Lecture 01 - Di Prisco

download Lecture 01 - Di Prisco

of 76

Transcript of Lecture 01 - Di Prisco

  • 8/17/2019 Lecture 01 - Di Prisco

    1/76

     DESIGN OF ENVIRONMENTAL AND PROTECTIVE

    STRUCTURES

     Prof. Marco di PriscoDepartment of Civil and Environmental Engineering,

    Politecnico di Milano

     Master Course in

    Civil Engineering for Risk Mitigation

     Academic year 2014-2015

  • 8/17/2019 Lecture 01 - Di Prisco

    2/76

    Constitutive and design laws of steel , concrete, fibre

    reinforced concrete employed in steel, reinforced -

    prestressed concrete structures (4h)

  • 8/17/2019 Lecture 01 - Di Prisco

    3/76

    13 October 2014 3

    Model Code: design for

    sustainabilityConcrete’s Level I Method

    Comparison of green house gas emission:

    material substitution: BREAM (UK), HQE

    (France), LEED (USA), CASBEE (Japan), GreenStar (Netherlands)

    Level II Method

    Environmental Impact Calculation (EIC):

    - Measure of Embodied Energy

    - Measure of CO2- Calculation of Global Warming Potential

    (GWP)

    -Level III Method

    Full life cycle assessment (LCA), including

    durability and maintenance considerations, recyle

    and reuse

  • 8/17/2019 Lecture 01 - Di Prisco

    4/76

    13 October 2014 4

    EIC: Environmental Impact

    Calculation

    - CO2 Emission

    - EE = Embodied Energy

    Energy consumed in the production of Portland Cement is estimated to be 4.88

    MJ/kg and the total energy in the production of steel 23.7 MJ/kg

    (Struble and Godfrey (2004)

    - GWP = Global Warning PotentialContribution of CO2 on global warming, calculated through the equivalence of the

    effect of greenhouse gas (Elrod, 1999):for simplicity:

    100 – year GWP = CO2 + 298 Nox + 25CH4

    Courtesy Joost Walraven

  • 8/17/2019 Lecture 01 - Di Prisco

    5/76

    by fib Bulletin 67 

  • 8/17/2019 Lecture 01 - Di Prisco

    6/76

  • 8/17/2019 Lecture 01 - Di Prisco

    7/76

  • 8/17/2019 Lecture 01 - Di Prisco

    8/76

    STEEL

  • 8/17/2019 Lecture 01 - Di Prisco

    9/76

  • 8/17/2019 Lecture 01 - Di Prisco

    10/76

  • 8/17/2019 Lecture 01 - Di Prisco

    11/76

  • 8/17/2019 Lecture 01 - Di Prisco

    12/76

  • 8/17/2019 Lecture 01 - Di Prisco

    13/76

  • 8/17/2019 Lecture 01 - Di Prisco

    14/76

    von Mises - Huber yield criterion

  • 8/17/2019 Lecture 01 - Di Prisco

    15/76

  • 8/17/2019 Lecture 01 - Di Prisco

    16/76

    STEEL FOR METALLIC STRUCTURES

    For design, the following nominal values can be adopted for the material properties:

    Elastic modulus

    Transverse elasticity modulus

    Poisson ratio

    Thermal expansion coifficient

    (T< 100°C)

    density

    Steels for flat and hot-rolled long products

    The possible supply conditions are related to the manufacturing process used:

    crude steel rolling "as rolled“

    steel rolling normalized

    steel thermomechanical rolling

    steel with improved atmospheric corrosion resistance (ex Corten)

    steel with high tensile strength reclaimed "Quench and tempered"

  • 8/17/2019 Lecture 01 - Di Prisco

    17/76

    Nominal thickness of the elementSteel standards

    Hot rolled with open cross section profiles

  • 8/17/2019 Lecture 01 - Di Prisco

    18/76

    Hot rolled with hollow section profiles

    Nominal thickness of the elementSteel standards

  • 8/17/2019 Lecture 01 - Di Prisco

    19/76

    P

    δδy   δu

    µδ = δu / δy

    Homogeneous

    steel bar (Φ)

