Lecture 11.0

30
Lecture 11.0 Lecture 11.0 Etching

description

Lecture 11.0. Etching. Etching. Patterned Material Selectivity is Important!! Un-patterned. Dry Etch An-isotropic dy/dt:dx/dt:6 Gas Phase Reaction with volatile products Frequent use of very reactive species in a Plasma Si Etch SiO 2 Etch Metal Etch. Wet Etch =Dissolution - PowerPoint PPT Presentation

Transcript of Lecture 11.0

Page 1: Lecture 11.0

Lecture 11.0Lecture 11.0

Etching

Page 2: Lecture 11.0

EtchingEtching

Patterned– Material Selectivity is Important!!

Un-patterned

Page 3: Lecture 11.0

EtchingEtching Dry Etch An-isotropic

• dy/dt:dx/dt:6 Gas Phase Reaction

with volatile products Frequent use of very

reactive species in a Plasma – Si Etch– SiO2 Etch– Metal Etch

Wet Etch=Dissolution Isotropic

• dy/dt:dx/dt:1.2– Si Etch

• Strong HF– SiO2 Etch

• Strong NH4OH not NaOH (Na ion is bad)

– Si3N4 Etch• Phosphoric Acid

– Metal Etch• Acid Solution (HNO3)

– Photoresist• Solvent• H2SO4 Solution

x

y

Page 4: Lecture 11.0

EtchingEtchingWet and Dry Etch have very different

chemical reactions!

Wet and Dry Etch have similar rate determining steps– Mass Transfer Limiting– Surface Reaction Limiting

Similar mathematics

Page 5: Lecture 11.0

Wet Etch ChemistriesWet Etch Chemistries

Layer EtchantPhotoresist H2SO4, H2O2

SiO2 HF, NH4F-HCl-NH4F

Si3N4 ?, HNO3

Si HF

Page 6: Lecture 11.0

Dissolution of Layer-Wet EtchDissolution of Layer-Wet Etch

BL-Mass TransferA(l)+b B(s) ABb(l)A=

– Acid for metal (B) dissolution• redox reaction

– Base for SiO2 (B) dissolution– Solvent for photoresist (B) dissolution

Page 7: Lecture 11.0

Etch ReactionsEtch ReactionsBoundary Layer Mass TransferSurface Chemical Reaction

– Like Catalytic reactionProduct diffusion away from surface

Reactant ConcentrationProfile

ProductConcentrationProfile

Page 8: Lecture 11.0

Rate Determining StepsRate Determining Steps

X

Page 9: Lecture 11.0

Global Dissolution Rate/TimeGlobal Dissolution Rate/Time

Depends on– Mass Transfer

• Diffusion Coefficient• Velocity along wafer surface• Size of wafer

– Solubility– Density of film being etched

Page 10: Lecture 11.0

Wet Etch ReactionWet Etch Reaction

Wafers in Carriage Placed in Etch

Solution How Long?? Boundary Layer MT

is Rate Determining– Flow over a leading

edge for MT– Derivation & Mathcad

solutionAlso a C for theConcentration profile

Page 11: Lecture 11.0

Local Dissolution Rate/TimeLocal Dissolution Rate/TimeDepends on

– Mass Transfer• Diffusion Coefficient• Velocity along wafer surface• Size of wafer

– Solubility– Density of film being etched– Position on the wafer

• see “photoresist dissolution” example

Page 12: Lecture 11.0

Dry EtchDry Etch

Physical Evaporation– Not typically used

• Heating chip diffuses dopants out of position

Sputtering from a targetPlasma reactor with volatile reaction

product

Page 13: Lecture 11.0

RF Plasma Sputtering for RF Plasma Sputtering for Deposition and for EtchingDeposition and for Etching

RF + DC field

Page 14: Lecture 11.0

Removal RateRemoval RateSputtering Yield, S

– S=α(E1/2-Eth1/2)

Deposition Rate – Ion current into Target *Sputtering Yield– Fundamental Charge

gas(x) andtarget(t) ofnumbersatomic

)(2.5

3/2

4/33/23/2

i

xt

x

xt

t

ZenergybindingsurfaceU

ZZZ

ZZZ

U

Page 15: Lecture 11.0

PlasmaPlasma Free Electrons accelerated by a strong

electric field Collide with gas molecules and eject e-

Collision creates more free electrons Free electrons combine with ions to form

free radicals Gas Ions/Free Radicals are very reactive with

materials at the wafer surface– Ions non-selective removal– Free Radicals

Page 16: Lecture 11.0

Plasma ConditionsPlasma Conditions

Reduced Pressure ~100 mtorrFlow of gases in and outDC or AC (rf) electric field

– Parallel plate electrodes– Other geometries

Page 17: Lecture 11.0

Dry Etch ChemistriesDry Etch Chemistries Gas Surface Etched O2 Pre-clean 95%CF4-5% O2 Si 50%CF4-25%HBr-25%O2 Poly Si 75%Cl2-25%HBr Metal etch

