Lecture 02 Circuits&Layout

download Lecture 02 Circuits&Layout

of 36

Transcript of Lecture 02 Circuits&Layout

  • 7/29/2019 Lecture 02 Circuits&Layout

    1/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.1

    EE4800 CMOS Digital IC Design & Analysis

    Lecture 2 CMOS Circuits and Layout

    Zhuo Feng

  • 7/29/2019 Lecture 02 Circuits&Layout

    2/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.2

    Complementary CMOS Complementary CMOS logic gates

    NMOSpull-down network

    PMOSpull-up networkpMOS

    pull-up

    network

    output

    inputs

    nMOS

    pull-down

    network

    Pull-up OFF Pull-up ON

    Pull-down OFF Z (float) 1

    Pull-down ON 0 X (shorted)

  • 7/29/2019 Lecture 02 Circuits&Layout

    3/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.3

    Series and Parallel NMOS: 1 = ON

    PMOS: 0 = ON

    Series: both must be ON

    Parallel: either can be ON

    (a)

    a

    b

    a

    b

    g1

    g2

    0

    0

    a

    b

    0

    1

    a

    b

    1

    0

    a

    b

    1

    1

    OFF OFF OFF ON

    (b)

    a

    b

    a

    b

    g1

    g2

    0

    0

    a

    b

    0

    1

    a

    b

    1

    0

    a

    b

    1

    1

    ON OFF OFF OFF

    (c)

    a

    b

    a

    b

    g1 g2 0 0

    OFF ON ON ON

    (d) ON ON ON OFF

    a

    b

    0

    a

    b

    1

    a

    b

    11 0 1

    a

    b

    0 0

    a

    b

    0

    a

    b

    1

    a

    b

    11 0 1

    a

    b

    g1 g2

  • 7/29/2019 Lecture 02 Circuits&Layout

    4/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.4

    Conduction Complement Complementary CMOS gates always produce 0 or 1

    Ex: NAND gate

    Series nMOS: Y=0 when both inputs are 1

    Thus Y=1 when either input is 0

    Requires parallel pMOS

    Rule ofConduction Complements

    Pull-up network is complement of pull-down

    Parallel -> series, series -> parallel

    AB

    Y

  • 7/29/2019 Lecture 02 Circuits&Layout

    5/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.5

    Compound Gates Compound gates can do any inverting function

    Example: (AND-AND-OR-INVERT, AOI22)Y A B C D

    A

    B

    C

    D

    A

    B

    C

    D

    A B C DA B

    C D

    B

    D

    YA

    CA

    C

    A

    B

    C

    D

    B

    D

    Y

    (a)

    (c)

    (e)

    (b)

    (d)

    (f)

  • 7/29/2019 Lecture 02 Circuits&Layout

    6/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.6

    Example: O3AI

    Y A B C D

    A B

    Y

    C

    D

    DCB

    A

  • 7/29/2019 Lecture 02 Circuits&Layout

    7/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.7

    Signal Strength Strength of signal

    How close it approximates ideal voltage source

    VDD and GND rails are strongest 1 and 0

    NMOS pass strong 0

    But degraded or weak 1(the high voltage is less than VDD)

