Lect8 Similarity

download Lect8 Similarity

of 20

Transcript of Lect8 Similarity

  • 7/30/2019 Lect8 Similarity

    1/20

    Similarity theory

    1. Buckingham Pi Theorem and examples

    Turbulent closure problem requires empirical expressions for

    determining turbulent eddy diffusion coefficients. The development

    of turbulence closure is based on observations not theory.

    We need to find an intelligent wayof organizing observational data.

    Similarity theory is a method to find relationships among variables

    based on observations.

    U

    We want to find the relationship between

    the cruising speed and the weight of airplane.

    2

    3

    velocity ( / )

    dimension ( )

    mass ( )

    acceleration of gravity ( / )

    air density ( / )

    U m s

    m

    W kg

    g m s

    kg m

    a. Define relevant variables and

    their dimensions.

    b. Count number of fundamental

    dimensions.kgsm ,,

  • 7/30/2019 Lect8 Similarity

    2/20

    c. Form n dimensionless groups

    where n is the number of variables

    minus the number of fundamental

    dimensions.

    235 n

    n ,..1

    221U

    Wg

    gravitational force

    lift force 32

    W

    mass of airplane

    mass of

    displaced air

    d. Measure as a function of1 2

    e. Further simplification; assume:3

    2 1~ constant constantW

    i.e.63/2222

    ~~~ UWWUUW

    )(f 21

  • 7/30/2019 Lect8 Similarity

    3/20

    Weight as a function ofcruising speed ( The

    simple science of flight by

    Tennekes, 1997, MIT press)

    Flying objects range

    from small insects toBoeing 747

    W~U6

    Speed (m/s)

    The great flight diagram

    Weigh

    t(Newtons)

  • 7/30/2019 Lect8 Similarity

    4/20

    Procedure of Buckingham Pi Analysis

    Step 1, Hypothesize which variables could be important to the flow.

    e.g., stress, density, viscosity, velocity, ..

    Step 2, Find the dimensions of each of the variables in terms of the

    fundamental dimensions. Fundamental dimensions are:

    L=length

    M=mass

    T=time

    K=temperature

    Dimensions of any other variables can be represented by these

    fundamental dimensions.

    1-1-

    0

    2-1-

    1-

    3-

    TMLtCoefficienViscosity

    LheightLayerBoundaryH

    Lroughnessz

    TMLstresswindLTtyvelociU

    MLdensity

    Example

  • 7/30/2019 Lect8 Similarity

    5/20

    H;,,;zU,,H;U,, 0

    Step 3, Count the number of fundamental dimensions in the problem

    there are 3 dimensions in this example: L, M, T

    Step 4, Pick up a subset of original variables to become key variables,

    subject to the following restrictions:

    The number of key variables must equal the number of fundamental dimensions.All fundamental dimensions must be represented in terms of key variables.

    No dimensionless group is allowed from any combination of key variables.

    e.g. Pick up 3 variables:

    Invalid set: U;,,;zH,, 0

    Step 5, Form dimensionless equations of the remaining variables in terms of

    the key variables.

    e.g.

    ihg0

    fed

    cba

    UHz

    UH

    UH

    Step 6, Solve for the unknowns a, b, c, d, e, f, g, h, i

    e.g.

    2c0,b1,a

    )LT(L)()ML(TML

    UH

    c1-ba3-2-1-

    cba

  • 7/30/2019 Lect8 Similarity

    6/20

    Step 7, Form dimensionless (PI) groups.

    e.g.,,,

    H

    z3UH2U

    10

    2

    Step 8, Form other PI groups if you want as long as the total number is the same.

    e.g.,,

    33

    2 154

    ,,,00

    2 zH

    5Uz4U1

    Which PI groups are right?

    They are all right, but some groups are more commonly used and follow

    Conventions.

