Lecture 13 CMOS Logic - University of California,...

16
EE141 1 EECS141 1 Lecture #13 EE141 EE141- Fall 2007 Fall 2007 Digital Integrated Digital Integrated Circuits Circuits Lecture 13 Lecture 13 CMOS Logic CMOS Logic EE141 2 EECS141 2 Lecture #13 Announcements Announcements Hardware lab this week HW#6 out this Thurs.

Transcript of Lecture 13 CMOS Logic - University of California,...

Page 1: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE1411

EECS141 1Lecture #13

EE141EE141--Fall 2007Fall 2007Digital Integrated Digital Integrated CircuitsCircuits

Lecture 13Lecture 13CMOS LogicCMOS Logic

EE1412

EECS141 2Lecture #13

AnnouncementsAnnouncementsHardware lab this weekHW#6 out this Thurs.

Page 2: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE1413

EECS141 3Lecture #13

Class MaterialClass Material

Last lectureWire models

Today’s lectureCMOS logic gates

Reading (Chapter 6)

EE1414

EECS141 4Lecture #13

CMOS LogicCMOS Logic

Page 3: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE1415

EECS141 5Lecture #13

Combinational vs. Sequential LogicCombinational vs. Sequential Logic

Combinational Sequential

Output = f(In) Output = f(In, Previous In)

CombinationalLogicCircuit

OutInCombinational

LogicCircuit

OutIn

State

EE1416

EECS141 6Lecture #13

Static CMOS GatesStatic CMOS GatesAt every point in time (except during the switchingtransients) each gate output is connected to eitherVDD or VSS via a low resistive path.

The outputs of the gates assume at all times the valueof the Boolean function implemented by the circuit(ignoring, once again, the transient effects during switching periods).

This is in contrast to the dynamic circuit style, whichrelies on temporary storage of signal values on thecapacitance of high-impedance circuit nodes.

Page 4: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE1417

EECS141 7Lecture #13

Static Complementary CMOSStatic Complementary CMOSVDD

F(In1,In2,…InN)

In1In2

InN

In1In2

InN

PUN

PDN

PMOS only

NMOS only

PUN and PDN are dual logic networksPUN and PDN functions are complementary

……

EE1418

EECS141 8Lecture #13

NMOS Transistors NMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

Y = X if A AND B

Y = X if A OR B

Transistor ↔ switch controlled by its gate signalNMOS switch closes when switch control input is high

NMOS transistors pass a “strong” 0 but a “weak” 1

A B

X Y

X Y

A

B

AND

OR

Page 5: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE1419

EECS141 9Lecture #13

PMOS Transistors PMOS Transistors in Series/Parallel Connectionin Series/Parallel Connection

PMOS switch closes when switch control is low

PMOS transistors pass a “strong” 1 but a “weak” 0

X Y

A B

A

BX Y

NOR

NAND

Y = X if A AND B = A + B

Y = X if A OR B = AB

EE14110

EECS141 10Lecture #13

Threshold DropsThreshold DropsVDD

VDD → 0PDN

0 → VDD

CL

CL

PUN

VDD

0 → VDD - VTn

CL

VDD

VDD

VDD → |VTp|

CL

S

D S

D

VGS

S

SD

D

VGS

Page 6: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14111

EECS141 11Lecture #13

Complementary CMOS Logic StyleComplementary CMOS Logic StylePUP is the dual to PDN(can be shown using DeMorgan’s Theorems)

Static CMOS gates are always inverting

A + B = AB

AB = A + B

AND = NAND + INV

EE14112

EECS141 12Lecture #13

Example Gate: NANDExample Gate: NAND

PDN: G = AB ⇒ Conduction to GNDPUN: F = A + B = AB ⇒ Conduction to VDD

G(In1,In2,In3,…) ≡ F(In1,In2,In3,…)

Page 7: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14113

EECS141 13Lecture #13

Example Gate: NORExample Gate: NOR

EE14114

EECS141 14Lecture #13

Complex CMOS GateComplex CMOS Gate

OUT = D + A • (B + C)