    PMOS pass strong 1

    But degraded or weak 0

    Thus nMOS are best for pull-down network

  • 7/29/2019 Lecture 02 Circuits&Layout

    8/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.8

    Pass Transistors Transistors can be used as switches

    Pass transistor: NMOS or PMOS is used alone as an imperfect

    switch

    g

    s d

    g = 0

    s d

    g = 1

    s d

    0 strong 0

    Input Output

    1 degraded 1

    g

    s d

    g = 0

    s d

    g = 1

    s d

    0 degraded 0

    Input Output

    strong 1

    g = 1

    g = 1

    g = 0

    g = 0

  • 7/29/2019 Lecture 02 Circuits&Layout

    9/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.9

    Transmission Gates Pass transistors produce degraded outputs

    Transmission gates pass both 0 and 1 well

    g = 0, gb = 1

    a b

    g = 1, gb = 0

    a b

    0 strong 0

    Input Output

    1 strong 1

    g

    gb

    a b

    a b

    g

    gb

    a b

    g

    gb

    a b

    g

    gb

    g = 1, gb = 0

    g = 1, gb = 0

  • 7/29/2019 Lecture 02 Circuits&Layout

    10/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.10

    Tristates Tristate bufferproduces Z when not enabled

    EN A Y

    0 0 Z0 1 Z

    1 0 0

    1 1 1

    A Y

    EN

    A Y

    EN

    EN

  • 7/29/2019 Lecture 02 Circuits&Layout

    11/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.11

    Nonrestoring Tristate Transmission gate acts as tristate buffer

    Only two transistors

    But nonrestoring

    Noise on A is passed on to Y

    After several stages of nonrestoring logic, a signal can be too

    degraded to recognizeDelay of a series of such nonrestoring gates increases

    quadratically with the number of gates in series

    A Y

    EN

    EN

  • 7/29/2019 Lecture 02 Circuits&Layout

    12/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.12

    Tristate Inverter Tristate inverter produces restored output

    Violates conduction complement rule (when EN=0)

    Distributing enable signals in a timely fashion across a

    entire chip is very difficult

    Multiplexers are preferred

    A

    Y

    EN

    A

    Y

    EN = 0

    Y = 'Z'

    Y

    EN = 1

    Y = A

    A

    EN

  • 7/29/2019 Lecture 02 Circuits&Layout

    13/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.13

    Multiplexers Key components in CMOS memory elements and

    data manipulation structures

    2:1 multiplexer chooses between two inputs

    S D1 D0 Y

    0 X 0 0

    0 X 1 1

    1 0 X 01 1 X 1

    0

    1

    S

    D0

    D1

    Y

  • 7/29/2019 Lecture 02 Circuits&Layout

    14/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.14

    Gate-Level Mux Design

    How many transistors are needed? 20

    1 0 (too many transistors)Y SD SD

    4

    4

    D1

    D0S Y

    4

    2

    2

    2 Y

    2

    D1

    D0S

  • 7/29/2019 Lecture 02 Circuits&Layout

    15/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.15

    Transmission Gate Mux Nonrestoring mux uses two transmission gates

    Only 4 transistors

    S

    S

    D0

    D1

    YS

  • 7/29/2019 Lecture 02 Circuits&Layout

    16/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.16

    Inverting Mux Inverting multiplexer

    Use compound AOI22

    Or pair of tristate inverters

    Essentially the same thing

    Noninverting multiplexer adds an inverter

    S

    D0 D1

    Y

    S

    D0

    D1

    Y0

    1S

    Y

    D0

    D1

    S

    S

    S

    S

    S

    S

  • 7/29/2019 Lecture 02 Circuits&Layout

    17/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.17

    4:1 Multiplexer 4:1 mux chooses one of 4 inputs using two selects

    Two levels of 2:1 muxes

    Or four tristates

    S0

    D0

    D1

    0

    1

    0

    1

    0

    1Y

    S1

    D2

    D3

    D0

    D1

    D2

    D3

    Y

    S1S0 S1S0 S1S0 S1S0

  • 7/29/2019 Lecture 02 Circuits&Layout

    18/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.18

    D Latch When CLK = 1, latch is transparent

    D flows through to Q like a buffer

    When CLK = 0, the latch is opaque

    Q holds its old value independent of D

    a.k.a. transparent latch orlevel-sensitive latch

    CLK

    D QLatch

    D

    CLK

    Q

  • 7/29/2019 Lecture 02 Circuits&Layout

    19/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.19

    D Latch Design Multiplexer chooses D or old Q

    1

    0

    D

    CLK

    QCLK

    CLKCLK

    CLK

    DQ Q

    Q

  • 7/29/2019 Lecture 02 Circuits&Layout

    20/36Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.20

    D Latch Operation

    CLK = 1

    D Q

    Q

    CLK = 0

    D Q

    Q

    D

    CLK

    Q

  • 7/29/2019 Lecture 02 Circuits&Layout

    21/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.21

    D Flip-flop When CLK rises, D is copied to Q

    At all other times, Q holds its value

    a.k.a.positive edge-triggeredflip-flop, master-slave flip-flop

    Collection of two or more D flip-flops sharing a common clock

    input is called a register(multi-bit)