    Next, find relations betweenPIs through experiments.

    roughnessrelative,number;Reynolds,H

    z3

    UH1 0

    2

  • 7/30/2019 Lect8 Similarity

    7/20

    Surface layer similarity (Monin Obukhov similarity)

    Surface layer: turbulent fluxes are nearly constant. 20-30 m

    Relevant parameters:

    )sm()''w(

    velocityfrictional,)sm()wv()wu(/||u

    )m(z

    32g

    222/1222*

    ov

    ooo

    v

    sizeeddyorheight

    Say we are interested in wind shear: zu

    Four variables and two basic units result in two dimensionless numbers, e.g.:

    3*

    0

    * u

    z)w(g

    zu

    uz and v

    v

    The standard way of formulating this is by defining:

    0

    3*

    )w(

    u

    gL vv

    Monin-Oubkhov length

  • 7/30/2019 Lect8 Similarity

    8/20

    constantKarman-Von

    0.35(0.4),

    ),()(Lz

    zu

    uz

    *

    mm

    PI relation

    stableunstable

    Empirical gradient functions to

    describe these observations:

    0510)161(

    4/1

    forfor

    m

    m

    Note that eddy diffusion coefficients

    and gradient functions are related:

    zuwu mk

    ,0wvAssuming

    *zu1

    m

    m

    k

  • 7/30/2019 Lect8 Similarity

    9/20

    Now we are interested in the vertical gradient of virtual potential temperature.

    z

    v

    We can form a new variable*

    * u

    )'w( o

    Again, four variables and two basic units result in two dimensionless numbers,

    Lz

    zz and*

    v

    ),()(Lz

    zz

    *

    hhv

    PI relation

    Similarly, we have

    ),()(Lz

    z

    q

    qz

    * qq

    Normally, ),()( qm

  • 7/30/2019 Lect8 Similarity

    10/20

    Surface wind profile

    1. Neutral condition 0Lz 1)0( m

    1zu

    uz

    *

    )ln(u0

    *

    zzu

    )exp(

    zz

    *uu0

    disappear.windsreheight whetheisz0)ln(

    uu

    0zz*

    Aerodynamic roughness length

    i

    N

    1i iti

    N

    1i it0 whL

    25.0

    shS

    25.0

    z

    elementiofwidth:wlength;total:L

    elementiofarea:selement;iofheight:harea;total:S

    it

    iit

    Over land

    Over water

    Kondo and Yamazawa

    (1986)

    0.016,guz

    2

    *0

  • 7/30/2019 Lect8 Similarity

    11/20

    If you have observations at three levels,

    you may determine displacement as,

    )ln(

    u

    )ln(

    u

    )ln(

    uu

    0

    3

    0

    2

    0

    1

    z

    dz3

    z

    dz2

    z

    dz1

    *

    0z

    d

    Displacement distance

    )ln(u0

    *

    zd-zu

    )ln()ln(uu

    uudz

    dz

    dz

    dz

    13

    12

    1

    2

    1

    3

    2. Non-neutral condition 0Lz

    051

    0)161( 4/1

    for

    for

    m

    m

    051

    0)161( 2/1

    for

    for

    hq

    hq

  • 7/30/2019 Lect8 Similarity

    12/20

    )]()[ln(u0

    *

    zzu

    m

    Integral form of wind and temperature profiles in the surface layer

    0,5)(

    0,)161(,tan2)ln()ln(2)( 4/12

    12

    12

    1 2

    for

    forxx

    m

    xxm

    */uu

    )ln(0zz

    0,L

    0,0L

    0,0L

  • 7/30/2019 Lect8 Similarity

    13/20

    )()ln(t*

    0

    zz)(

    h

    vv

    Integral form of wind and temperature profiles in the surface layer

    0,5)(

    0,)161(),ln(2)( 2/121

    for

    fory

    h

    yh

    t0 zzat vv

    0t zzNormally, Similarly,

    )()ln(q*

    0

    zz

    q

    )qq(

    q

    )()( hq

    q0 zzatqq

    0t zzNormally,

  • 7/30/2019 Lect8 Similarity

    14/20

    Bulk transfer relationsHow to estimate surface fluxes using conventional surface observations,

    surface winds (10m), surface temperature (2m),?

