Lecture 14: Reactions Overview - Ohio University

21
Lecture 14: Ohio University PHYS7501, Fall 2017, Z. Meisel ([email protected]) Lecture 14: Reactions Overview β€’ Terminology and types β€’ Energetics & kinematics β€’ Cross sections

Transcript of Lecture 14: Reactions Overview - Ohio University

Page 1: Lecture 14: Reactions Overview - Ohio University

Lecture 14: Ohio University PHYS7501, Fall 2017, Z. Meisel ([email protected])

Lecture 14: Reactions Overviewβ€’Terminology and typesβ€’Energetics & kinematicsβ€’Cross sections

Page 2: Lecture 14: Reactions Overview - Ohio University

Defining a reactionβ€’ A nuclear reaction consists of the interaction of two or more nuclei

or nucleons that results in some final productβ€’ The initial stuff is known as the reactants [projectile and target, in the lab]

and the final stuff is known as the products [recoil and ejectile, in the lab]

β€’ Several sets of products are often possible for a pair of reactantscolliding at a given energy, including simple scattering

β€’ The ways of β€œdecaying” from the nucleus briefly formed by thereaction are known as channels

β€’ The modern notation for a reaction is always to put thelighter of the reactants and products on the inside of a pairof brackets, like A(b,c)D, where MA>Mb and MD>Mc

β€’ Nuclear reactions are governed by the strong force and sothey conserve baryon number, nuclear charge, energy,linear momentum, angular momentum, and parity

2

1st nuclear fusion reaction observed in the lab

P. Blackett, Proc. R. Soc. A (1925)

Page 3: Lecture 14: Reactions Overview - Ohio University

Reaction typesβ€’ Reactions are categorized by the participants and by the mechanismβ€’ Participants:

β€’Particle comes in and only a Ξ³ comes out: radiative captureβ€’Ξ³ comes in and one or a few particles comes out: photodisintegrationβ€’A multi-nucleon beam transfers a nucleon (or nucleons) to the target: transferβ€’A projectile exits as an ejectile, taking one or more nucleons with it: knockoutβ€’The projectile and target aren’t transmuted and exit in their ground states: elastic scatteringβ€’The projectile and target aren’t transmuted and one (or both) is excited: inelastic scattering

β€’Mechanism:β€’Few nucleons take part in the reaction (e.g. transfer): directβ€’The projectile and target briefly fuse, sharing energy amongst all nucleons: compoundβ€’The projectile and target briefly fuse, forming a loosely bound state: resonant

3

Page 4: Lecture 14: Reactions Overview - Ohio University

Energeticsβ€’ Conservation of energy requiresπ‘šπ‘šπ‘π‘π‘π‘π‘π‘π‘π‘π‘π‘2 + 𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + π‘šπ‘šπ‘‘π‘‘π‘‘π‘‘π‘π‘π‘‘π‘‘π‘π‘2 = π‘šπ‘šπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘2 + πΎπΎπΎπΎπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ + π‘šπ‘šπ‘Ÿπ‘Ÿπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘2 + πΎπΎπΎπΎπ‘Ÿπ‘Ÿπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ,where π‘šπ‘šπ‘–π‘– could refer to the mass of a nucleus in an excited state

β€’ The Q-value is equal to any excess kinetic energy resulting from the reaction, 𝑄𝑄 = 𝑀𝑀𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑀𝑀𝐾𝐾𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑 βˆ’ π‘€π‘€πΎπΎπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’ π‘€π‘€πΎπΎπ‘Ÿπ‘Ÿπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ = πΎπΎπΎπΎπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ + πΎπΎπΎπΎπ‘Ÿπ‘Ÿπ‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’ 𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

β€’ So, for a reaction to be energetically possible, 𝑄𝑄 + 𝐾𝐾𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 0β€’ Conservation of momentum in π‘₯π‘₯ and 𝑦𝑦 dictates:

β€’ π‘₯π‘₯: π‘šπ‘šπ‘π‘π‘£π‘£π‘π‘ = π‘šπ‘šπ‘Ÿπ‘Ÿπ‘£π‘£π‘Ÿπ‘Ÿ cos πœƒπœƒ + π‘šπ‘šπ‘π‘π‘£π‘£π‘π‘cos(Ο•)β€’ 𝑦𝑦: 0 = βˆ’π‘šπ‘šπ‘Ÿπ‘Ÿπ‘£π‘£π‘Ÿπ‘Ÿ sin πœƒπœƒ + π‘šπ‘šπ‘π‘π‘£π‘£π‘π‘sin(Ο•)

