Lec 20 Multivar Cauchy Method

download Lec 20 Multivar Cauchy Method

of 12

Transcript of Lec 20 Multivar Cauchy Method

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    1/26

    Multi-variable Unconstrained Optimization:

    Cauchy method and Newton Method

    Dr. Nasir M Mirza

    Optimization Techniques Optimization Techniques 

    Email: [email protected]

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    2/26

    In this Lecture …

    • In this lecture we will discuss two important methods

    that deal with Multi-variable Unconstrained

    Optimization:

    • Cauchy’s Steepest Ascent Method

    • Newton's Method

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    3/26

    Cauchy’s Steepest Ascent Method

    • The search direction used in Cauchy’s method is the

    negative of the gradient at any particular point x*.

    • Since this direction gives maximum descent in

    function values, it is also known as the steepest

    descent method.

    • At every iteration the derivative is computed at

    current point and a unidirectional search is performed

    in negative to this derivative direction to findmaximum.

    • The maximum becomes the current point and search

    is continued from this point.

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    4/26

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    5/26

    Example: Suppose f ( x, y) = 2 xy + 2 x –  x2 – 2 y2

    Using the steepest ascent method to find the next point if we aremoving from point (-1, 1).

     y x y

     f  x y

     x

     f 42222   −=

    ∂∂−+=

    ∂∂

    ⎥⎦⎤⎢

    ⎣⎡−

    =⎥⎦⎤⎢

    ⎣⎡

    −−−−+=

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    −∂

    −∂

    =∇−6

    6)1(4)1(2

    )1(22)1(2

    )1,1(

    )1,1(

    ),1,1(At

     y

     f  x

     f 

     f 

    )6161()(Let hh,- f h g    −+=

    Next step is to find h that maximize g (h)

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    6/26

    2.0036072

    yields0)('Setting

    180727...)6161()(

    222)(

    2

    22

    =⇒=−

    =

    −+−==−+=

    −−+=

    hh

    h g 

    hhhh,- f h g 

     y x x xy x f 

    If h = 0.2 maximizes g (h), then x = -1+6(0.2) = 0.2 and y = 1-6(0.2) = -0.2 would maximize f ( x, y).

    So moving along the direction of gradient from point (-1,1), we would reach the optimum point (which is our nextpoint) at (0.2, -0.2).

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    7/26

    EXERCISE 3.4.2

    Consider the Himmelblau

    function:

    Minimize:f(x, y) = (x2 + y – 11)2 + (x + y2

     – 7)2

    •Step 1: In order to ensure

    proper convergence, a large value

    of M (= 100) is usually chosen.

    The choice of M also depends on the available time and computing

    resource. Let us choose M = 100, an initial point x(0) = (0, 0)T, and

    termination parameters ε1 = ε2 = 10-3

    . We also set k = 0.

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    8/26

    EXERCISE 3.4.2

    3D Graph

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    9/26

    Example

    % Matlab program to

    draw contour of function

    [X,Y] = meshgrid(0:.1:5);

    Z = (X.*X + Y -11.).^2. +(

    X + Y.*Y - 7.).^2.contour(X, Y, Z, 150);

    colormap(jet); Minimum point

    Contour graph:

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    10/26

    EXERCISE 3.4.2

    h

    h x f h x f 

     x

     f  ii

    i 2

    )()(   −−+=

    Step 2:

    The derivative at x(0) = (0, 0)T is

    first calculated

    and found to be (-14, -22)T, whichis identical to the exact derivative

    at that point (Figure 3.12).

    Step 3:The magnitude of the derivative vector is not small and k =a < M =

    100. Thus, we do not terminate; rather we proceed to Step 4.

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    11/26

    EXERCISE 3.4.2

    • Step 4:  At this step, we need to perform a line search from x(0)

    in the direction - f(x(0)) such that the function value is minimum.

    •  Along that direction, any point can be expressed by fixing a value orthe parameter a(0) in the equation:

    x = x(0) - a(0) f(x(0)) = (14a(0), 22a(0)) T .

    1.0

    yields)1,0(0)('Setting

    )714484)(14968(2)1122196)(22392(2)(

    )714484()1122196()2214()(

    )7()11()(

    22

    2

    2222

    2222

    =

    =

    −+++−++=′

    −++−+==

    −++−+=

    a

    region for a g 

    aaaaaaa g 

    aaaaaa, f a g 

     y x y x x f 

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    12/26

    EXERCISE 3.4.2

    • Thus, the minimum point along the search direction isx(1) == (1.788, 2.810)T.

    • Step 5: Since, x(1) and x(0) are quite different, we donot terminate; rather we move back to Step 2. Thiscompletes one iteration of Cauchy's method. The totalnumber of function evaluations required in this iterationis equal to 30.

    • Step 2: The derivative vector at this point, computednumerically, is (-30.7, 18.8) T .

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    13/26

    EXERCISE 3.4.2

    • Step 3: This magnitude of the derivative vector is not

    smaller than ε1. Thus, we continue with Step 4.

    • Step 4: Another unidirectional search along (30.70, - 

    18.80) T  from the point x(1) = (1.788, 2.810)T using

    the golden section search finds the new point:

    • x(2) = (3.00, 1.99)T with a function value equal to 0.018.

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    14/26

    Newton’s Method

    • This method uses second – order derivatives to createsearch directions.

