LC-MSMS (EN)

download LC-MSMS (EN)

of 27

Transcript of LC-MSMS (EN)

  • 8/19/2019 LC-MSMS (EN)

    1/69

    1

    INTRODUCTION TO LC-MS/MS

    Presented by: Huỳnh Khánh Duy – Application Manager

    TP. HCM 09/2013HKDUY 2013

    2

    CHROMATOGRAPHY

    Solvent

     C ol    u

    mn

    t

    0

    HKDUY 2013

  • 8/19/2019 LC-MSMS (EN)

    2/69

    3

    Stationary phase

    Flow of mobile phase

    CHROMATOGRAPHY

    HKDUY 2013

    4

    CHROMATOGRAPHY

    Strong interaction

    Weak interaction

    HKDUY 2013

  • 8/19/2019 LC-MSMS (EN)

    3/69

    5

    HPLC

    HKDUY 2013

    6

    HPLC

    A

    B

    C

    D

    E

    HKDUY 2013

    Sample

    Chromatogram

    0 5 10 15 20

    Time (minutes)

         A      b    u    n      d    a    n    c    e

    A

    B

    C

    D

    E

  • 8/19/2019 LC-MSMS (EN)

    4/69

    7

    LC-MS

    HKDUY 2013

    LC-MS = LC (Liquid Chromatographer) coupled to MS (Mass Spectrometer).

    LC: separation.

    MS: detection.

    Compounds have a unique mass number according to their structure. This mass

    number is measured by a mass spectrometer.

    8

    MASS SPECTROMETER 

    HKDUY 2013

    Molecules cannot be measured directly by MS → They have to be ionized.

    From mass spectrometer:

    Information about the molecules (molecular weight-related ions),

    Information about forcibly dissociated fragment ions (Collision Induced

    Dissociation; CID), and product ions generated from specific ions.

    M

    M

    H+

    M

    H+

    H+ bound H+

    removed

    CID

    Fragment ions

    Specific

    compound

    CID

    Product ions generated from specific ions

    Monitoring specific product ions = TQ MRM

  • 8/19/2019 LC-MSMS (EN)

    5/69

    MASS SPECTROMETER 

    HKDUY 2013

    CH3COCH3

    Sample

    Inlet

    CH3+COCH3

    Ionization

    & Adsorptionof Excess Energy

    Mass Analysis

    CH3C+OCH3

    +COCH3

    +CH3

    +

    COH

    Fragmentation

    (Dissociation)

    Detection

    9

    10

    MASS SPECTROMETER 

    HKDUY 2013

    194

    67 109

    5582

    42

    16513694

    40   60   80   100   120   140   160   180   200

    Mass (amu)

    Mass Spectrum

    N

    C

    C

    NH

    C

    O

    C

    O

    N

    N

    C H

    C 3H

    C3H

    MassSpectrometer

    Typical sample: isolatedcompound (~1 nanogram)

  • 8/19/2019 LC-MSMS (EN)

    6/69

    11

    LC-MS

    HKDUY 2013

       S   i  g  n  a   l   I  n   t  e  n  s   i   t  y

    Time

    mass-to-charge ratio (m/z) of ions

       R  e   l  a   t   i  v  e   I  n   t  e  n  s   i   t  y

    Chromatogram

    Mass SpectrumMass spectra:

    - Molecular weight

    - Chemical structrure

    Base peak: 100%intensity

    12

    LC-MS

    HKDUY 2013

    M/Z

    M/Z

    M/Z

  • 8/19/2019 LC-MSMS (EN)

    7/69

    13

    LC-MS

    HKDUY 2013

    14

    LC-PDA vs LC-MS

    HKDUY 2013

    10 ppb

    (1)(2)(3)

    (4)(5)

    m/z

    m/z

    (5)

    (4)

    time

    (3)m/z 193(2)m/z 582

    (1)TIC

    MS spectrainit.

    init.

    MS

    20 ppm

    time

    (3) 210 nm(2) 580 nm

    (2)

    (3)

    (4)

    (5)

    UV spectra

    nm

    nm

    (5)

    (4) AU

     AU

    PDA (photodiode array)

  • 8/19/2019 LC-MSMS (EN)

    8/69

    15

    LC vs LC-MS

    HKDUY 2013

    If an impurity

    coincides with the

    target component:

    Mobile phase preparation errors

    Fluctuations in peak retention times

    Peak misidentification

     A B

     A B

     An impurity coincides with the target:

    Changes in area value

    Incorrect quantitation

    16

    LC vs LC-MS

    Merits

    HKDUY 2013

    The greatest merit in using an MS instrument as an LC detector:

    In addition to retention times, mass information for each peak can be obtained simply at

    the same time.

    m/z 264 m/z 278m/z 267 m/z 281The peaks (including

    those that cannot be

    separated by time) can be

    separated using mass

    information.