    δ

    P

    σσσσ

    εεεεεuεy

    µε = εu / εy

  • 8/17/2019 Lecture 01 - Di Prisco

    20/76

    P

    δ

    Steel bar

    δ

    P

    δy   δu

    µ = δu / δy

    defect

    σσσσ

    εεεεεuεy

    µε = εu / εy

  • 8/17/2019 Lecture 01 - Di Prisco

    21/76

    Steel for High Bond bars

    s

    sd  yd 

     E 

     f =ε 

    L

    susd    ε ε   

  • 8/17/2019 Lecture 01 - Di Prisco

    22/76

  • 8/17/2019 Lecture 01 - Di Prisco

    23/76

    B450C

    Characteristic yielding strength

    Characteristic failure strength

    Characteristics Requirementsfractile

    Max. elongation

    Mandrel diameter for bend tests at 90° and

    subsequent straightening without cracks

  • 8/17/2019 Lecture 01 - Di Prisco

    24/76

    B450A

    Characteristics Requirements

    fractile

    Characteristic yielding strength

    Characteristic failure strength

    Max. elongation

    Mandrel diameter for bend tests at 90° and

    subsequent straightening without cracks

  • 8/17/2019 Lecture 01 - Di Prisco

    25/76

    Limits of acceptability

    Nominal diameter

    Tolerance % on cross section

    admitted for the use

    characteristic Limit value

    for steel

    minimum

    maximum

    minimum

    minimumfailure/yielding

    failure/yielding

    bending / straightening lack of cracks for all

  • 8/17/2019 Lecture 01 - Di Prisco

    26/76

    (*)

    (*) after the 90 ° bend keeps the bar for 30 minutes in boiling water and proceeding, after cooling in air,to the partial straightening for at least 20 °. After the test the specimen shall not exhibit cracks.

    In Model Code 2010 :

    duttilità mediante prova di piegamento

    mandrino

    Φ!mm" #eB$%k #eB&&k

    ≤ 12

    12'1%

    1%'2(

    2( ' $0

    10Φ

    10Φ

    12Φ

    *iegamento a 1%0+

    *iegamento e raddri,,amento

    a -0+ a./20+±(+

    ductility measure by bending test

    bending and straightening

    mandrel

    Bending at 180°

  • 8/17/2019 Lecture 01 - Di Prisco

    27/76

    steel in bars steel in roll

    load load

    displacement displacement

  • 8/17/2019 Lecture 01 - Di Prisco

    28/76

    CEB MC’90

  • 8/17/2019 Lecture 01 - Di Prisco

    29/76

    Prestressing steel

    D.M. 2008   εuk  ≥ 3.5% (MC90)

    Control in plant

    sn ≤ 0.03 f ptk e sn ≤ 0.04 f p..k 

    Control on site

    at failure (f pt) gmn ≥ 1.03 f ptk ; sn ≤ 0.05 f ptk 

    at serv.ice (f py f p(0.2) f p1) gmn ≥ 1.04 f p..k ; sn ≤ 0.07 f p..k 

    Ep = 195 - 205 MPa

  • 8/17/2019 Lecture 01 - Di Prisco

    30/76

    REINFORCEDCONCRETE

  • 8/17/2019 Lecture 01 - Di Prisco

    31/76

    The uniaxial compression test

    UNI EN12390-1

    UNI EN12390-3:

    • planarity error< 0.0006d mm

    • size tolerance < ± 0.5%• tolerance shaven face and opposite < 1%d

    • perpendicularity corners < 0.5mm

    • tests at 24,72h;7,14,28,90,180,365d

    • (tests for at least 48h in room at 20 ± 2 °C eRH 95% until 2h before)

    • 0.2 < dσ /dt < 1MPa/s

    max-. aggregate size (mm)

    specimen side (mm)