β€’ Noting 𝑝𝑝 = 2π‘šπ‘šπΎπΎπΎπΎ and doing some algebra,

π‘šπ‘šπ‘π‘πΎπΎπΎπΎπ‘π‘ βˆ’ 2 π‘šπ‘šπ‘π‘πΎπΎπΎπΎπ‘π‘π‘šπ‘šπ‘Ÿπ‘ŸπΎπΎπΎπΎπ‘Ÿπ‘Ÿ cos πœƒπœƒ + π‘šπ‘šπ‘Ÿπ‘ŸπΎπΎπΎπΎπ‘Ÿπ‘Ÿ = π‘šπ‘šπ‘π‘πΎπΎπΎπΎπ‘π‘

β€’ Noting that 𝑄𝑄 = 𝐾𝐾𝐾𝐾𝑝𝑝 + πΎπΎπΎπΎπ‘Ÿπ‘Ÿ βˆ’ 𝐾𝐾𝐾𝐾𝑝𝑝, we get the β€œQ equation”𝑄𝑄 = πΎπΎπΎπΎπ‘Ÿπ‘Ÿ 1 + π‘šπ‘šπ‘’π‘’

π‘šπ‘šπ‘Ÿπ‘Ÿβˆ’ 𝐾𝐾𝐾𝐾𝑝𝑝 1 βˆ’ π‘šπ‘šπ‘π‘

π‘šπ‘šπ‘Ÿπ‘Ÿβˆ’ 2

π‘šπ‘šπ‘Ÿπ‘Ÿπ‘šπ‘šπ‘π‘π‘šπ‘šπ‘Ÿπ‘ŸπΎπΎπΎπΎπ‘π‘πΎπΎπΎπΎπ‘Ÿπ‘Ÿcos(πœƒπœƒ) which tells us Q can be

determined by measuring the angle and energy of the ejectile alone 4

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

Page 5: Lecture 14: Reactions Overview - Ohio University

Energy in the center of mass (CM) frame

5

Weidner & Sells, Elementary Modern Physics (1973)

β€’For mathematical convenience (and to keep the outsiders out!) often the center-of-mass (CM) frame is employed

β€’For the energetic conversion between the two, consider the kineticenergy in the CM frame: πΎπΎπΎπΎπ‘Ÿπ‘Ÿπ‘šπ‘š = 𝐾𝐾𝐾𝐾𝑙𝑙𝑑𝑑𝑙𝑙

𝐴𝐴𝑑𝑑𝐴𝐴𝑝𝑝+𝐴𝐴𝑑𝑑

β€’So, the center of mass energy is always lowerthan the laboratory energy, but how muchlower depends on which reactant is the beamand which is the target

β€’As an aside, consider an alternative way to specify the laboratory beam energy: MeV/uβ€’Let’s look at an example reaction and use Energy/nucleon for the forward & inverse kinematics:

β€’ 96Zr(Ξ±,n) at πΎπΎπ‘Ÿπ‘Ÿπ‘šπ‘š = 7.68𝑀𝑀𝑀𝑀𝑀𝑀‒ For an Ξ± beam on a 96Zr target, 𝐾𝐾𝛼𝛼,𝑙𝑙𝑑𝑑𝑙𝑙 = 96+4

967.68𝑀𝑀𝑀𝑀𝑀𝑀 = 8𝑀𝑀𝑀𝑀𝑀𝑀 = 8

4= 2𝑀𝑀𝑀𝑀𝑀𝑀/𝑒𝑒

β€’ For a 96Zr beam on an Ξ± target, 𝐾𝐾96𝑍𝑍𝑝𝑝,𝑙𝑙𝑑𝑑𝑙𝑙 = 96+44

7.68𝑀𝑀𝑀𝑀𝑀𝑀 = 192𝑀𝑀𝑀𝑀𝑀𝑀 = 19296

= 2𝑀𝑀𝑀𝑀𝑀𝑀/𝑒𝑒‒ Hence, MeV/u is often a more useful way to speak about reaction energies

What does this imply about the choice of forward vs inverse kinematics measurements?

For an accelerator with a limited minimum voltage (i.e. all of them), inverse kinematics will reach a lower center-of-mass energy.

Page 6: Lecture 14: Reactions Overview - Ohio University

Reaction thresholdβ€’ If you want to initiate a particular reaction in the lab by impinging a beam on a target

and the reaction is endothermic, what should your beam energy be?

