Lecture 13: Datapath Functional Units

31
Lecture 13: Datapath Functional Units

Transcript of Lecture 13: Datapath Functional Units

Page 1: Lecture 13: Datapath Functional Units

Lecture 13: DatapathFunctionalUnits

Page 2: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 2

Outlineq Comparatorsq Shiftersq Multi-input Addersq Multipliers

Page 3: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 3

Comparatorsq 0�s detector: A = 00…000q 1�s detector: A = 11…111q Equality comparator: A = Bq Magnitude comparator: A < B

Page 4: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 4

1�s & 0�s Detectorsq 1�s detector: N-input AND gateq 0�s detector: NOTs + 1�s detector (N-input NOR)

A0A1

A2A3

A4A5

A6A7

allones

A0A1

A2A3

allzeros

allones

A1

A2A3

A4A5

A6A7

A0

Page 5: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 5

Equality Comparatorq Check if each bit is equal (XNOR, aka equality gate)q 1�s detect on bitwise equality

A[0]B[0]

A = B

A[1]B[1]A[2]B[2]A[3]B[3]

Page 6: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 6

Magnitude Comparatorq Compute B – A and look at signq B – A = B + ~A + 1q For unsigned numbers, carry out is sign bit

A0

B0

A1

B1

A2

B2

A3

B3

A = BZ

C

A B£

N A B³

Page 7: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 7

Signed vs. Unsignedq For signed numbers, comparison is harder

– C: carry out– Z: zero (all bits of A – B are 0)– N: negative (MSB of result)– V: overflow (inputs had different signs, output sign ≠ B)– S: N xor V (sign of result)

Page 8: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 8

Shiftersq Logical Shift:

– Shifts number left or right and fills with 0�s• 1011 LSR 1 = 0101 1011 LSL1 = 0110

q Arithmetic Shift:– Shifts number left or right. Rt shift sign extends

• 1011 ASR1 = 1101 1011 ASL1 = 0110q Rotate:

– Shifts number left or right and fills with lost bits• 1011 ROR1 = 1101 1011 ROL1 = 0111

Page 9: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 9

Funnel Shifterq A funnel shifter can do all six types of shiftsq Selects N-bit field Y from 2N–1-bit input

– Shift by k bits (0 ≤ k < N)– Logically involves N N:1 multiplexers

Page 10: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 10

Funnel Source Generator

Rotate RightLogical Right

Arithmetic Right

Rotate LeftLogical/Arithmetic Left

Page 11: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 11

Array Funnel Shifterq N N-input multiplexers

– Use 1-of-N hot select signals for shift amount– nMOS pass transistor design (Vt drops!)

k[1:0]

s0s1s2s3Y3

Y2

Y1

Y0

Z0Z1Z2Z3Z4

Z5

Z6

left Inverters & Decoder

Page 12: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 12

Logarithmic Funnel Shifterq Log N stages of 2-input muxes

– No select decoding needed

Page 13: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 13

32-bit Logarithmic Funnelq Wider multiplexers reduce delay and powerq Operands > 32 bits introduce datapath irregularity

Page 14: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 14

Barrel Shifterq Barrel shifters perform right rotations using wrap-

around wires.q Left rotations are right rotations by N – k = k + 1 bits.q Shifts are rotations with the end bits masked off.

Page 15: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 15

Logarithmic Barrel Shifter

Right shift only

Right/Left shift Right/Left Shift & Rotate

Page 16: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 16

32-bit Logarithmic Barrelq Datapath never wider than 32 bitsq First stage preshifts by 1 to handle left shifts

Page 17: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 17

Multi-input Addersq Suppose we want to add k N-bit words

– Ex: 0001 + 0111 + 1101 + 0010 = 10111q Straightforward solution: k-1 N-input CPAs

– Large and slow

+

+

0001 0111

+

1101 0010

10101

10111

1000

Page 18: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 18

Carry Save Additionq A full adder sums 3 inputs and produces 2 outputs

– Carry output has twice weight of sum outputq N full adders in parallel are called carry save adder