  • 8/17/2019 Lecture 01 - Di Prisco

    32/76

    Cubic compression test

  • 8/17/2019 Lecture 01 - Di Prisco

    33/76

    YES

    NO

  • 8/17/2019 Lecture 01 - Di Prisco

    34/76

    Resistance classes for normal concrete

  • 8/17/2019 Lecture 01 - Di Prisco

    35/76

    Conversion factors of compressive strengths for cubes

    Conversion factors of compressive strengths for cylinders

    For different slenderness h/d

    Strength indexes

    and cylinders

  • 8/17/2019 Lecture 01 - Di Prisco

    36/76

    Conversion factors for compressive strengths

    measured on cubes of different sizes

    Conversion factors for compressive strengths

    measured on cylinders of different sizes and equal

    slenderness h/d = 2.00

    side

    slenderness h/d

    Proposed

    index

    Proposed

    Index h/d

  • 8/17/2019 Lecture 01 - Di Prisco

    37/76

    Sargin urve

    1

    2

    11

    1

    )2(1

    )(

    )(

    1,1

    c

    cccc

    c

     f 

     fc

     E k 

    ε 

    ε 

    ε ε 

    ε ε 

    ε σ 

    ε 

    −+

    −⋅−=

    ⋅⋅=

     y ax bx cx d 

    CC 

     x y

     x y E 

     x y fc

     x y

     fc E fc E  E 

    c

    c

    c

    c c c c

    = + + +

    = =

    = =

    = =

    = =

    = + +  −

    − +

    3 2

    1

    1

    1

    3

    1

    2

    3

    1

    2

    1

    2

    0 0

    0

    0

    2 3 2

    :'

    '

    ( ) ( ) ( )

    ε 

    ε 

    σ ε ε ε 

      ε ε ε 

      ε ε 

    Saen, urve

    l d l f C

  • 8/17/2019 Lecture 01 - Di Prisco

    38/76

    niaial onstitutive model for Conrete

    ε

    σ

    εcu1.5‰

    ε

    σ

    εcu0.7‰

    ε

    σ

    f c1

    εcuεc1

    arc

    tg(1000f cd)

    εc1=.002εcu=.0035f c1 = 0.85 f cd =

    0.85f ck  / γ c

    Stress-strain relation for short-term loading – compression -

  • 8/17/2019 Lecture 01 - Di Prisco

    39/76

    Parameters of the strain relation:

    ( )

    2

    1 2

    c

    c

     f k 

    σ    η η 

    η 

    ⋅ −= −

    + − ⋅   c c ,lim

    ε ε <

    1

    cε η ε 

    =

    with:

    Stress-strain relation for short-term loading – compression -

    MC2010

    Bilinear stress-crack opening relation for short-term loading

  • 8/17/2019 Lecture 01 - Di Prisco

    40/76

    Bilinear stress crack opening relation for short term loading

    1

    1 0 80

    = ⋅ − ⋅ ct ctm

    w f .

    wσ 

    1

    0 25 0 05

    = ⋅ − ⋅

    ct ctm

    w f . .

    wσ 

    1 for w w≤

    1   c for w w w< ≤

    1

    1 0 85

    = ⋅ − ⋅

    ct ctm

    w f .

    wσ 

    ( )1

    0 15= −

    −ctm

    ct c

    c

    . f w w

    w wσ 

    1 for w w≤

    1   c for w w w< ≤

    =   F c F 

    ctm

    Gw

     f α 

    1 2 0 15= −

    cctm

    G

    w . w f ( )=

    F max

     f d α 

    Dependency on maximum aggregate size is not

    significant

    5= ⋅

      F 

    cctm

    G

    w  f 1 =

      F 

    ctm

    G

    w  f 

    MC 2010MC 90

  • 8/17/2019 Lecture 01 - Di Prisco

    41/76

    Kupfer et al.