    ).qq(u)qw(

    ),(u)w(

    ,uu

    00

    v0v0v

    22*

    Q

    H

    D

    C

    C

    C

    :,,QHD

    CCC Drag coefficient of momentum, heat, and moisture.

  • 7/30/2019 Lect8 Similarity

    15/20

    ,)(2

    0

    2*

    )]()z/z[ln(

    2u

    u

    mDC

    ,)(

    20

    2*

    )]z/z[ln(

    2u

    u DNC

    ,)]()z/z)][ln(()z/z[ln( t0

    2

    hmHC

    ,)]z/z)][ln(z/z[ln( t0

    2HNC

    ,)]()z/z)][ln(()z/z[ln( q0

    2

    qmQC

    ,)]z/z)][ln(z/z[ln( q0

    2QNC

    0-0.5 0.5

    1.0

    1.5

    DN

    D

    C

    C

    Lz

    2

    z

    z 100

    5zz 100

    0-0.5 0.5

    1.0

    1.5

    HN

    H

    C

    C

    Lz

    2zz 100

    5zz 100

  • 7/30/2019 Lect8 Similarity

    16/20

    Flux footprint

    General concept of the flux footprint. The darker the red color,

    the more contribution that is coming from the surface area certaindistance away for the instrument.

    Relative contribution of the land surface area to the flux for two

    different measurement heights at near-neutral stability.

  • 7/30/2019 Lect8 Similarity

    17/20

    Relative contribution of the land surface area to the flux for two different surface

    roughnesses at near-neutral stability.

    Relative contribution of the land surface area to the flux for two different casesof thermal stability.

  • 7/30/2019 Lect8 Similarity

    18/20

    Bulk transfer relationsHow to estimate surface fluxes using conventional surface observations,

    surface winds (10m), surface temperature (2m),?

    ).qq(u)qw(

    ),(u)w(,uu

    00

    v0v0v

    22*

    Q

    H

    D

    C

    CC

    :,, QHD CCC Drag coefficient of momentum, heat, and moisture.

    numberStanton:HC numberDalton:QC

  • 7/30/2019 Lect8 Similarity

    19/20

    ,)(2

    0

    2*

    )]()z/z[ln(

    2u

    u

    mDC

    ,)(

    20

    2*

    )]z/z[ln(

    2u

    u DNC

    ,)]()z/z)][ln(()z/z[ln( t0

    2

    hmHC

    ,)]z/z)][ln(z/z[ln( t0

    2HNC

    ,)]()z/z)][ln(()z/z[ln( q0

    2

    qmQC

    ,)]z/z)][ln(z/z[ln( q0

    2

    QNC

    0-0.5 0.5

    1.0

    1.5

    DN

    D

    C

    C

    Lz

    2

    z

    z 100

    5zz 100

    0-0.5 0.5

    1.0

    1.5

    HN

    H

    C

    C

    Lz

    2zz 100

    5zz 100

  • 7/30/2019 Lect8 Similarity

    20/20

    Problem: Assuming we have wind observations but no temperature

    observations at two levels, say, 5 m and 10 m, in the surface layer,

    can we estimate surface roughness and stability?

    ),()ln( Lz

    z

    z

    u

    u 10

    0

    10

    *

    10

    ),()ln( Lz

    z

    z

    u

    u 5

    0

    5

    *

    5

    ),()()ln(L

    z

    L

    z

    z

    z

    u

    )uu( 510

    5

    10

    *

    510

    0)ln(:Neutral5

    10

    *

    510

    z

    z

    u

    )uu(

    )()ln(

    ,0)ln(:Stable

    L

    z

    L

    z

    z

    z

    u

    )uu(

    z

    z

    u

    )uu(

    510

    5

    10

    *

    510

    5

    10

    *

    510

    4/1Lz

    51

    101

    x1

    x1

    )x1(

    )x1(

    z

    z

    u

    )uu(

    z

    z

    u

    )uu(

    )16(1x

    )}xtanx(tan2]ln[]{ln[)ln(

    ,0)ln(:Unstable

    25

    210

    25

    210

    5

    10

    *

    510

    5

    10

    *

    510