    This reduces the risk of

    qualitative and

    quantitative errors.

    Mass information is a powerful tool for reducing the risks

    associated with LC analysis, such as the following:

    Peak identification (i.e., qualitative) errors

    Quantitative errors due to the elution of

    unpredicted impurities

  • 8/19/2019 LC-MSMS (EN)

    9/69

    17HKDUY 2013

    A:100

    D:150B:100

    C:150m/z=150

    TIC

    m/z=100

    A

    B

    C D

    LC vs LC-MS

    18HKDUY 2013

    LC vs LC-MS

    - 1 8 -

    MS

    PDA

    200 300 400 500 600 m/z

    0e3

    500e3

    1000e3

    1500e3

    Int.

    325.1

    224.1156.0306.2   432. 5 564. 5608. 4476.0520.4388.4

    Impurity Profiling of 

    medicine tablet 

    200 300 400 500 600 m/z

    0e3

    50e3

    100e3

    150e3

    Int.

    339.1

    306.8

    299.9180.2   564.0375.1 433.1

    200 300 400 500 600 m/z

    0e3

    100e3

    200e3

    300e3

    Int.

    311.1

    352.1262.1153.0   345.2 477.0391.7   592. 8 695. 7521.5

    MW = 328 MW = 330

    Impurity

    Main product

  • 8/19/2019 LC-MSMS (EN)

    10/69

    19

    LC vs LC-MS

    0.0 1.0 2.0 3.0 4.0 5.0 6.0

    0.0

    2.5

    5.0

    7.5

    10.0

    (x100,000)

     VER:m/z 455.0 (2)PRO:m/z 331.9 (6) ALB:m/z 266.0 (60)PIR:m/z 260.0 (4) ANT:m/z 189.0 (6)

         A     L     B

         V     E     R

         P     R      O

         P     I     R

         A     N     T

    MS detector

    min.

    Int.

    0.0 1.0 2.0 3.0 4.0 5.0

    min.

    -2.0

    -1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    mAU (x10)

    254nm,4nm (1.00)

    6.0

    Int.

    Chromatograms of plasma sample

         A     L     B

         V     E     R

         P     R     O

         P     I     R     A

         N

         T

    ANT :Antipyrine

    PIR : Piroxicam

    ALB : AlbedazolePRO : Propraolol

    VER : Verapamil

    How can these

    compouinds can bequantified

    compounds

    PDA detector

    20

    LC vs LC-MS

       A   U

    -0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    Minutes0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00

    LansoprazoleUV: 254nm

    Detection of 0.03% impurity in product

           A       U

    -0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    Minutes

    0 .5 0 1 .0 0 1 .5 0 2 .0 0 2 .5 0 3 .0 0 3 .5 0 4 .0 0 4 .5 0 5 .0 0 5 .5 0 6 .0 0 6 .5 0 7 .0 0 7 .5 0 8 .0 0 8 .5 0 9 .0 0 9 .5 0 1 0.0 0

    SIR: 298.22 m/z

       I  n   t  e  n  s   i   t  y

    0.0

    2.0x105

    4.0x105

    6.0x105

    8.0x105

    1.0x106

    1.2x106

    1.4x106

    1.6x106

    1.8x106

    2.0x106

    Minutes4. 80 5. 00 5.20 5.40 5.60 5.80 6.00

    S/N = 870

    Impurity

           A       U

    -0.00180

    -0.00175

    -0.00170

    -0.00165

    -0.00160

    -0.00155

    -0.00150

    -0.00145

    -0.00140

    -0.00135

    -0.00130

    -0.00125

    Minutes

    4.80 5.00 5.20 5.40 5.60 5.80 6.00

    0.03%

    S/N = 2

  • 8/19/2019 LC-MSMS (EN)

    11/69

    21

    LC-MS

    Qualification

    HKDUY 2013

    Retention time of a compound is identical in same conditions (column,

    tempearature, flow rate, etc.).