    1969

    Biaxial failure domain for concrete

    Strength under multiaxial states of stress

  • 8/17/2019 Lecture 01 - Di Prisco

    42/76

    g

    no continuous transition

    between triaxial and

    biaxial states of stress

    triaxial criteria does not

    exactly describe the

    uniaxial compressive

    strength

    Inconsistencies in MC 90:

    New in MC 2010:

    One failure

    criteria for all

    states of stress-1,6

    -1,4

    -1,2

    -1,0

    -0,8

    -0,6

    -0,4

    -0,2

    0,0

    0,2

    -1,6 -1,4 -1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2

    MC 90

    C12

    C20

    C30

    C40

    C50C60

    C70

    C80

    C90

    C100

    C110

    C120

    σ 2 f  /f cm

    σ 3 f  /f cm

    σ 3 f  /f cm

    σ 2 f  /f cm

    σ 1 f  /f cm

    σ 1 f  /f cm

    σ 1 f  /f cm

    σ 3 f  /f cm

    with f cm > 0 and

     f cm = f ck  + 8 N/mm²

    triaxial criteria forbiaxial states of stress

  • 8/17/2019 Lecture 01 - Di Prisco

    43/76

    Nelissen, 1972

    σ2 J2J33

  • 8/17/2019 Lecture 01 - Di Prisco

    44/76

    θθ = 60

    θ = 0

    modello a 5 parametri (Willam-Warnke,1975)

    σ1

    σ3

    σ2P(σ1,σ2,σ3)

    asse idrostatiooct3τ

    oct3σ

    ( ) ( ) ( )[ ]2132

    32

    2

    212oct

    9

    1J

    3

    2σ−σ+σ−σ+σ−σ==τ

     

      

        σ+σ+σ==σ

    3I

    3

    1 3211oct

    rξ 2321

    3

    oct

    3

    2 / 3

    2

    3

    J322cos

    J2

    J

    J

    2

    333cos

    σ−σ−σ=θ

    τ==θ

  • 8/17/2019 Lecture 01 - Di Prisco

    45/76

    #I*3C4B

    Bull5206

    7oal strength

  • 8/17/2019 Lecture 01 - Di Prisco

    46/76

    Conr5

    7oal strength

    steel

    ck ck 

    cd

    ck 1

    0

    ck 

    cd

    40

    3

    5.12

    40

    A

    A

    3

    7.0

    splittingA0 /A1≤ 320

    A0 /A1≥ 320spalling

    σu /f 

    c

    γ m

    splitting

    spalling

  • 8/17/2019 Lecture 01 - Di Prisco

    47/76

    oppure

    • In columns with steel liners [O.3274; 11.3.4.2] or in the main

    columns [EC8; 5.4.3.2.2. (7)] the action of confinement onconcrete can be considered:

  • 8/17/2019 Lecture 01 - Di Prisco

    48/76

    8hih strength9

  • 8/17/2019 Lecture 01 - Di Prisco

    49/76

    Material strength potential strength / ompressive strength of onretefrom ubes or ;linders made and matured in thelaborator; aording to standard onditions !

  • 8/17/2019 Lecture 01 - Di Prisco

    50/76

    >ualit; variation due to: omponent materials

    related mi design

    environment onditions !thermo'higrometrial"

    oasional ad?ustements !plant manteinane"

    ast eeution !ompation= uring"

    normal !or @aussian" log'normal

  • 8/17/2019 Lecture 01 - Di Prisco

    51/76

    5% 5%

    x

    0.05

    0.95F(x)

    f(x)

    x1

    x'k

    k's k''s

    x''k

    0.50

    x0

    5% 5%

    x

    0.05

    0.50

    0.95F(x)

    f(x)

    x = x01x'k

    ks ks

    x''k

    f (x) = 2

    2

    2s

    )x-(x-

    esπ 2

    1

      'kx  = x  – ks per F('kx ) = 0,05

      "kx  = x  – ks per F("kx ) = 0.95

    con k = 1,645 .

