Lecture 2 Graphic Display Systems

88
Graphics Display Systems

Transcript of Lecture 2 Graphic Display Systems

Page 1: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 1/88

Graphics Display Systems

Page 2: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 2/88

Overview (Display Devices)

Raster Scan Displays

Random Scan Displays

Color CRT Monitors

Flat panel Displays Direct View Storage Tube

Three Dimensional Viewing Devices

Stereoscopic and Virtual RealitySystem

Page 3: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 3/88

Overview (Display Devices)

The display systems areoften referred to as Video

Monitor or  Video Display Unit (VDU).

Page 4: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 4/88

Display Hardware

Video Display Devices The primary output device in

a graphics system is amonitor.

Page 5: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 5/88

  CRT

1. Electron Guns2. Electron Beams

3. Focusing Coils

4. Deflection Coils

5. Anode Connection

6. Shadow Mask 

7. Phosphor layer 

8. Close-up of the phosphor coated

inner side of the

screen

Page 6: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 6/88

Cathode R ay Tube (CRT) 

Page 7: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 7/88

Refresh CRT

Light emitted by the Phosphor fades rapidly.

Refresh CRT: One way to keepthe phosphor glowing is to

redraw the picture repeatedly by

quickly directing the electron

 beam back over the same points.

Page 8: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 8/88

Electron Gun

Heat is supplied to the cathode bythe filament.

Page 9: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 9/88

Electron Gun

The free electrons are thenaccelerated towards the

 phosphor coating by a highpositive voltage.

Page 10: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 10/88

High Positive Voltage

A positively charged metal coating on theinside of the CRT envelope near the phosphor 

screen.

A positively charged metal 

Page 11: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 11/88

High Positive Voltage

An accelerating anode .

Page 12: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 12/88

Electron Gun

The Intensity of the electron beamis controlled by setting voltage

level on the control grid.

Page 13: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 13/88

Electron Gun

A smaller negative voltageon the control grid simply

decrease the number of electrons passing through.

Page 14: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 14/88

Focusing System

The focusing system is needed toforce the electron beam to converge

into a small spot as it strikes the

 phosphor.

Electrostatic focusing is commonly

used in computer graphics monitor.

Page 15: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 15/88

Focusing System

With electrostatic focusing, theelectron beam passes through a

 positively charged metal cylinder 

that forms an electrostatic lens.

Page 16: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 16/88

Focusing System

Similar lens focusing effects can be accomplished with a magnetic

field set up by a coil mountedaround the outside of the CRT

envelope.

Page 17: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 17/88

Focusing System

The distance that the electron beam must travel to different

 points on the screen varies because

the radius of curvature for most

CRTs is greater than the

distance from the focusing system

to the screen center.

Page 18: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 18/88

Focusing System

The electron beam will be focused

 properly only at the center of the

screen.

As the beam moves to the outer edges of the screen, displayed images

 become blurred . Dynamically focusing lens work 

 based on beam position.

Page 19: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 19/88

Deflection Systems

Deflection of the electron beam can be

controlled either with electric fields or 

with magnetic fields.

The magnetic deflection coils mountedon the outside of the CRT envelope.

Page 20: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 20/88

Deflection Systems

Two pairs of coils are used, withthe coils in each pair mounted on

opposite sides of the neck of the

CRT envelope.

Page 21: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 21/88

Deflection Systems One pair is mounted on the top and bottom of 

the neck, and the other pair is mounted on

opposite sides of the neck.

Page 22: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 22/88

Deflection Systems

Horizontal deflection isaccomplished with one pair of 

coils, and vertical deflection by

the other pairs.

The proper deflection amounts are

attained by adjusting the current 

through the coil.

Page 23: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 23/88

Deflection Systems

Electrostatic deflection:Two pairs of parallel

 plates are mounted insidethe CRT envelope.

Page 24: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 24/88

Deflection Systems One pair of plates is mounted horizontally to

control the vertical deflection, and the other 

 pair is mounted vertically to control horizontal

deflection.

Page 25: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 25/88

Spots of Light

Spots of lights are produced onthe screen by the transfer of the

CRT beam energy to the

 phosphor.

Part of the beam energy isconverted into heat energy.

Page 26: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 26/88

Spots of Light

The excited phosphor electrons begin dropping

 back to their stable groundstate, giving up their extra

energy as small quantums of light energy.

Page 27: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 27/88

Persistence

Persistence :The time ittakes the emitted light from

the screen to decay to one-tenth of its original

intensity.

Page 28: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 28/88

Intensity Distribution

The intensity is greatest at thecenter of the spot, and decrease

with Gaussian distribution out

to the edges of the spot.

Page 29: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 29/88

Resolution (Spots of Light)

Resolution: The maximum

number of points that can be

displayed without overlap on

a CRT.

Overlap

Page 30: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 30/88

Resolution (Spots of Light)

Resolution of a CRT is dependent on:

The type of phosphor

The intensity to be displayed

The focusing and deflectionsystems.Typical resolution: 1280 by 1024

Page 31: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 31/88

Aspect Ratio

Aspect Ratio: This numbers

gives the ratio of vertical

 points to horizontal points

necessary to produce equal

length lines in bothdirections on the screen.