β€’ You need to pay the extra energy that is carried awayby the center-of-mass of the system

β€’ Recalling our energy conversion, πΎπΎπΎπΎπ‘Ÿπ‘Ÿπ‘šπ‘š = 𝐾𝐾𝐾𝐾𝑙𝑙𝑑𝑑𝑙𝑙𝐴𝐴𝑑𝑑

𝐴𝐴𝑝𝑝+𝐴𝐴𝑑𝑑,

the lab energy must be 𝐾𝐾𝐾𝐾𝑝𝑝 β‰₯ (βˆ’π‘„π‘„) 𝐴𝐴𝑑𝑑+𝐴𝐴𝑝𝑝𝐴𝐴𝑑𝑑

6

No!The Q-value?

Page 7: Lecture 14: Reactions Overview - Ohio University

Kinematics

7

K.S. Krane, Introductory Nuclear Physics (1987)

β€’ Using the Q-equation, 𝑄𝑄 = πΎπΎπΎπΎπ‘Ÿπ‘Ÿ 1 + π‘šπ‘šπ‘’π‘’π‘šπ‘šπ‘Ÿπ‘Ÿ

βˆ’ 𝐾𝐾𝐾𝐾𝑝𝑝 1 βˆ’ π‘šπ‘šπ‘π‘

π‘šπ‘šπ‘Ÿπ‘Ÿβˆ’ 2

π‘šπ‘šπ‘Ÿπ‘Ÿπ‘šπ‘šπ‘π‘π‘šπ‘šπ‘Ÿπ‘ŸπΎπΎπΎπΎπ‘π‘πΎπΎπΎπΎπ‘Ÿπ‘Ÿcos(πœƒπœƒ),

and conservation of momentum, we can determine the relationship between our reaction products outgoing energy and angle

β€’ Calling the projectile β€œa”, target β€œX”, light product β€œb”, and heavy product β€œY”,some gymnastics results in𝐾𝐾𝐾𝐾𝑙𝑙 = π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘šπ‘π‘πΎπΎπΎπΎπ‘Žπ‘Ž cos πœƒπœƒ Β± π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘šπ‘π‘πΎπΎπΎπΎπ‘Žπ‘Žcos2 πœƒπœƒ + π‘šπ‘šπ‘Œπ‘Œ+π‘šπ‘šπ‘π‘ [π‘šπ‘šπ‘Œπ‘Œπ‘„π‘„+(π‘šπ‘šπ‘Œπ‘Œβˆ’π‘šπ‘šπ‘Žπ‘Ž)πΎπΎπΎπΎπ‘Žπ‘Ž]

π‘šπ‘šπ‘Œπ‘Œ+π‘šπ‘šπ‘π‘

β€’ That looks pretty awful … and it is!β€’ Luckily, some noble souls have already worked-out the math

for us and developed calculators used to figure out the laboratory and center-of-mass kinematics for two-body reactions of interest:β€’A common option is Catkin, from W. N. Catford: kinematics with an Excel spreadsheetβ€’Another is the LISE++ kinematics calculator, from O. Tarasov & D. Bazin: kinematics with a Windows/Apple app

β€’My recent favorite is SkiSickness, from S.K.L. Sjue: kinematics with an online tool

Page 8: Lecture 14: Reactions Overview - Ohio University

Kinematics, common featuresβ€’ For a given projectile energy, usually only one ejectile

energy corresponds to a given angleβ€’ Ejectiles are emitted at 0Β° for projectiles at the

threshold energyβ€’ For 𝑄𝑄 < 0 reactions, there is a double-valued

behavior for projectile energies near the thresholdβ€’ The double-valued ejectile-angle relationship existsbetween the threshold energy and an upper limit:(βˆ’π‘„π‘„)π‘šπ‘šπ‘‹π‘‹+π‘šπ‘šπ‘Žπ‘Ž

π‘šπ‘šπ‘‹π‘‹β‰€ 𝑇𝑇𝑑𝑑 ≀ (βˆ’π‘„π‘„) π‘šπ‘šπ‘Œπ‘Œ

π‘šπ‘šπ‘Œπ‘Œβˆ’π‘šπ‘šπ‘Žπ‘Ž

β€’ If π΄π΄π‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘π‘π‘–π‘–π‘™π‘™ ≫ π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘‘π‘‘π‘–π‘–π‘™π‘™π‘Ÿπ‘Ÿ, the double-value region is obviously inconsequentialβ€’ The angular range which can have the double-valued behavior is limited

