ๐œƒ, ๐œ‘ =

3

4๐œ‹cos ๐œƒ ๐‘Œ1

1 ๐œƒ, ๐œ‘ = โˆ’3

8๐œ‹sin ๐œƒ ๐‘’๐‘–๐œ‘

Plot of ๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘

YS โ€“ 2019-20 โ€“ C2

13

Spherical Harmonics

l = 2, m = 0 l = 2, m = 2l = 2, m = 1

๐‘Œ20 ๐œƒ, ๐œ‘ =

5

16๐œ‹(3๐‘๐‘œ๐‘ 2 ๐œƒ โˆ’ 1) ๐‘Œ2

1 ๐œƒ, ๐œ‘ = โˆ’15

8๐œ‹sin ๐œƒ cos ๐œƒ ๐‘’๐‘–๐œ‘ ๐‘Œ2

2 ๐œƒ, ๐œ‘ =15

32๐œ‹๐‘ ๐‘–๐‘›2 ๐œƒ ๐‘’๐‘–2๐œ‘

Plot of ๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘

YS โ€“ 2019-20 โ€“ C2

14

Spherical Harmonics

l = 3, m = 0 l = 3, m = 2l = 3, m = 1 l = 3, m = 3

Plot of ๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘

๐‘Œ๐‘™๐‘š ๐œƒ, ๐œ‘ = โˆ’1 ๐‘š

2๐‘™ + 1

4๐œ‹

๐‘™ โˆ’ ๐‘š !

๐‘™ + ๐‘š !๐‘ƒ๐‘™๐‘š cos ๐œƒ ๐‘’๐‘–๐‘š๐œ‘

Legendre function : ๐‘ƒ๐‘™๐‘š ๐‘ข = 1 โˆ’ ๐‘ข2 ๐‘š ๐‘‘๐‘š

๐‘‘๐‘ข๐‘š๐‘ƒ๐‘™ ๐‘ข , โˆ’1 โ‰ค ๐‘ข โ‰ค 1

Legendre polynomial : ๐‘ƒ๐‘™ ๐‘ข =โˆ’1 ๐‘™

2๐‘™ ๐‘™!

๐‘‘๐‘™

๐‘‘๐‘ข๐‘™1 โˆ’ ๐‘ข2 ๐‘™

YS โ€“ 2019-20 โ€“ C2

15

The Zeeman effect

โ€ข The orbital magnetic moment

Classical mechanics

Current : ๐ผ = ๐‘ž๐‘ฃ

2๐œ‹๐‘…

Magnetic moment : โ„ณ = ๐ผ ิฆ๐’œ =1

2๐‘ž๐‘… ร— ิฆ๐‘ฃ

๐“œ=๐’’

๐Ÿ๐’Ž๐’†๐“›

Magnetic interaction : โˆ’๐“œ.๐‘ฉ

Quantum mechanics

Magnetic moment : M =๐’’โ„

๐Ÿ๐’Ž๐’†L/โ„

Magnetic interaction : H = โˆ’M .๐‘ฉ (normal Zeeman effect)

โ€ข The normal Zeeman effect predicts that a B-field (along ๐‘ง) lifts

the degeneracy of the 2๐‘™ + 1 sub-states : ๐ธ๐‘›๐‘™๐‘š = ๐ธ๐‘› โˆ’๐‘š๐œ‡๐ตB(โˆ’l โ‰ค ๐‘š โ‰ค ๐‘™).

Proton

๐‘š๐‘ƒ โ‰ซ ๐‘š๐‘’

Electron ๐‘ž,๐‘š๐‘’

๐‘…Area ิฆ๐’œ

M = ๐œ‡๐ตL/โ„

๐œ‡๐ต =๐’’โ„

๐Ÿ๐’Ž๐’†: Bohrโ€™s magneton

YS โ€“ 2019-20 โ€“ C2

16

The Stern & Gerlach experiment

The experiment (1922)