CF2 layer on side walls prevents wall etching

Page 18: Lecture 11.0

PlasmaPlasma Temperature of Gas molecules, Tgas PVm/Rg Temperature of Electrons,

• Te =e2E2Mg/(6me2m

2 kB)– Accelerated by E field between collisions with gas molecules m= momentum collision frequency=Ng vel m(v)

Te E/Ng ERgTg/Ptot >> Tgas

kBTe > Gas Ionization EnergykBTe > Molecular Dissociation Energy

Page 19: Lecture 11.0

Plasma Gas ChemistriesPlasma Gas Chemistries Reactant Gases

– Physical Etch = Sputtering from chip target• Ar

– Chemical Etch• O2

• CF4

• HBr• Cl2

• CHF3

• C2F6

• Mixtures– CF2 deposition (like a teflon polymer layer) prevents side

wall etch

Page 20: Lecture 11.0

Gaseous (Volatile) ProductsGaseous (Volatile) Products

– SiO(g), SiF4(v), SiCl4(v), SiBr4(v)– MFx(v), MClx(v), MBrx(v),

Page 21: Lecture 11.0

11stst Ionization Energies Ionization Energies

O 13.618 eVBr 11.814 eVCl 12.967 eVF 17.422 eVH 13.598 eVAr 15.759 eV

Page 22: Lecture 11.0

Plasma Etch MechanismPlasma Etch Mechanism

PreClean• O2+ eO2

+ + 2e• O2+ e2O + e• O + e O-

• O2+ + e 2O

– O + s O-s– O + Si(s) s-SiO– SiO-s SiO(g)

Metal (M) Etch• Cl2 + e 2Cl + e• Cl2 Cl2

+ + e

• Cl + s Cl-s• x Cl-M(s) MClx(g)

– Simultaneously• e + CF4 CF3

+ +F+ 2e• e + CF3

+ CF2 + F• CF3

+ + CF2 (CF2)n+F• Polymer on wall of etchNeutrals are main reactive species!!

Page 23: Lecture 11.0

Degree of Ionization, Degree of Ionization, α α

α = Ni/No= Qi N λD

– N = neutral number density • N = Ni+No

– λD = Characteristic Diffusion length (mean free path)

– Qi= ionization collision cross section• Qi= 0.283 x 10-16(cm2) Pi(E)

– Pi(E)= ionization probability

Page 24: Lecture 11.0

Plasma Transport EquationsPlasma Transport Equations

Flux, J

mobilityelectronμmobilityionμ

e

i

electronsforEndxdnDJ

ionsforEndxdnDJ

neutralsfordxdnDJ

eee

ee

iii

ii

nnn

Page 25: Lecture 11.0

Etch ReactionsEtch ReactionsBoundary Layer Mass TransferSurface Chemical Reaction

– Like Catalytic reactionProduct diffusion away from surface

Reactant ConcentrationProfile

ProductConcentrationProfile

Page 26: Lecture 11.0

Etch ReactionEtch Reaction A(g)+bB(s) ABb(g) -(1/A) dNB/dt= -(1/A)(/MwB)dVB/dt= -(/MwB) dy/dt = - JB

– JB= b JA =b Kg(CAg-CAs) BL-MT of A– JB= b JA= b ks Cag Surface Reaction– may be catalytic– JB= b JABb = Kg(CABb-s-CABb-g)BL-MT of Abb

–– JB= b q/Hrxn

• q = h (Ts – Tg) BL-HT• q = k dT/dy Conduction in wafer

Page 27: Lecture 11.0

Rate Determining StepsRate Determining Steps

X

Page 28: Lecture 11.0

Plasma Etch Rate of PolymersPlasma Etch Rate of PolymersResidue Build-up

Page 29: Lecture 11.0

Plasma Etch Rate of PolymersPlasma Etch Rate of Polymers

Page 30: Lecture 11.0

Clean developed Photoresist off of waferClean developed Photoresist off of wafer

Wet-chemical stripping agents (solvents)– Incomplete wetting at small scale

Supercritical CO2.-new technology– Zero surface tension

• Complete wettability• Good for small line widths