β€’ At the upper limit, the double-valued behavior happens between ΞΈ ≀ 90Β°β€’ Near the threshold, the double-valued behavior can only happen near πœƒπœƒ β‰ˆ 0Β°β€’ In general, the maximum angle for double-valued behavior πœƒπœƒπ‘šπ‘šπ‘‘π‘‘π‘šπ‘š is

cos2 πœƒπœƒπ‘šπ‘š = βˆ’ π‘šπ‘šπ‘Œπ‘Œ+π‘šπ‘šπ‘π‘ [π‘šπ‘šπ‘Œπ‘Œπ‘„π‘„+(π‘šπ‘šπ‘Œπ‘Œβˆ’π‘šπ‘šπ‘Žπ‘Ž)π‘‡π‘‡π‘Žπ‘Ž]π‘šπ‘šπ‘Žπ‘Žπ‘šπ‘šπ‘π‘πΎπΎπΎπΎπ‘Žπ‘Ž 8

t(p,n) [Lab] Q = -0.77MeV

K.S. Krane, Introductory Nuclear Physics (1987)

Page 9: Lecture 14: Reactions Overview - Ohio University

Center of Mass Ejectile Properties

β€’ If low-mass particle b is observed at an angle ΞΈ with energy 𝐾𝐾𝑙𝑙,𝐿𝐿

β€’ The center-of-mass energy of b is𝐾𝐾𝑙𝑙,𝐢𝐢𝐢𝐢 = (𝐾𝐾𝑑𝑑,𝐿𝐿 + 𝑄𝑄) π‘šπ‘šπ‘‹π‘‹π‘šπ‘šπ‘Œπ‘Œ

(π‘šπ‘šπ‘Žπ‘Ž+π‘šπ‘šπ‘‹π‘‹)(π‘šπ‘šπ‘π‘+π‘šπ‘šπ‘Œπ‘Œ)1 + π‘šπ‘šπ‘Žπ‘Žπ‘„π‘„

π‘šπ‘šπ‘‹π‘‹(πΎπΎπ‘Žπ‘Ž,𝐿𝐿+𝑄𝑄)

β€’ The center-of-mass angle of b is

Ξ± = sinβˆ’1 𝐾𝐾𝑏𝑏,𝐿𝐿

(πΎπΎπ‘Žπ‘Ž,𝐿𝐿+𝑄𝑄) π‘šπ‘šπ‘‹π‘‹π‘šπ‘šπ‘Œπ‘Œ(π‘šπ‘šπ‘Žπ‘Ž+π‘šπ‘šπ‘‹π‘‹)(π‘šπ‘šπ‘π‘+π‘šπ‘šπ‘Œπ‘Œ) 1+ π‘šπ‘šπ‘Žπ‘Žπ‘„π‘„

π‘šπ‘šπ‘‹π‘‹(πΈπΈπ‘Žπ‘Ž,𝐿𝐿+𝑄𝑄)

sin(ΞΈ)

β€’ The moral of the story is: use a kinematics calculator!

9

Xa

b

Y

ΞΈΞΎ

Lab frame

Xa

b

Y

Ξ±

CM frame

180Β°- Ξ±

Use a kinematics calculator

Page 10: Lecture 14: Reactions Overview - Ohio University

Reaction likelihood: The cross section πœŽπœŽβ€’ To quantify the probability of a nuclear interaction occurring, we use the cross sectionβ€’ The number of reactions that occur 𝑁𝑁 when we impinge an ion beam of intensity 𝐼𝐼 (in units of

particles/second) for some time 𝑑𝑑 on a target with areal density 𝑛𝑛𝑇𝑇 (in units of atoms/cm2) is scaled by a sort of reaction probability 𝜎𝜎: 𝑁𝑁 = πΌπΌπ‘‘π‘‘π‘›π‘›π‘‡π‘‡πœŽπœŽ

β€’ For the units to work: # = (s-1)*(s)*(atoms/cm2), [𝜎𝜎] = cm2, so we call this area the cross section.β€’ You can think of it as the overlap between the wave-like projectile and target,

though it can be very different from the classical value from a physical overlap

β€’ Practically, a reaction product detection efficiency πœ€πœ€ needs to be included: 𝜎𝜎 = π‘π‘π‘‘π‘‘π‘’π‘’π‘‘π‘‘π‘’π‘’π‘‘π‘‘π‘‘π‘‘π‘’π‘’π‘‘π‘‘πΌπΌπ‘‘π‘‘π‘›π‘›π‘‡π‘‡πœ€πœ€

β€’ And the cross section and detection efficiency need not be uniformly distributed,so we should consider the cross section for particles detected at some angle πœƒπœƒ by a detector with some solid-angle Ξ© = π·π·π‘Ÿπ‘Ÿπ‘‘π‘‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘‘π‘‘π‘π‘π‘π‘ π΄π΄π‘π‘π‘Ÿπ‘Ÿπ‘‘π‘‘