DA

B C

D

AB

C

Page 8: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14115

EECS141 15Lecture #13

Constructing a Complex GateConstructing a Complex Gate

C

(a) pull-down network

SN1 SN4

SN2

SN3D

FF

A

DB

C

D

F

A

B

C

(b) Deriving the pull-up networkhierarchically by identifyingsub-nets

D

A

A

B

C

VDD VDD

B

(c) complete gate

EE14116

EECS141 16Lecture #13

Another ExampleAnother Example

Y = A+BC

Page 9: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14117

EECS141 17Lecture #13

Cell DesignCell Design

Standard CellsGeneral purpose logicUsed to synthesize RTL/HDLSame height, varying width

Datapath CellsFor regular, structured designs (arithmetic)Includes some wiring in the cell

EE14118

EECS141 18Lecture #13

Standard Cell Layout Methodology Standard Cell Layout Methodology ––1980s1980s

signals

Routingchannel

VDD

GND

Page 10: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14119

EECS141 19Lecture #13

Standard Cell Layout Methodology Standard Cell Layout Methodology ––1990s 1990s -- TodayToday

M2

No routingchannels VDD

GNDM3

VDD

GND

Mirrored Cell

Mirrored Cell

EE14120

EECS141 20Lecture #13

Standard CellsStandard Cells

Cell boundary

N WellCell height 12 metal tracksMetal track is approx. 3λ + 3λPitch = repetitive distance between objects

Cell height is “12 Mn pitch”

Rails ~10λ

InOut

VDD

GND

Page 11: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14121

EECS141 21Lecture #13

Standard CellsStandard Cells

InOut

VDD

GND

In Out

VDD

GND

With silicideddiffusion

With minimaldiffusionrouting

OutIn

VDD

M2

M1

EE14122

EECS141 22Lecture #13

Standard CellsStandard Cells

A

Out

VDD

GND

B

2-input NAND gate

B

VDD

A

Page 12: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14123

EECS141 23Lecture #13

Stick DiagramsStick DiagramsContains no dimensionsRepresents relative positions of transistors

In

Out

VDD

GND

Inverter

A

Out

VDD

GNDB

NAND2

EE14124

EECS141 24Lecture #13

Stick DiagramsStick Diagrams

C

A B

X = C • (A + B)

B

AC

i j

VDDX

X

i

GND

AB

C

PUN

PDNABC

Logic Graph

j

Page 13: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14125

EECS141 25Lecture #13

Two Versions of C Two Versions of C •• (A + B)(A + B)

X

CA B A B C

X

VDD

GND

VDD

GND

EE14126

EECS141 26Lecture #13

Consistent Euler PathConsistent Euler Path

j

VDDX

X

i

GND

AB

C

A B C

Page 14: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14127

EECS141 27Lecture #13

OAI22 Logic GraphOAI22 Logic Graph

C

A B

X = (A+B)•(C+D)

B

A

D

VDDX

X

GND

AB

C

PUN

PDN

C

D

D

ABCD

EE14128

EECS141 28Lecture #13

Example: x = Example: x = ab+cdab+cd

GND

x

a

b c

d

VDDx

GND

x

a

b c

d

VDDx

(a) Logic graphs for (ab+cd) (b) Euler Paths {a b c d}

a c d

x

VDD

GND

(c) stick diagram for ordering {a b c d}b

Page 15: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14129

EECS141 29Lecture #13

MultiMulti--Fingered TransistorsFingered TransistorsOne finger Two fingers (folded)

Less diffusion capacitance

EE14130

EECS141 30Lecture #13

CMOS PropertiesCMOS PropertiesFull rail-to-rail swing; high noise marginsLogic levels not dependent upon the relative device sizes; ratiolessAlways a path to Vdd or Gnd in steady state; low output impedanceExtremely high input resistance; nearly zero steady-state input currentNo direct path steady state between power and ground; no static power dissipationPropagation delay function of load capacitance and resistance of transistors

Page 16: Lecture 13 CMOS Logic - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lectures/Lecture13-CMOS_Logic-2up.pdf · EECS141 Lecture #13 1 EE141-Fall 2007 Digital Integrated

EE14131

EECS141 31Lecture #13

Next LectureNext Lecture

CMOS logic - properties