Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer...

37
Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton

Transcript of Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer...

Page 1: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Lecture 1

Introduction to the cytoskeleton

Outline:Major cytoskeletal elementsPure polymer dynamicsPolymer dynamics in cells

Paper: Bacterial cytoskeleton

Page 2: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

1) Structural scaffold - cell shape, spatial organization

Roles of cytoskeleton:

2) Dynamic assemblies - movement and force production:

Cell migration Cell divisionIntracellular traffic Contraction

Cytoskeletal functions often involve motor proteins

Page 3: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

3 major elements of the cytoskeleton

1) microtubules – / tubulin dimers - 25 nm diameter relatively stiff – hollow, 13 protofilaments

2) microfilaments = actin filaments - 7 nm diameteractin monomers –more flexible – 2 helicies

3) intermediate filaments – 10 nm diameterfibrous – resistant to shear forces structural, prominent in cells subject to mechanical stress; vimentin, nuclear lamins

Page 4: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.
Page 5: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.
Page 6: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.
Page 7: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Introduction to polymer dynamics: 3 cases

• simple equilibrium polymers

• polar polymers: asymmetric subunitsundergo conformational change during assembly

• complex polymers: non-equilibrium subunit nucleotide hydrolysis (energy input)

actin andmicrotubules

Page 8: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Assembles/disassembles by addition/loss of subunits at endsRates = Kon and Koff

KoffKon

Kon depends on concentration of subunit, units of M-1sec-1

Koff does not (unimolecular), units of sec-1

Simple Equilibrium Polymer

Page 9: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

1) lag due to kinetic barrier to nucleation 2) growth 3) equilibrium

[polymer]

lag growth

equilibrium

time

Polymer assembly timecourse

rate of subunit addition = rate of loss

polymer grows, subunit concentration dropsuntil Kon[C] = Koff, when [C] = critical concentration Cc

(M-1sec-1[M] = sec -1)

Page 10: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Kon[C] = Koff

Kon[C] > Koff

Kon[C] < Koff

Page 11: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

• Equilibrium constant Keq determined by change in free energy

between free subunits and polymer

Keq= Kon/Koff = 1/Cc

Critical Concentration

• Concentration of free subunits at which rate of subunit addition = rate of loss

• Above Cc net growth, below net shrinkage

Page 12: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Polar Polymer

subunit in polymerfree subunit

plus endminus end

fastslow

Two ends polymerize and depolymerize at different ratesBECAUSEsubunit conformation changes as it incorporates into the polymer

Page 13: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

>The same interactions are broken when a subunit dissociates from either end

>The final state of the subunit is identical

If the plus end grows 3 times faster it must also shrink 3 times faster. Above Cc both ends grow, below Cc, both shrink

• Different Kon and Koff

• But!Koff/Kon ratio or Cc must be the same for both ends:

Plus and minus ends:

Page 14: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Complex Polymer (non-equilibrium):microtubules, actin filaments

Due to nucleotide hydrolysis upon assembly of subunit into polymer:

Nucleotide hydrolysis reduces binding affinity

D= nucleotidediphosphate

T= nucleotidetriphosphate

T

D D D D

D D D D

T

D

Page 15: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Internal subunits have different dynamic properties than the ends

T form binds, D form dissociatesKTon>>KDon KDoff>>KToff

T

D D D D

D D D D

T

D

Complex Polymer properties:

Cc = “steady state” concentration:KTon[C]=KDoff

Css=KDoff/KTon

Page 16: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

No longer true equilibrium, rather steady statebecause ATP or GTP subunits must be replenished

D=diphosphate

T=triphosphate

T

D D D D

D D D D

T

D

energy

Steady State Dynamics

Page 17: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Consequences for polymer dynamics

Treadmilling (actin and microtubules)

• Critical concentration different Cc(- end) > Cc(+ end)

_ T

D D D D

D D D D

T

D

+ T

D

• Two different reactions at each end of the polymer

Page 18: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Both ends exposed: Steady state occurs at concentration between Cc(- end) and Cc(+ end)

net assembly at the plus end net disassembly at the minus end

subunits “flux” through the polymer

Treadmilling

Page 19: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

D D D D D T

T

D D D D D T

D D D D D T

D

D

D

T

T

Treadmilling

+-

Page 20: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Dynamic instability (microtubules):

• subunit addition is faster than nucleotide hydrolysis• cap of GTP-tubulin on polymer ends KDoff>>KToff: GTP cap favors growth

GTP Cap present:GrowthGTP Cap lost:rapid disassembly

• stochastic (unpredictable) transitions

• frequency correlates with tubulin concentration

Page 21: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

D D D D D T

D D D D D T

D D D D D T

D D D D D D

D D D D D D

D D D D D D

T

D

T

D

growing

shrinking

Dynamic Instability

catastropherescue

Page 22: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Classic experiments by Mitchison and Kirschner 1984:Microtubules nucleated from seeds - no lag

5 10 15 20 25 30

Tubulin concentration (M)

[PolymerizedMicrotubules]

1) determine steady state concentration (Css )= 14 M

Page 23: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

2) dilution experiment:

Grow microtubule seedsDilute into tubulin solution above or below CssWait 10 minutesMeasure Mt number-concentration, Mt length(spun onto EM grids)

Before dilution 15 uM 7.5 uM#concentration: x108/ml

averagelength:(M)

32

18

32

40

15

22

Page 24: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

non-equilibrium:

• exchange only at the ends • turnover only withdramatic changes insubunit concentration

Summary

• Dynamic instability• Treadmilling • complete and rapid polymer turnover atsteady state• energy required

simple equilibrium:

Page 25: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.
Page 26: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Polymer properties regulated in cells:

1) nucleation2) polarity3) dynamics

1) Nucleation: kinetic barrier - slow step

monomer dimertrimer = nucleation site

trimer for actinmore complexfor microtobules

Page 27: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.
Page 28: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Actin: protein complexes (Arp2/3)

Microtubules: centrosomes

Nucleating factors in cells

Page 29: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

2) Polarity: due to asymmetry of subunits

structural polarity of polymer lattice

visualized by decoration of actin filaments and microtubules

allows cell to generate asymmetric structures and shapesbasis of motility

Page 30: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Actin decorated with myosin subfragment 1

actin lattice polarity revealed

Page 31: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

actin structural and dynamic polarity revealed

Page 32: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Microtubules decoratedand viewed in cross section

microtubule lattice polarity revealed by hook direction

Page 33: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

microtubule dynamic polarity revealed

Page 34: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

Motor proteins recognize polymer asymmetry

mechanochemical enzymeshydrolyze ATP to move along filamentproduce force or carry cargo

polarity generates directionality

Page 35: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

3) dynamics

regulated by many cellular factors

end-cappingsubunit sequesteringpolymer binding proteins

regulators also regulated

Page 36: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

microtubules in interphase

Tournebize and Hyman

QuickTime™ and aMotion JPEG A decompressorare needed to see this picture.

Page 37: Lecture 1 Introduction to the cytoskeleton Outline: Major cytoskeletal elements Pure polymer dynamics Polymer dynamics in cells Paper: Bacterial cytoskeleton.

microtubules in mitosis

Tournebize and Hyman

QuickTime™ and aMotion JPEG A decompressorare needed to see this picture.