(π‘‡π‘‡π‘‘π‘‘π‘π‘π‘‘π‘‘π‘Ÿπ‘Ÿπ‘‘π‘‘βˆ’π·π·π‘Ÿπ‘Ÿπ‘‘π‘‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘‘π‘‘π‘π‘π‘π‘ π·π·π‘–π‘–π·π·π‘‘π‘‘π‘‘π‘‘π‘›π‘›π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ)2:

𝜎𝜎 πœƒπœƒ = π‘π‘π‘‘π‘‘πΌπΌπ‘π‘π‘‘π‘‘π‘šπ‘šπ‘’π‘’π‘Žπ‘Žπ‘šπ‘šπ‘›π‘›π‘‡π‘‡πœ€πœ€π‘‘π‘‘π‘’π‘’π‘‘π‘‘(πœƒπœƒ)Ω𝑑𝑑𝑒𝑒𝑑𝑑(πœƒπœƒ)

10

Fun fact: Beam intensities are usually measured by the current those ions create on a beam-stopping device. To convert to Ipps, you need to use the fact that 1 unit of electric charge is 1.602x10-19C and 1A=1C/s.

Page 11: Lecture 14: Reactions Overview - Ohio University

Cross section unitsβ€’ To estimate the scale of cross sections we’re going to deal with, consider the area an incoming

projectile would see for a typical nucleusβ€’ Take 𝐴𝐴 = 100, since it’s near the middle of the nuclear chart

β€’ 𝑅𝑅 = 1.2𝐴𝐴1/3π‘“π‘“π‘šπ‘š β‰ˆ 5.5π‘“π‘“π‘šπ‘šβ€’ πœ‹πœ‹π‘…π‘…2 β‰ˆ 100π‘“π‘“π‘šπ‘š2

β€’ Boy, that’s huge! As big as a barn even. So let’s call it a barn: 1𝑏𝑏 ≑ 100π‘“π‘“π‘šπ‘š2 = 10βˆ’24π‘π‘π‘šπ‘š2

β€’ For convenience, to save you from unit conversions,the most commonly encountered magnitudes inlow energy nuclear physics are:β€’1𝑏𝑏 = 10βˆ’24π‘π‘π‘šπ‘š2

β€’1π‘šπ‘šπ‘π‘ = 10βˆ’27π‘π‘π‘šπ‘š2

β€’1πœ‡πœ‡π‘π‘ = 10βˆ’30π‘π‘π‘šπ‘š2

β€’1𝑛𝑛𝑏𝑏 = 10βˆ’33π‘π‘π‘šπ‘š2

11

β€’ Some of the largest cross sections we see are for neutron capture, e.g. nthermal+125Xe ~ 106b

β€’ Οƒ ~ 100mb can be measured with ~104pps on a target of ~1019atoms/cm2, like with re-accelerated radioactive on beams (like at the NSCL)

β€’ Οƒ ~ 1 nb is usually the limit for stable ion beam facilities for measuring something within a reasonable time (like at the EAL)

β€’ Element discovery nowadays involves production cross sections on the Οƒ ~ 1 pb scale

Page 12: Lecture 14: Reactions Overview - Ohio University

Cross sections from a semi-classical viewβ€’ Consider a grazing collision between a projectile with

radius π‘Ÿπ‘Ÿπ‘Ÿ and a target with radius 𝑅𝑅, where the distancebetween them is the impact parameter 𝑏𝑏 = 𝑅𝑅 + π‘Ÿπ‘Ÿπ‘Ÿ

β€’ The relative orbital angular momentum is 𝑙𝑙 = 𝑙𝑙𝑙 = |π‘Ÿπ‘Ÿ Γ— �⃗�𝑝| = 𝑝𝑝𝑏𝑏

β€’ Since our projectile is a wave after all, 𝑝𝑝 = β„ŽΞ»

= 2πœ‹πœ‹π‘™/Ξ» …. and so 𝑙𝑙𝑙 = 2πœ‹πœ‹π‘π‘ 𝑙λ

…i.e. 𝑏𝑏 = 𝑙𝑙2πœ‹πœ‹Ξ»

β€’ Collisions at a given impact-parameter slice 𝑏𝑏 Β± 𝑑𝑑𝑏𝑏 correspond to a given 𝑙𝑙‒ The geometric cross section for one slice is:

β€’ πœŽπœŽπ‘™π‘™ = πœŽπœŽπ‘™π‘™Β±π‘‘π‘‘π‘™π‘™ = πœŽπœŽπ‘™π‘™+𝑑𝑑𝑙𝑙 βˆ’ πœŽπœŽπ‘™π‘™βˆ’π‘‘π‘‘π‘™π‘™ = πœ‹πœ‹ 𝑏𝑏 + 𝑑𝑑𝑏𝑏 2 βˆ’ πœ‹πœ‹ 𝑏𝑏 βˆ’ 𝑑𝑑𝑏𝑏 2