Page 32: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 32/88

1. Electron Guns

2. Electron Beams3. Focusing Coils

4. Deflection Coils

5. Anode Connection

6. Shadow Mask 

7. Phosphor layer 

8. Close-up of the

 phosphor coated

inner side of theelectron

Page 33: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 33/88

Cathode R ay Tube (CRT) 

Electron GunDeflection Coils 

Electron BeamShadow mask 

Beam passing

through mask Anode Connection

Page 34: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 34/88

 

Raster Scan Displays

Page 35: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 35/88

Raster Scan Displays

Raster: A rectangular array of  points or dots 

Pixel: One dot or picture element

of the raster 

Scan Line: A row of pixels

Page 36: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 36/88

Raster Scan Displays

In a raster scan system, the electron beam is swept across the screen, one

row at a time from top to bottom.

Page 37: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 37/88

Raster Scan Displays

As the electron beam movesacross each row, the beam

intensity is turned on and off 

to create a pattern of 

illuminated spots.

Page 38: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 38/88

Raster Scan Displays

Picture definition is stored in a memory area

called the refresh buffer or frame buffer.

Page 39: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 39/88

Raster Scan Displays

Refresh buffer or framebuffer: This memory area

holds the set of intensityvalues for all the screen

 points.

Page 40: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 40/88

Raster Scan Displays

Stored intensity values then retrieved from

refresh buffer and “painted” on the screen

one row (scan line) at a time.

Page 41: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 41/88

Raster Scan Displays

Intensity range for pixel positionsdepends on the capability of the

raster system.

A black-and-white system: each

screen point is either on or off, so

only one bit per pixel is needed tocontrol the intensity of screen

 positions.

Page 42: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 42/88

Raster Scan Displays

On a black-and-white systemwith one bit per pixel, the frame

 buffer is called bitmap.

For system with multiple bits per 

 pixel, the frame buffer is calledpixmap.

Page 43: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 43/88

Raster Scan Displays

Sometimes, refresh ratesare described in unit of 

cycles per second, or Hertz(HZ)

Page 44: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 44/88

Raster Scan Displays

Refreshing on raster scandisplays is carried out at

the rate 60 to 80 frame per second.

Page 45: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 45/88

Raster Scan Displays

Horizontal retrace: The returnto the left of the screen, after 

refreshing each scan line.

Page 46: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 46/88

Raster Scan Displays

Vertical retrace: At the end of each frame

(displayed in 1/80th to 1/60th of a second) the

electron beam returns to the top left corner of 

the screen to begin the next frame.

Page 47: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 47/88

Interlacing

On some raster systems (TV), each frame is

displayed in two passes using an interlaced

refresh procedure. 

Page 48: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 48/88

Interlacing

On an older, 30 frame per-second,

noninterlaced display, some flicker is

noticeable. 

With interlacing, each of the two passescan be accomplished in 1/60th of a

second.

An effective technique for avoiding flicker

Page 49: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 49/88

Raster image

The quality of a raster imageis determined by the total

number pixels (resolution),

and the amount of information

in each pixel (color depth)

Page 50: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 50/88

Raster image

Raster graphics cannot be scaled to a higher resolution without

loss of apparent quality.

Page 51: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 51/88

Random Scan Displays

Random scan display is the use of 

geometrical primitives such as

 points, lines, curves, and polygons,

which are all based uponmathematical equations.

Raster Scan is the representation of 

images as a collection of pixels 

(dots)

Page 52: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 52/88

Random Scan Displays

In a random scan display, a CRT has the

electron beam directed only to the parts

of the screen where a picture is to be

drawn.

Random scan monitors draw a picture

one line at a time.

Page 53: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 53/88

Random Scan Displays

The component lines of a picturecan be drawn and refreshed.

Page 54: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 54/88

Random Scan Displays

Refresh rate depends on thenumber of lines to be displayed.

Picture definition is now storedas a line-drawing commands an

area of memory referred to as

refresh display file (display

list).

Page 55: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 55/88

Random Scan Displays

To display a picture, thesystem cycles through the set

of commands in the display

file, drawing each component

line in turn.

Page 56: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 56/88

Random Scan Displays

Random scan displays are designed to

draw all the component lines of a picture

30 to 60 times each second.

Page 57: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 57/88

Random Scan Displays

Random scan displays are designed for line-

drawing applications and can not display

realistic shaded scenes.

S i

Page 58: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 58/88

Random Scan Displays

R d S Di l

Page 59: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 59/88

Random Scan Displays

Random scan displays have higher resolution

than raster systems.

Vector displays produce smooth line drawing.

Ideal Drawing Vector Drawing

R d S Di l

Page 60: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 60/88

Random Scan Displays

A raster system produces jagged lines that are

 plotted as discrete points sets.

Raster

Outline primitives Filled primitives

R d S E l

Page 61: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 61/88

Random Scan Example

Data describing a circle:

The radius r 

The location of the center point of the

circle Stroke line style and color 

Fill style and color 

R d S E l

Page 62: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 62/88

Random Scan Example

Advantages:

This minimal amount of information translates

to a much smaller file size. (file size compared

to large raster images)

On zooming in, it remains smooth

The parameters of objects are stored and can

 be later modified (transformation).