Oven

Ag atoms

๐‘ง

Strong magnetic

gradient along ๐‘ง

beam

Ag atoms are neutral

no Laplace forceAg atoms are paramagnetic

Permanent magnetic moments โ„ณ, oriented randomly

Force : ิฆ๐น = Grad ๐“œ.๐‘ฉ ๐น๐‘ง =โ„ณ๐‘ง๐œ•๐ต๐‘ง

๐œ•๐‘ง deviation along ๐‘ง

Expected result : one spot, symmetric with respect to ๐‘ง = 0

Actual result : 2 spots, at ยฑ ๐๐‘ฉ๐๐‘ฉ๐’›

๐๐’›

The electron has an intrinsic angular momentum ๐‘บ (not of orbital nature),

with eigenvalue โ„๐Ÿ๐’” ๐’” + ๐Ÿ where ๐’” = ฮค๐Ÿ ๐Ÿ

This spin is associated to an intrinsic magnetic moment ๐‘€๐‘† = ๐Ÿ๐œ‡๐ตS/โ„

Screen

YS โ€“ 2019-20 โ€“ C2

17

The Stern & Gerlach experiment

Otto Stern, Nobel Prize 1943

Walther Gerlach

YS โ€“ 2019-20 โ€“ C2

18

The Stern & Gerlach experiment

Quantization of the

components of the

intrinsic angular

momentum (spin) of

the electron

YS โ€“ 2019-20 โ€“ C2

19B. Friedrich and D. Herschbach, Phys. Today 56, 53 (2003)

YS โ€“ 2019-20 โ€“ C2

20

To read more โ€ฆ

โ€ข On the angular momentum in quantum mechanics : CDL1, chapter VI

โ€ข On the spherical harmonics : CDL1, compl. AVI

โ€ข On Bohrโ€™s model : CPP1, chapters I and VI

โ€ข On the spin of the electron and the Stern & Gerlach experiment :

TB, chapter VI; CDL1, chapters IV and IX; CPP1, chapter X

CDL1 : Cohen-Tannoudji, Diu, Laloรซ, Quantum Mechanics, volume 1TB : Tualle-Brouri, Introduction ร  la Mรฉcanique Quantique, Cours 1A de lโ€™IOGS

CPP1&2 : Cagnac, Pebay-Peyroula, Atomic physics, volumes 1 & 2

YS โ€“ 2019-20 โ€“ C2

21

โ€ฆ about observables that commute.

Take two observables that commute : ๐ด, ๐ต = 0

In other words, eigenspace ๐“”๐’‚ is globally invariant under action of ๐ต

Theorem 1 : ศ๐œ“ is eigenstate of ๐ด with eigenvalue ๐‘Ž

๐ตศ๐œ“ is eigenstate of ๐ด with eigenvalue ๐‘Ž

Some useful theorems โ€ฆ

ศ๐œ“

๐ตศ๐œ“

๐“”๐’‚

Theorem 2 : Take two eigenstates เธซ๐œ“1 and เธซ๐œ“2 of ๐ด with eigenvalues ๐‘Ž1 and ๐‘Ž2 (๐‘Ž2 โ‰  ๐‘Ž1).

Then, ๐œ“1 ๐ต ๐œ“2 = 0

In other words, ๐ต does

not couple different

eigenspaces

๐ต =

โ‹ฏ โ‹ฏโ‹ฏ โ‹ฏ

0 00 0

0 00 0

0 00 0

โ‹ฏ โ‹ฏโ‹ฏ โ‹ฏ

0 00 0

0 00 0

0 00 0

โ‹ฏ โ‹ฏโ‹ฏ โ‹ฏ

๐“”๐’‚๐Ÿ

๐“”๐’‚๐Ÿ

๐“”๐’‚๐Ÿ‘

๐ต๐“”๐’‚๐Ÿ๐ต๐“”๐’‚๐Ÿ ๐ต๐“”๐’‚๐Ÿ‘

YS โ€“ 2019-20 โ€“ C2

22

โ€ฆ about observables that commute.

Take two observables that commute : ๐ด, ๐ต = 0

Some useful theorems โ€ฆ

Theorem 3 : There exists a set of common eigenstates of ๐ด and ๐ต that form an orthonormal

basis of the Hilbert space.