    Sample Injection

    Standard sample

    (mixture of A and B)

    Unknown sample

    Compound A

    t A

    Compound B

    tB

    Mass spectrum:

    Confirmation of existence.

    Impurity and purity check.

    Identification (library).

    22

    LC-MS

    Quantification

    HKDUY 2013

    Amount of a compound that passes through the detector is a function of Peak

    area (or peak height)

    Vμ L of 100 ppmstandard solution of A

    Compound A

    VμL of sample

    Compound A t A

     Area: 700

    10

    0

    Conc.

    (ppm)

    100

    0Peak

     Area

    700

    70

  • 8/19/2019 LC-MSMS (EN)

    12/69

    23

    LC-MS

    HKDUY 2013

    HPLC Mass analyzer  Interface

     Aqueous/organicsolvent with buffers

    Non-volatile analyte

    molecules

     A high vacuum

    environmental

     Analyze ions, m/z

    Remove

    solvent

    Ionize analytes

    Direct introduction of LC elute into MS and use of EI ion source (like in GC/MS) are

    not the method of choice.

    • Research on interfacing HPLC to MS began in the 1970s; API (atmospheric

    pressure ionization) sources were commercialized after 1987.

    • API interfaces: electrospray ionization (ESI), atmospheric pressure

    chemical ionization (APCI) and AP photo ionization (APPI).

    24

    LC-MS

    HKDUY 2013

    Mass Analyzer Interface

    TMP   TMP

    Rotary Pump

    Atmospheric

    Pressure   10-310-4 Pa80150 Pa

    Q-array Octopole Quadrupole Detector  Ionization probe

    HPLC

    Mass spectrometer 

  • 8/19/2019 LC-MSMS (EN)

    13/69

    25

    LC-MS

    Configurations

    HKDUY 2013

    Mass Analyzer Interface

    -Quadrupole (Q)

    - Ion Trap (IT)

    - TOF

    - Tandem/Hybrid

    - ESI

    -APCI

    -APPI

    -Nanospray

    HPLC Ion Transmission Ion Detector  

    26

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    Electrospray Ionization (ESI)

    Extremely soft ionization method. Suitable for theionization of high-polarity compounds.

    Hard ionization method than ESI. Suitable for the

    ionization of medium- to low-polarity compounds.

    Atmospheric Pressure ChemicalIonization (APCI)

    DUIS

    Dual-ion source for both ESIand APCI.

    Gas capillary

    Liquidsample

    Nitrogen gas

    Charged droplet formation

    Ion evaporationHigh voltage (3 to 5 kV)+ creates positive ions- creates negative ions

    Liquidsample

    Nitrogen gas

    Heater

    Heater

    Corona needle

    Sample molecule

    Solvent molecule

    High voltage (3 to 5kV)+ creates positive ions- creates negative ions

    Functionalgroups

  • 8/19/2019 LC-MSMS (EN)

    14/69

    27

    MASS SPECTROMETER 

    Ionization methods – ESI

    HKDUY 2013

    28

    MASS SPECTROMETER 

    Ionization methods – APCI

    HKDUY 2013

  • 8/19/2019 LC-MSMS (EN)

    15/69

    29

    MASS SPECTROMETER 

    Ionization methods – ESI

    HKDUY 2013

    ESI & APCI normally do not cause fragmentation of  

    molecules - Soft ionization

    Main ions generated:

    Protonated molecule [M+H]+ at m/z(Mr+1).

    Deprotonated molecule [M-H]- at m/z(Mr-1).

    Other ions often observed:

    Sodium adduct ions [M+Na]+.

    Solavted ions [M+H+CH3CN]+

    , [M+H+CH3OH]+.

    Neutral lose of small molecules.

    30

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    50 100 150 200 250 300 350 400 m/z0e3

    10e3

    20e3

    30e3

    40e3

    Int.

    377

    399

    Riboflavin C17H20N4O6

    Exact Mass: 376.14

      m/z

    Int.