= πœ‹πœ‹(𝑙𝑙 + 1)2 Ξ»2πœ‹πœ‹

2βˆ’ πœ‹πœ‹π‘™π‘™2 Ξ»

2πœ‹πœ‹

2= πœ‹πœ‹ Ξ»

2πœ‹πœ‹

2(2𝑙𝑙 + 1)

β€’ So a total cross section is a sum over 𝑙𝑙: πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘π‘‘π‘‘π‘™π‘™ = βˆ‘π‘™π‘™ πœ‹πœ‹Ξ»2πœ‹πœ‹

2(2𝑙𝑙 + 1)

β€’ Including quantum mechanics, the probability of tunneling througha barrier corresponding to 𝑙𝑙 is the transmission coefficient 𝑇𝑇𝑙𝑙,so πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘π‘‘π‘‘π‘™π‘™ = πœ‹πœ‹ Ξ»

2πœ‹πœ‹

2βˆ‘π‘™π‘™ (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≀ 𝑇𝑇𝑙𝑙 ≀ 1

12

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

Page 13: Lecture 14: Reactions Overview - Ohio University

β€’ πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘π‘‘π‘‘π‘™π‘™ = πœ‹πœ‹ Ξ»2πœ‹πœ‹

2βˆ‘π‘™π‘™ (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≀ 𝑇𝑇𝑙𝑙 ≀ 1

β€’ High-energy limiting case for 𝑇𝑇𝑙𝑙: For relatively high energy (e.g. a ~100MeV heavy-ion beam), 𝑇𝑇𝑙𝑙 = 1 π‘“π‘“π‘“π‘“π‘Ÿπ‘Ÿ 𝑙𝑙 < π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š

0 π‘“π‘“π‘“π‘“π‘Ÿπ‘Ÿ 𝑙𝑙 > π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š

β€’ π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š is estimated by assuming barely any beam-target overlap: 𝑏𝑏 = 𝑅𝑅, so π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š = 2πœ‹πœ‹πœ‹πœ‹Ξ»

,…or can be estimated using fancy calculations ( e.g. Bonche, Grammaticos, & Koonin, PRC 1978)

β€’ Example: 50MeV 16O on an 16O target

β€’ π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š = 2πœ‹πœ‹(1.2)(16)1/3π‘“π‘“π‘šπ‘šβ„Ž

2(16 βˆ— 931.5πΆπΆπ‘Ÿπ‘Ÿπ‘€π‘€π‘Ÿπ‘Ÿ2

)50𝑀𝑀𝑀𝑀𝑀𝑀 = (3.02π‘“π‘“π‘šπ‘š)(1221πΆπΆπ‘Ÿπ‘Ÿπ‘€π‘€)197πΆπΆπ‘Ÿπ‘Ÿπ‘€π‘€π‘“π‘“π‘šπ‘š

β‰ˆ 19

13

Cross sections from a semi-classical view: High-E collision

This is theβ€œsharp cutoff limit”

Bonche, Grammaticos, & Koonin, PRC 1978

Page 14: Lecture 14: Reactions Overview - Ohio University

Bonche, Grammaticos, & Koonin, PRC 1978

β€’ πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘π‘‘π‘‘π‘™π‘™ = πœ‹πœ‹ Ξ»2πœ‹πœ‹

2βˆ‘π‘™π‘™ (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≀ 𝑇𝑇𝑙𝑙 ≀ 1

β€’ High-energy limiting case for 𝑇𝑇𝑙𝑙: For relatively high energy (e.g. a ~100MeV heavy-ion beam), 𝑇𝑇𝑙𝑙 = 1 π‘“π‘“π‘“π‘“π‘Ÿπ‘Ÿ 𝑙𝑙 < π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š

0 π‘“π‘“π‘“π‘“π‘Ÿπ‘Ÿ 𝑙𝑙 > π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘šβ€’ Example: 150MeV 40Ca on a 40Ca target: π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š β‰ˆ 70

β€’ πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘π‘‘π‘‘π‘™π‘™ = πœ‹πœ‹ Ξ»2πœ‹πœ‹

2βˆ‘π‘™π‘™=070 (2𝑙𝑙 + 1) = πœ‹πœ‹ π‘™π‘Ÿπ‘Ÿ

2 40βˆ—931.5πΆπΆπ‘Ÿπ‘Ÿπ‘€π‘€ 150πΆπΆπ‘Ÿπ‘Ÿπ‘€π‘€

25041 β‰ˆ 55π‘“π‘“π‘šπ‘š2 = 550π‘šπ‘šπ‘π‘

14

Cross sections from a semi-classical view: High-E collision

This is theβ€œsharp cutoff limit”