    ! " g

    'kx  = x  – k's per F(

    'kx ) = 0,05

    "kx  = x  + k''s per F(

    "kx ) = 0,95

      δ = 0,05 k' = 1,578 k'' = 1,713  δ = 0,10 k' = 1,513 k'' = 1,783  δ = 0,15 k' = 1,450 k'' = 1,854

    ( )2s2

    2

    ex2

    1)x(f 

    ξ−ξ−

    σπ=

    ( )( )2f 

    xln

    ξ−ξξ=σ

    Aeliabilit; inde

  • 8/17/2019 Lecture 01 - Di Prisco

    52/76

    x

    f(x)MODELLOANALITIC

    xx'k

    k's

    MODELLO

    AFFIDABILE

    CODA DA

    TRONCARE

    VALORI

    IMPOSSIBILI

    SENZA  SIGNIFICATO

      FISICO

    RANGO DEI VALORI POSSIBILI

    βs

    x'0

    PROBABILITA'

    FORMALE

    Aeliabilit; inde

    c1 =c

    c

    δ  β 

    δ 

     β   -1

     k'-1 

    s-x

    sk'-x 

    x

    x

    '

    0

    '

    k  ==

    CONTROLLO DELLA PRODUZIONE CO NTINUA TIVA DEL CALCESTRUZZO (MOD. UNI 10025/98)

  • 8/17/2019 Lecture 01 - Di Prisco

    53/76

    CLASSE C55 MISCELA R2 LINEA:Planar STABILIMENTO: Larco Astori - Carvico (BG)

    CEMENTO: TIPO I 52.5 R DOSE: 400 kg A/C = 0.45 SUPERFL. 3% INERTI ≤ 15 mm

    MATURAZIONE: Forzata a vapore   β  = 0,08 anno : 97 mese : novembre

    Data Data RESISTENZE PROVA UNIFORMAZ. VALORI VALORI LOTTO MOBILE (21gg)

    Prelievo Prova R1 R2 fj= 0.83Rm ETA' g fj/f f n f m s f k 

    1

    2

    3 01.12 75,9 76,5 63,2 28 1 63,2 17 64,1 1,74 61,5

    4 02.12 78,9 79,2 65,6 28 1 65,6 17 64,2 1,78 61,6

    5 03.12 79,2 78,4 65,4 28 1 65,4 17 64,3 1,79 61,7

    6 04.12 77,6 79,1 65,0 28 1 65,0 17 64,4 1,79 61,7

    7 05.12 81,3 79,3 66,6 28 1 66,6 17 64,6 1,86 61,8

    8 06.12 80,2 81,3 67,0 28 1 67,0 17 64,9 1,89 62,1

    9

    10 09.12 77,1 78,8 64,7 29 1,001 64,6 17 65,0 1,87 62,2

    11 09.12 80,2 78,2 65,7 28 1 65,7 17 65,2 1,83 62,5

    12 10.12 79,2 77,6 65,1 28 1 65,1 17 65,1 1,75 62,6

    13 11.12 80,2 80,4 66,6 28 1 66,6 17 65,2 1,77 62,6

    14 12.12 81,2 80,4 67,1 28 1 67,1 17 65,4 1,80 62,7

  • 8/17/2019 Lecture 01 - Di Prisco

    54/76

    PRESTRESSED

    CONCRETE

    Prestressed concrete

  • 8/17/2019 Lecture 01 - Di Prisco

    55/76

  • 8/17/2019 Lecture 01 - Di Prisco

    56/76

    constRHconstT ==compatibility

    ε

  • 8/17/2019 Lecture 01 - Di Prisco

    57/76

    )(

    const  RH  ,const T 

    cr  ,csh ,crel , p0 pel , pel ,c

    rel , p0 pel , pcr  ,csh ,cel ,c

    0 p pc

    ε ε ε ε ε ε 

    ε ε ε ε ε ε 

    ε ε ε 

    −−−−=

    +−=−−

    −=

    i

    red 

     p

    c

    red 

     p

    red 

     p p p pcc

    i

    lossi p p pelc p p

    c

    ccc

    i

    lossi pelc p pelccc

    el p p pelccc

     p

     A

     pc

     A

    c

     A

     N  N 

     N  N  N  A A A

     N  A E  A E  E 

     E  A

     N  A E  A E  N  A E  A E 

     N dAdA

     pc

    +−=

    +−=+−=+

    +−−=+

    =−++=+

    =+

    ∫∫

    0

    00

    ,0,

    ,0,,

    ,,

    )(

    )(

    )(

    σ 

    σ α σ 

    ε ε ε σ 

    ε ε ε ε ε ε 

    σ σ 

    equilibrium

    εP

    εP0

    εc

  • 8/17/2019 Lecture 01 - Di Prisco

    58/76

    Fibre Reinforced Concrete

  • 8/17/2019 Lecture 01 - Di Prisco

    59/76

    Equivalent

    diameter

    [mm]