     

         

    (a) GCMS, EI spectrum of riboflavin (vitamine B2)

    N

    N

    NH

    N

    O

    O

    OH

    OH

    HOOH

    [M+H]+

    [M+Na]+

    (b) LCMS, ESI (API) spectrum of riboflavin

  • 8/19/2019 LC-MSMS (EN)

    16/69

    31

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    NN

    H

    N

    O

    O

    NH2(H3C)3C

    Diketometribuzin (DK) C7H12N4O2

    Exact Mass: 184.10Mol. Wt.: 184.20

    50 100 150 200 250 300 350 400 450   0e3

    50e3

    100e3

    150e3

    200e3

    250e3

    300e3

    350e3

    185

    197

    207 227391105 295167   257142   268 317 425280   369128 155 243 404341   49766   82 46945357 482

    50 100 150 200 250 300 350 400 450   0e3

    100e3

    200e3

    300e3

    400e3

    500e3

    183

    243168153 265207113 228   28189 356297 368141 322193 461250 435 484416405 4997150

    1

    APCIPositive

    mode

    APCINegative mode

    32

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    150 200 250 300 350 400 450 500 550 m/z0e3

    250e3

    500e3

    750e3

    1000e3

    Int.375

    433 474

    297315

    357333   449255 393350237203141 457279163 411   490510 534 580553

     

    150 200 250 300 350 400 450 500 550 m/z0

    25000

    50000

    75000

    100000

    Int.409

    349 445173   574537368273 335 395246225106 201   479426134 508

     

    OH

    H3C  H

    OHCH3

    O

    O

    CH3

    OH

    CH3

    CH3

    CH2

    O

    H

    O

    CH3

    C22H34O7

    Forskolin

    MW: 410

    Positive

    Negative

    LC conditions: ODS column (75x4.6

    mm), CH3CN/water = 80/20

    Interface: ESI

    [M-H]-

    [MH-2H2O]+

    [M+H]+

    ESI-Q spectra by LCMS-2010EV 

  • 8/19/2019 LC-MSMS (EN)

    17/69

    33

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    MS mode Mass peak

    (m/z)

    Ion Type of Ion

    Positive

    474

    433

    411

    [M+Na+ACN]+ 

    [M+Na]+ 

    [M+H]+ 

    Solvated-Na-adduct ion

    Na-adduct ion

    Protonated ion

    393

    375

    357

    333

    315

    297

    [M+H-H2O]+ 

    [M+H-2H2O]+ 

    [M+H-3H2O]+

    [M+H-H2O-HAc]+ 

    [M+H-2H2O-HAc]+ 

    [M+H-3H2O-HAc]+ 

    Protonated ion with neutral

    loss of small molecules

    Negative 409 [M-H]-  Deprotonated ion

    No simple Na-adduct ion can form in negative mode.

    34

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    Sodium adduct ions:

    Na+ ions attach (non-covalent interaction) to the

    target molecules M to form [M+Na]+

    Solvent adduct ions:

    Solvent molecules attach to target molecules to form

    [M+Sol+H]+ (Sol: MeOH, CH3CN, THF etc); both ESIand APCI, more often for latter 

     Additive adduct ions:

    Such as [M+NH3+H]+, [M+FA+H]+, [M+TFA+H]+

    Dimmer ions [2M+H]+, [2M+Na]+

  • 8/19/2019 LC-MSMS (EN)

    18/69

    35

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    In most case, adduct ions can be recognized easily: span

    of adjacent mass peaks = adduct molecule:

    e.g., [M+H]+ and [M+NH3+H]+: m/z = 17

    [M+H]+ and [M+MeOH+H]+: m/z = 32

    [M+H]+ and [M+Na]+: m/z = 22

    [M+H]+ and [M+FA+H]+: m/z = 46

    36

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    • Natural pesticides – azadirachtin as the active component

    • Neem extract mainly from seeds: very complex in composition

    • Conventional method – reverse phase HPLC with UV detector (217

    nm), for major components (Azadirachtin-A and -B, nimbin, salannin

    etc)

    • Difficulty in identification of minor components due to lack of  

    standards, such as other azadirachtins etc.

    • LCMS: identification of components based on MW and neutral loss

    spectrum

  • 8/19/2019 LC-MSMS (EN)

    19/69

    37

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    5 10 15 20 25 30 35 40 45 50 55 min

    -2.5e6

    0e3

    2500e3

    5000e3

    7500e3

    10.0e6

    12.5e6

    15.0e6

    17.5e6

    20.0e6

    22.5e6

    25.0e6

    27.5e6

    Int.