– Produce N sums and N carry outsZ4Y4X4

S4C4

Z3Y3X3

S3C3

Z2Y2X2

S2C2

Z1Y1X1

S1C1

XN...1 YN...1 ZN...1

SN...1CN...1

n-bit CSA

Page 19: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 19

CSA Applicationq Use k-2 stages of CSAs

– Keep result in carry-save redundant formq Final CPA computes actual result

4-bit CSA

5-bit CSA

0001 0111 1101 0010

+

10110101_

01010_ 00011

0001 0111+1101 10110101_

XYZSC

0101_ 1011 +0010 0001101010_

XYZSC

01010_+ 00011 10111

ABS

10111

Page 20: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 20

Multiplicationq Example:

q M x N-bit multiplication– Produce N M-bit partial products– Sum these to produce M+N-bit product

1100 : 1210 0101 : 510 1100 0000 1100 000000111100 : 6010

multipliermultiplicand

partialproducts

product

Page 21: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 21

General Formq Multiplicand: Y = (yM-1, yM-2, …, y1, y0)q Multiplier: X = (xN-1, xN-2, …, x1, x0)

q Product:1 1 1 1

0 0 0 0

2 2 2M N N M

j i i jj i i j

j i i j

P y x x y- - - -

+

= = = =

æ öæ ö= =ç ÷ç ÷è øè ø

å å åå

x0y5 x0y4 x0y3 x0y2 x0y1 x0y0

y5 y4 y3 y2 y1 y0x5 x4 x3 x2 x1 x0

x1y5 x1y4 x1y3 x1y2 x1y1 x1y0x2y5 x2y4 x2y3 x2y2 x2y1 x2y0

x3y5 x3y4 x3y3 x3y2 x3y1 x3y0x4y5 x4y4 x4y3 x4y2 x4y1 x4y0

x5y5 x5y4 x5y3 x5y2 x5y1 x5y0p0p1p2p3p4p5p6p7p8p9p10p11

multipliermultiplicand

partialproducts

product

Page 22: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 22

Dot Diagramq Each dot represents a bit

partial products

multiplier x

x0

x15

Page 23: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 23

Array Multipliery0y1y2y3

x0

x1

x2

x3

p0p1p2p3p4p5p6p7

B

ASin Cin

SoutCout

BA

CinCout

Sout

Sin=

CSAArray

CPA

critical path BA

Sout

Cout CinCout

Sout

=Cin

BA

Page 24: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 24

Rectangular Arrayq Squash array to fit rectangular floorplan

y0y1y2y3

x0

x1

x2

x3

p0

p1

p2

p3

p4p5p6p7

Page 25: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 25

Fewer Partial Productsq Array multiplier requires N partial productsq If we looked at groups of r bits, we could form N/r

partial products.– Faster and smaller?– Called radix-2r encoding

q Ex: r = 2: look at pairs of bits– Form partial products of 0, Y, 2Y, 3Y– First three are easy, but 3Y requires adder L

Page 26: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 26

Booth Encodingq Instead of 3Y, try –Y, then increment next partial

product to add 4Yq Similarly, for 2Y, try –2Y + 4Y in next partial product

Page 27: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 27

Booth Hardwareq Booth encoder generates control lines for each PP

– Booth selectors choose PP bits

Page 28: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 28

Sign Extensionq Partial products can be negative

– Require sign extension, which is cumbersome– High fanout on most significant bit

multiplier x

x0

x15

0

00

x-1

x16x17

ssssssssssssssss

ssssssssssssss

ssssssssssss

ssssssssss

ssssssss

ssssss

ssss

ss

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

Page 29: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 29

Simplified Sign Ext.q Sign bits are either all 0�s or all 1�s

– Note that all 0�s is all 1�s + 1 in proper column– Use this to reduce loading on MSB

s111111111111111s

s1111111111111s

s11111111111s

s111111111s

s1111111s

s11111s

s111s

s1s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

Page 30: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 30

Even Simpler Sign Ext.q No need to add all the 1�s in hardware

– Precompute the answer!

ssss

ss1

ss1

ss1

ss1

ss1

ss1

ss

PP0PP1PP2PP3PP4PP5PP6PP7PP8

Page 31: Lecture 13: Datapath Functional Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 31

Advanced Multiplicationq Signed vs. unsigned inputsq Higher radix Booth encodingq Array vs. tree CSA networks