    Minimum tensile strength

    [N/mm2]

    Alternated

    bending test

    R1 R2 R3 All theclass1) 2) 1) 2) 1) 2)

     Rm  Rp0,2  Rm  Rp0,2  Rm  Rp0,2  Rm  Rp0,2  Rm  Rp0,2  Rm  Rp0,2 Not failure

    0.15≤ d f  <

    0.50

    400 320 480 400 800 720 1080 900 1700 1360 2040 1700

    0.50≤ d f  <

    0.80

    350 280 450 350 800 640 1040 800 1550 1240 2015 1550

    0.80≤ d f    ≤

    1.20

    300 240 390 300 700 560 910 700 1400 1120 1820 1400

    1) For straight fibres

    2) For shaped fibres

    Table 2-1 – Resistance classes for steel fibres.

  • 8/17/2019 Lecture 01 - Di Prisco

    60/76

    CNR DT 204

    30 mm

  • 8/17/2019 Lecture 01 - Di Prisco

    61/76

    1 4 0 ° 

    30 mm.

       2 .   0  m  m

    2.0 mm.

    l / df = 48

       0 ,   6

       2

    fiber ontent (0kg3m$

    F

    lb= βl ≅ l/4

    τα=τππ

    α=τπ=f 

    f f bf 2

    f bf 

    dlVld

    dV4ldNF

    F = Fy lf =lcr

    5.0zoom w = 0.20 mm

    TRA0 med

  • 8/17/2019 Lecture 01 - Di Prisco

    62/76

    0.00 0.10 0.20displacement w (mm)

    0.0

    1.0

    2.0

    3.0

    4.0

      a  v  e  r  a  g  e   t  e  n  s   i  o  n     σ   t

       (   M   P  a

       )

    TRA4 med

    TRA8 med

    0.00 2.50 5.00deflection f (mm)

    0.0

    4.0

    8.0

    12.0

       l  o  a   d   P

       (   K   N   )

    zoomw = 5.00 mm

    FLE0 med

    FLE4 med

    FLE8 med

    60

    Redundant structure behaviour

  • 8/17/2019 Lecture 01 - Di Prisco

    63/76

    P

    [kN]

    0 5 1 0

    60

    440

    60

    30

    0

    w [mm]

    P

    w

    by di Prisco & Felicetti, 1997

    Vf = 0.8 [%]

    Vf = 0 [%]

    Redundant structure behaviour

  • 8/17/2019 Lecture 01 - Di Prisco

    64/76

    0 5 10 15 20

    displacement wt (mm)

    0

    10

    20

    30

    40

    load(kN)

    sandrubber

    0.4%

    Vf = 0.8%

    0.4%

    0.8%

    plain concrete 

     Pusplain

    23.4 kN

    by di Prisco & Felicetti, 2004

  • 8/17/2019 Lecture 01 - Di Prisco

    65/76

    P

    P P

    PPcr crP

    crack formationcrack 

    crack formation

    localization

    Softening material  Hardening material

    δu

  • 8/17/2019 Lecture 01 - Di Prisco

    66/76

     Behavior in compression Behavior in compression Behavior in compression Behavior in compression

  • 8/17/2019 Lecture 01 - Di Prisco

    67/76

    EN 14651

    Reference testReference testReference testReference test

  • 8/17/2019 Lecture 01 - Di Prisco

    68/76

    2

    sp

     j

    ,

    2

    3

    hb

    lF  f   j R   =

    hsp = 125 mm

    b = 150 mm

    S.L.E.

    f R,1

    f R,3

    S.L.U.

    Which difference with plain concrete ?Which difference with plain concrete ?Which difference with plain concrete ?Which difference with plain concrete ?