    • This allows faster convergence to the minimum point.• Consider the first three terms in Taylor’s series

    expansion of a multivariable function, it can be shown

    that the first order optimality condition will be satisfiedif following search direction is used:

    [ ] )()( )(1

    )(2)( k k k   x f  x f  s   ∇∇−=  −

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    15/26

    Newton's Method

    One-dimensionalOptimization

    Multi-dimensionalOptimization

     At theoptimal

    Newton's

    Method

    0)(   =∇   x f 0)('   =i x f 

    )(1

    1 iiii  f   xHxx   ∇−=  −

    +

    )(")('

    1

    i

    iii

     x f  x f  x x   −=+

    Hi is the Hessian matrix (or

    matrix of 2nd

    partialderivatives) of f evaluated

    at xi.)(')(" 1 ii  x f  x f 

      −

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    16/26

    Newton's Method

    • Converge quadratic fashion.

    • May diverge if the starting point is not close

    enough to the optimum point.

    • Costly to evaluate H-1.

    )(11 iiii  f   xHxx   ∇−=  −

    +

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    17/26

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    18/26

    EXERCISE 3.4.3

    3D Graph

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    19/26

    Example on Newton Method

    % Matlab program todraw contour of function

    [X,Y] = meshgrid(0:.1:5);

    Z = (X.*X + Y -11.).^2. +(

    X + Y.*Y - 7.).^2.

    contour(X, Y, Z, 150);colormap(jet);

    Minimum point

    Contour graph:

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    20/26

    Example on Newton Method

    ( ) ( )

    ( ) ( )( ) ( )

    [ ] .22000.42 and2214),0,0(At

    621624

    2442412

    1422222272112

    14424472114

    711),(

    T

    2

    2

    3222

    2322

    2222

    ⎥⎦

    ⎤⎢⎣

    −=−−=∇

    ⎥⎦

    ⎤⎢⎣

    ++−+

    +−+=

    −++−−=−++−+=∂

    −+−+=−++−+=

    −++−+=

    H

    H

     f 

     y x y x

     y x y x

     y y xy y x y x y y x y

     f 

     y x xy x y x y x x x

     f 

     y x y x y x f 

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    21/26

    Example on Newton Method

    ( ) ( )

    [ ]

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    −=

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    −⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    −−⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

    ∇−=

    ⎥⎦⎤⎢

    ⎣⎡ −

    −=−−=∇

    −++−+=

    a

    a

    a f a x x

     f 

     y x y x y x f 

    333.0

    22

    14

    420

    022

    9240

    0)0()1(

    .22000.42 and2214),0,0(At

    711),(

    1

    T

    2222

    H

    H

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    22/26

    Example on Newton Method

    • Performing a unidirectional search along thisdirection, we obtain value of a = -3.349.

    • Since this quantity is negative, the functionvalue does not reduce in the given searchdirection.

    • Instead, function value reduces in the oppositedirection.

    • This shows that search direction in Newtonmethod may not always be descent.

    • When this happens we restart with a new point.

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    23/26

    Example on Newton Method

    Now again select a new initial point x(0) = (2, 1)T,

    and function value at this point is f(x(0)) = 52.

    Step 2: The derivative at this point is calculated as (-57, -24)T.

    Step 3: Since the termination criteria are not met we go to the step 4.Step 4: At this point the Hessian is given as:

    ( ) ( )

    ( ) ( )

    ( ) ( )

    [ ] .510

    1010 and2457),1,2(At

    32224

    2442412

    1422222272112

    14424472114

    711),(

    T

    2

    2

    3222

    2322

    2222

    ⎥⎦⎤⎢

    ⎣⎡=−−=∇

    ⎥⎦

    ⎤⎢⎣

    ++−+

    +−+=

    −++−−=−++−+=∂

    −+−+=−++−+=∂∂

    −++−+=

    H

    H

     f 

     y x y x

     y x y x

     y y xy y x y x y y x y

     f 

     y x xy x y x y x x x f 

     y x y x y x f 

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    24/26

    Example on Newton Method

    ( ) ( )

    [ ]

    ⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ 

    +

    −=

    ⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ 

    −⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ 

    −−⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛ =

    ∇−=

    ⎥⎦⎤⎢

    ⎣⎡=−−=∇

    −++−+=

    a

    a

    a f a x x

     f 

     y x y x y x f 

    6.61

    9.0224

    57

    1010

    105

    501

    2)0()1(

    .510

    1010 and2457),0,0(At

    711),(

    1

    T

    2222

    H

    H

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    25/26

    Example on Newton Method

    •  A unidirectional search along this directionreveals that the minimum occurs at a = 0.34

    • Since this quantity is positive, we accept this.• The new point is then (1.694, 3.244) and

    function value is 44.335 which is smaller than

    the previous point value of 52.• It means we are going in right direction.

    • When we continue for next two iterations we

    reach at point (3.021, 2.003)T with f = 0.0178;• Hence answer is point (3, 2)T for this case when

    we go further.

  • 8/9/2019 Lec 20 Multivar Cauchy Method

    26/26

    EXERCISE 3.4.3

    • This method is effective for initial points close to the

    optimum.

    • This demands some knowledge of the optimum point.

    • Computation of the Hessian matrix and its inverse is

    computationally expensive.