    Flop

    CLK

    D Q

    D

    CLK

    Q

  • 7/29/2019 Lecture 02 Circuits&Layout

    22/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.22

    D Flip-flop Design

    Built from master and slave D latches

    QM

    CLK

    CLKCLK

    CLK

    Q

    CLK

    CLK

    CLK

    CLK

    D

    Latch

    Latch

    D QQM

    CLK

    CLK

  • 7/29/2019 Lecture 02 Circuits&Layout

    23/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.23

    D Flip-flop Operation

    CLK = 1

    D

    CLK = 0

    Q

    D

    QM

    QM Q

    D

    CLK

    Q

  • 7/29/2019 Lecture 02 Circuits&Layout

    24/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.24

    Race Condition Back-to-back flops can malfunction from clock skew

    Second flip-flop fires late

    Sees first flip-flop change and captures its result

    Called hold-time failure orrace condition

    CLK1

    DQ1

    Flop

    Flop

    CLK2

    Q2

    CLK1

    CLK2

    Q1

    Q2

  • 7/29/2019 Lecture 02 Circuits&Layout

    25/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.25

    Nonoverlapping Clocks Nonoverlapping clocks can prevent races

    As long as nonoverlap exceeds clock skew

    Industry manages skew more carefully

    1

    11

    1

    2

    22

    2

    2

    1

    QM QD

  • 7/29/2019 Lecture 02 Circuits&Layout

    26/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.26

    Layout

    Chips are specified with set of masks

    Minimum dimensions of masks determine transistor

    size (and hence speed, cost, and power)

    Feature size f= distance between source and drain

    Set by minimum width of polysilicon

    Feature size improves 30% every 3 years or so

    Normalize for feature size when describing design

    rules

    Express rules in terms ofl = f/2 E.g. l = 0.3 mm in 0.6 mm process

  • 7/29/2019 Lecture 02 Circuits&Layout

    27/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.27

    Simplified Design Rules

    Conservative rules to get you started

  • 7/29/2019 Lecture 02 Circuits&Layout

    28/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.28

    Inverter Layout Transistor dimensions specified as Width / Length

    Minimum size is 4l / 2l, sometimes called 1 unit

    In f= 0.6 mm process, this is 1.2 mm wide, 0.6 mm long

  • 7/29/2019 Lecture 02 Circuits&Layout

    29/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.29

    Gate Layout Layout can be very time consuming

    Design gates to fit together nicely

    Build a library ofstandard cells

    Standard cell design methodology

    VDD and GND should abut (standard height)

    Adjacent gates should satisfy design rules

    nMOS at bottom and pMOS at top

    All gates include well and substrate contacts

  • 7/29/2019 Lecture 02 Circuits&Layout

    30/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.30

    Example: Inverter

  • 7/29/2019 Lecture 02 Circuits&Layout

    31/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.31

    Example: NAND3 Horizontal N-diffusion and P-diffusion strips

    Vertical polysilicon gates

    Metal1 VDD rail at top

    Metal1 GND rail at bottom

    32 l by 40 l

  • 7/29/2019 Lecture 02 Circuits&Layout

    32/36

  • 7/29/2019 Lecture 02 Circuits&Layout

    33/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.33

    Wiring Tracks A wiring trackis the space required for a wire

    4 l width, 4 l spacing from neighbor = 8 l pitch

    Transistors also consume one wiring track

  • 7/29/2019 Lecture 02 Circuits&Layout

    34/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.34

    Well spacing Wells must surround transistors by 6 l

    Implies 12 l between opposite transistor flavors

    Leaves room for one wire track

  • 7/29/2019 Lecture 02 Circuits&Layout

    35/36

    Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis2.35

    32 l

    40 l

    Area Estimation

    Estimate area by counting wiring tracks

    Multiply by 8 to express in l

  • 7/29/2019 Lecture 02 Circuits&Layout

    36/36

    Example: O3AI Sketch a stick diagram for O3AI and estimate area

    Y A B C D

    AVDD

    GND

    B C

    Y

    D

    6 tracks =

    48 l

    5 tracks =

    40 l