  • 8/17/2019 Lecture 01 - Di Prisco

    69/76

    slump flow diameter: 690 mm

    T50 2 seccement 425: 472 kg fine sand 0/4 850kg

    d 4/8 886 k

  • 8/17/2019 Lecture 01 - Di Prisco

    70/76

    ClassificationClassificationClassificationClassification

    T50 2 sec

    V-funnel time (0 min) 3.5 secV-funnel time (5 min) 4 sec

    L-box (standard) h2/h1 = 1

    fly ash: 45 kg

    water 200 l (w/b =0.39)superplast. 1.3%

    coarse sand 4/8 886 kg

    hooked-end fibres 65/35 50 kg

    4,33

    4,47

    3,77

    σNf

    Performance based designPerformance based designPerformance based designPerformance based design

  • 8/17/2019 Lecture 01 - Di Prisco

    71/76

    (5) Fibre reinforcement can substitute (also partially)conventional reinforcement at ultimate limit state if the

    following relationships are fulfilled:

    f R1k  /f Lk > 0.4 Eq. 5.X2

    f R3k  /f R1k > 0.5 Eq. 5.X3

    CMOD (mm)

    f LK

    0.5 2.50

    f R1k  f R3k 

    f gf gf gf g

    Which models?Which models?Which models?Which models?

  • 8/17/2019 Lecture 01 - Di Prisco

    72/76

    f Ftu = f R3 /30)2.05.0( 13

    3

    ≥+−−=   R RFtsu

    FtsFtu   f  f  f CMOD

    w f  f 

    145.0  RFts   f  f    =

     σ σ 

    FromFromFromFrom σσσσ----w tow tow tow to σσσσ----εεεε 17/32

  • 8/17/2019 Lecture 01 - Di Prisco

    73/76

    ε = w / lcs  σ  

    ε  ε Fu  ε  ε Fu 

     f Fts 

    σ  

    incrudente

    degradante

    rigido-plastico  f Ftu 

     f Ftu 

     f Ftu 

     f Ftu 

    Elastic-linear Rigid-plastic

    wu

    σ hardening

    softening

    w

     f Fts

     f Ftu

     f Ftu

    w

    rigid-plastic f Ftu

     f Ftu

    wu

    The characteristic structural lengthThe characteristic structural lengthThe characteristic structural lengthThe characteristic structural length

    18/32

  • 8/17/2019 Lecture 01 - Di Prisco

    74/76

    lcs = min{srm, y},

    srm is the average crack spacing

    In sections without traditional reinforcement under

    bending or under combined tensile – flexural andcompressive – flexural forces with resulting force external to

    the section, y = h is assumed. The same assumption can be

    taken for slabs.

    Influenza orientamento fibre (by Ferrara et al. 2008)

    Orientation factorOrientation factorOrientation factorOrientation factor

    22/32

  • 8/17/2019 Lecture 01 - Di Prisco

    75/76

       b  e  a  m    .

       1

       b  e  a  m    .

       2

       b  e  a  m    .

       $

    50mm

    150 mm150 mm150 mm 500 mm

    beam 7$

    beam 72

    beam 71   1   5   0  m

      m

       1   5   0  m  m

       1   5   0  m  m   5   0

      m  m

    castingdirection

    supposed flow lines

    0 2 & ) % 10

    CB !mm"

    0

    2000

    &000

    )000

    %000

    10000

       l  o  a   d   !   <   "

    beam 7$

    beam 71

    beam 72

    beam .2

    beam .1

    beam .$

    Orientation factor Orientation factor Orientation factor Orientation factor 

    by Ferrara et al., 2009

    23/32

  • 8/17/2019 Lecture 01 - Di Prisco

    76/76

    5.6.7 Orientation factor

    f Ftsd,mod=⋅f Ftsd / K f Ftud,mod=⋅f Ftud / K

    Isotropic fibre distribution is assumed K = 1.0For favourable effects K < 1.0

    For unfavourable effects K > 1.0

    Special tests can be used to determine the effect of fibre

    orientation due to casting and compaction in real structuralelements, by using structural specimens which better

    reproduce the material in the structural elements.