Page 15: Lecture 14: Reactions Overview - Ohio University

β€’ πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘π‘‘π‘‘π‘™π‘™ = πœ‹πœ‹ Ξ»2πœ‹πœ‹

2βˆ‘π‘™π‘™ (2𝑙𝑙 + 1) 𝑇𝑇𝑙𝑙 where 0 ≀ 𝑇𝑇𝑙𝑙 ≀ 1

β€’ Low-energy limiting case for 𝑇𝑇𝑙𝑙:

For relatively low energy (e.g. a <keV beam), 𝑇𝑇𝑙𝑙 βˆπΎπΎπΎπΎπ‘π‘ π‘“π‘“π‘“π‘“π‘Ÿπ‘Ÿ 𝑙𝑙 = 00 π‘“π‘“π‘“π‘“π‘Ÿπ‘Ÿ 𝑙𝑙 > 0

β€’ Consider a neutron at low energy,πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘π‘‘π‘‘π‘™π‘™ ∝ πœ‹πœ‹ Ξ»

2πœ‹πœ‹

2𝐾𝐾𝐾𝐾𝑛𝑛 ∝ πœ‹πœ‹ β„Ž

2πœ‹πœ‹ 2π‘šπ‘šπ‘›π‘›πΎπΎπΎπΎπ‘›π‘›

2𝐾𝐾𝐾𝐾𝑛𝑛 ∝ πœ‹πœ‹ β„Ž2

4πœ‹πœ‹2(π‘šπ‘šπ‘›π‘›2𝑣𝑣𝑛𝑛2)

12π‘šπ‘šπ‘›π‘›π‘£π‘£π‘›π‘› ∝

1𝑣𝑣𝑛𝑛

15

Cross sections from a semi-classical view: Low-E collisionThe basic reasoning for T~SQRT√(KE)~v is that lower velocities mean the neutron will spend more time in proximity to the target.For l>0, there isn’t enough energy to tunnel through the centrifugal barrier.

Atlas of Neutron Capture Cross Sections

Page 16: Lecture 14: Reactions Overview - Ohio University

β€’ Let’s take a step back and now include Coulomb effectsβ€’ For a charged projectile, there is a Coulomb barrier between

the projectile and the target:𝑀𝑀𝐢𝐢 = π‘π‘π‘π‘π‘π‘π‘‘π‘‘π‘Ÿπ‘Ÿ2

πœ‹πœ‹= 𝑍𝑍𝑝𝑝𝑍𝑍𝑑𝑑

𝑝𝑝0 𝐴𝐴𝑝𝑝1/3+𝐴𝐴𝑑𝑑

1/3π‘Ÿπ‘Ÿ2

π‘™π‘Ÿπ‘Ÿπ‘™π‘π‘ β‰ˆ 1.44 𝑍𝑍𝑝𝑝𝑍𝑍𝑑𝑑

𝑝𝑝0 𝐴𝐴𝑝𝑝1/3+𝐴𝐴𝑑𝑑

1/3 𝑀𝑀𝑀𝑀𝑀𝑀

β€’ At closest approach (π‘Ÿπ‘Ÿ = 𝑅𝑅), the initial center of mass energy πœ€πœ€ is reduced by,

Ξ΅β€² = πœ€πœ€ βˆ’ 𝑀𝑀𝐢𝐢, so the momentum is 𝑝𝑝 = 2πœ‡πœ‡ (πœ€πœ€ βˆ’ 𝑀𝑀𝐢𝐢) = 2πœ‡πœ‡πœ€πœ€ 1 βˆ’ π‘€π‘€πΆπΆπœ€πœ€

β€’ The orbital angular momentum is then 𝑙𝑙 = 𝑙𝑙𝑙 = |π‘Ÿπ‘Ÿ Γ— �⃗�𝑝| = 𝑅𝑅 2πœ‡πœ‡πœ€πœ€ 1 βˆ’ π‘€π‘€πΆπΆπœ€πœ€

,

πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘ = πœ‹πœ‹(π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š + 1)2 Ξ»2πœ‹πœ‹