Page 63: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 63/88

 

Color CRT Monitors

C l CRT M it

Page 64: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 64/88

Color CRT Monitors

A CRT monitor displays color  pictures by using a

combination of phosphors that

emit different c o l o r  lights.

M th d

Page 65: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 65/88

Methods

1. Beam Penetration

2. Shadow Mask 

B P t ti M th d

Page 66: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 66/88

Beam Penetration Method

Two layers of phosphor (red and green) are coated onto theinside of the CRT screen.

The display color depends on how

far the electron beam penetratesinto the phosphor layers.

B P t ti M th d

Page 67: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 67/88

Beam Penetration Method

The speed of the electrons,and the screen color at any point, is controlled by the beam accelerationvoltage.

B P t ti M th d

Page 68: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 68/88

Beam Penetration Method

The beam penetration method:

Is used with random scanmonitors

Only four colors are possible(red, green, orange, and yellow).

The quality of pictures is not asgood as with other methods.

Sh d M k M th d

Page 69: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 69/88

Shadow Mask Method

The color CRT has:

Three color phosphor dots (red,green and blue) at each point on thescreen

Three electron guns , each

controlling the display of red, green and blue light.

Sh d M k M th d

Page 70: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 70/88

Shadow Mask Method

Delta Method:

In-line Method:

Shado Mask Method

Page 71: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 71/88

Shadow Mask Method

The delta-delta method:

Shadow Mask Method

Page 72: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 72/88

Shadow Mask Method

The in-line method:

Shadow Mask Method

Page 73: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 73/88

Shadow Mask Method

Color variations areobtained by varying the

intensity levels of the threeelectron beam.

Shadow Mask Method

Page 74: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 74/88

Shadow Mask Method

Shadow mask methods are: Used in raster scan system

(including color TV)

Designed as R G B monitors.

Shadow Mask Method

Page 75: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 75/88

Shadow Mask Method

High quality raster graphicssystem have 24 bits per pixel

in the frame buffer (a full

color system or a true color 

system)

The RGB Color Model

Page 76: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 76/88

The RGB Color Model

R , G , and B represent the colors produced by

red , green and blue phosphors, respectively.

Gray axis

RGB Color Model

Page 77: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 77/88

RGB Color Model

RGB color space 

CMY Color Model

Page 78: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 78/88

CMY Color Model

CMY (short for Cyan, Magenta, Yellow,

and key) is a subtractive color model.

CMY Color Model

Page 79: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 79/88

CMY Color Model

 

 

 

 

 

 

 

 

 

 

 

 

 B

G R

 M C  

1

11

Color Depth Bit Depth

Page 80: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 80/88

Color Depth, Bit Depth The number of discrete intensities that

the video card is capable of generatingfor each color determines the maximum

number of colors that can be displayed.

The number of memory bits required to

store color information (intensity values

for all three primary color components)about a pixel is called color depth or bit

depth.

Color Depth Bit Depth

Page 81: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 81/88

Color Depth, Bit Depth

A minimum of one memory bit (color 

depth=1) is required to store intensity

value either 0 or 1 for every screen pixel.

If there are n pixels in an image a total of 

n bits of memory is used for storing

intensity values (in a pure black & whiteimage)

Bit Plane

Page 82: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 82/88

Bit Plane

The block of memory which stores (or is mapped

with) intensity values for each pixel (B& W image)is called a bit plane or  bitmap.

3Bit color display

Page 83: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 83/88

3Bit color display

Color or gray levels can be achieved in the

display using additional bit planes.

True Color

Page 84: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 84/88

True Color For  true Color three bytes of information are used, one for 

each of the red, blue and green signals that make a pixel. A byte can hold 256 different values and so 256 intensities

setting are possible for each electron gun which mean each

 primary color can have 256 intensities (256*256* 256 color

possible)

High Color

Page 85: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 85/88

High Color

For  high Color two bytes of information

are used, to store the intensity values for all three color. This is done by dividing16 bits into 5 bits for blue, 5 bits for red

and 6 bits for green. This means 32(=25)intensities for blue, 32 (=25) for red, and64 (=26) for green.

Loss of visible image quality.

256 color mode

Page 86: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 86/88

256 color mode

The PC uses only 8 bits, 2 bits for blue

and 3 each for green and red.

Most of the colors of a given picture arenot available.

A palette or look-up table is used here.

Color Palette

Page 87: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 87/88

Color Palette

A palette is a separate memory block (in

addition to the 8 bit plane) that has 256different colors.

Each color is defined using the standard 3

 byte color definition that is used in true color. The intensity values for each of the three

 primary color component can be anything

 between 0 and 255 in each of the table entries.

Color Palette

Page 88: Lecture 2 Graphic Display Systems

7/27/2019 Lecture 2 Graphic Display Systems

http://slidepdf.com/reader/full/lecture-2-graphic-display-systems 88/88

Color Palette

The intensity values for each of the three primary

color component can be anything between 0 and 255in each of the table entries.

Total number of colors available

is called color palette.