2β‰ˆ πœ‹πœ‹π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š

2 Ξ»2πœ‹πœ‹

2= πœ‹πœ‹π‘…π‘…2 2πœ‡πœ‡πœ€πœ€

𝑙21 βˆ’ 𝑀𝑀𝐢𝐢

πœ€πœ€Ξ»2πœ‹πœ‹

2= πœ‹πœ‹π‘…π‘…2 1 βˆ’ 𝑀𝑀𝐢𝐢

πœ€πœ€

16

Cross sections from a semi-classical view: with Coulomb

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

Page 17: Lecture 14: Reactions Overview - Ohio University

P. Dyer et al. PRC 1981

β€’ The orbital angular momentum is then 𝑙𝑙 = 𝑙𝑙𝑙 = |π‘Ÿπ‘Ÿ Γ— �⃗�𝑝| = 𝑅𝑅 2πœ‡πœ‡πœ€πœ€ 1 βˆ’ π‘€π‘€πΆπΆπœ€πœ€

,

πœŽπœŽπ‘‘π‘‘π‘π‘π‘‘π‘‘ = πœ‹πœ‹(π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š + 1)2 Ξ»2πœ‹πœ‹

2β‰ˆ πœ‹πœ‹π‘™π‘™π‘šπ‘šπ‘‘π‘‘π‘šπ‘š

2 Ξ»2πœ‹πœ‹

2= πœ‹πœ‹π‘…π‘…2 2πœ‡πœ‡πœ€πœ€

𝑙21 βˆ’ 𝑀𝑀𝐢𝐢

πœ€πœ€Ξ»2πœ‹πœ‹

2= πœ‹πœ‹π‘…π‘…2 1 βˆ’ 𝑀𝑀𝐢𝐢

πœ€πœ€

17

Cross sections from a semi-classical view: with Coulomb

Page 18: Lecture 14: Reactions Overview - Ohio University

18

Cross sections from a semi-classical view: Near Threshold

Ehmann & Vance, Radiochemistry and Nuclear Methods of Analysis (1991)

Page 19: Lecture 14: Reactions Overview - Ohio University

Cross Sections & Barriersβ€’ For a more accurate prescription, just taking into account the Coulomb barrier won’t doβ€’ The full barrier has,

nuclear, Coulomb, and centrifugal contributions

β€’ Coulomb: 𝑀𝑀𝐢𝐢 =

π‘π‘π‘π‘π‘π‘π‘‘π‘‘π‘Ÿπ‘Ÿ2

π‘π‘π‘Ÿπ‘Ÿ > 𝑅𝑅

π‘π‘π‘π‘π‘π‘π‘‘π‘‘π‘Ÿπ‘Ÿ2

πœ‹πœ‹32 βˆ’

12

𝑝𝑝2

πœ‹πœ‹2π‘Ÿπ‘Ÿ < 𝑅𝑅

β€’ Nuclear: π‘€π‘€π‘Šπ‘Šπ‘Šπ‘Š = 𝑀𝑀01+exp π‘π‘βˆ’πœ‹πœ‹ /𝑑𝑑

β€’ Centrifugal: 𝑙2

2πœ‡πœ‡π‘™π‘™(𝑙𝑙+1)𝑝𝑝2

β€’ Their sum is the β€œinteraction barrier”‒ You could find the distance of closest approach

for this barrier and then play the same game aswe did for the Coulomb barrier

19

Loveland, Morrissey, & Seaborg, Modern Nuclear Chemistry (2006)

16O+208Pb

Page 20: Lecture 14: Reactions Overview - Ohio University

Terminology …because we have to feel special somehow!

β€’ The total interaction probability is described by the cross sectionβ€’ The cross section as a function of projectile energy is called an excitation function

(though I refuse to use this)

β€’ The probability of an interaction ejecting an outgoing particle at a given angle is referred to as the differential cross section.

β€’ Rather than use the logical 𝜎𝜎(πœƒπœƒ), this is often instead written as π‘‘π‘‘πœŽπœŽπ‘‘π‘‘Ξ©

or π‘‘π‘‘πœŽπœŽπ‘‘π‘‘Ξ©

πœƒπœƒ

β€’ The probability of an interaction ejecting an outgoing particle at a given angle with a given energy is referred to as the double differential cross section

β€’ Rather than use the logical 𝜎𝜎(πœƒπœƒ)|𝐾𝐾, this is often instead written as 𝑑𝑑2𝜎𝜎

𝑑𝑑Ω𝑑𝑑𝐾𝐾‒ The probability of an interaction ejecting an outgoing particle at a given energy is just

described by the particle spectrum, because the good guys have to win sometimes

20

Page 21: Lecture 14: Reactions Overview - Ohio University

Further Readingβ€’ Chapter 10: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)β€’ Chapter 11: Introductory Nuclear Physics (K.S. Krane)β€’ Chapter 17: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for

Nuclear Engineers (A. Bielajew)β€’ Chapters 1 & 2: Nuclear Reactions (H. Schieck)β€’ Chapters 3 & 4: Cauldrons in the Cosmos (Rolfs & Rodney)

21