    597.00(2.00)541.00(2.00)555.00(2.00)499.00(2.00)645.00(2.00)703.00(2.00)TIC(1.00)

            1  2

            3

            4        5        6

      7

            8        9

            1        0

            1        1

            1        2

            1        3

            1        4

            1        5

            1        6

            1        7

            1        8

            1        9

            2        0        2        1

            2        2

            2        3

            2        4

            2        5

            2        6

            2        7

            2        8

            2        9

            3        0

    0 5 10 15 20 25 30 35 40 45 50 55 min

    0

    5

    10

    15

    20

    25

    mAbs

    UV, 217nm

    MS-TICMS-MIC

    38

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    400 450 500 550 600 650 m/z

    0e3

    2500e3

    5000e3

    Int.

    499

    467562544449   485   578   677655403 623

    Peak 22: 6-Desacetylnimbin

    5 10 15 20 25 30 35 40 45 50 55 min-2.5e6

    0e3

    2500e3

    5000e3

    7500e3

    10.0e6

    12.5e6

    15.0e6

    17.5e6

    20.0e6

    22.5e6

    25.0e6

    27.5e6Int.

    597.00(2.00)

    541.00(2.00)555.00(2.00)499.00(2.00)645.00(2.00)703.00(2.00)TIC(1.00)

            1        2

            3

            4        5   6

      7

            8        9

            1        0

            1        1

            1        2

            1        3

            1        4

            1        5

            1        6

      1        7

            1        8

            1        9

            2        0        2        1

            2        2

            2        3

            2        4

            2        5

            2        6

            2        7

            2        8

            2        9

            3        0

    400 450 500 550 600 650 m/z

    0.0e6

    1.0e6

    2.0e6

    3.0e6

    Int.555

    618600572455437 634419 662537 679479497

    Peak 23: 3-Desacetyl

    salannin

    450 500 550 600 650 700 m/z

    0e3

    500e3

    1000e3

    1500e3

    Int.

    625

    688

    670647525 607568549465 704585   721506

    Peak 24: Ohichinolide-B

    400 450 500 550 600 650 m/z

    0e3

    2500e3

    5000e3

    Int.541

    509604

    586481449 527   559421 621   645404 689665

    Peak 27: Nimbin

    400 450 500 550 600 650 m/z

    0e3

    2500e3

    5000e3

    Int.

    597

    660619419   642565497 519479437401 461 677541 694

    Peak 28:Salannin

  • 8/19/2019 LC-MSMS (EN)

    20/69

    39

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    500 550 600 650 700 750 m/z

    0.0e6

    1.0e6

    2.0e6

    3.0e6

    Int.

    703

    685

    585567 743

    507 603 766667555 625 721 784525 642

    500 550 600 650 700 750 m/z

    0e3

    250e3

    500e3

    750e3

    Int.

    645

    685627

    545

    726701

    663 743527563 585 609509 710 759 789

    Peak 12

    Peak 14

    m/z Ion

    703 [MH-H2O]+

    685 [MH-2H2O]+

    585 [MH-2H2O-TgOH]+

    567 [MH-3H2O-TgOH]+

    743 [MNa]+

    m/z Ion

    645 [MH-H2O]+

    627 [MH-2H2O]+

    545 [MH-H2O-TgOH]+527 [MH-2H2O-TgOH]

    +

    685 [MNa]+

      Azadirachtin A, MW = 720

     

    Azadirachtin B, MW = 662

    40

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    CH3

    CH3

    O

    O

    O

    O

    CH3

    O

    O

    H3CO

    OH

    H

    O   OH

    OH3CO

    CH3

    O

    O

    CH3

    H

    OHH

    O

    H

    100

    [MH]+ [MNa]+

    [MH-2H2O]+

    [MH-H2O]+[MH-H2O-TgOH]

    +

    [MH-2H2O-TgOH]+

     

    m/z

    23

    18

    18

    18

    H2O

    H2O

    TgOH

    Mr 100

    H2O

  • 8/19/2019 LC-MSMS (EN)

    21/69

    41

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    Peak No [MH-H2O]+ Azadirchtin

    (Base peak) Type Formula MW

    7 601 I C32H42O12 618

    8 645 G or H C33H42O14 662

    10 641 D C34H44O14 676

    12 703 A C35H44O16 720

    14 645 B C33H42O14 662

    15 687 L C35H44O15 704

    16 647 F C32H40O14 664

    42

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    Depend on structures and properties of compounds

    High proton affinity: C-O, C-N double and triple bonds,

    basic compound tend to form positive ions.

    Low proton affinity:  –COOH, -F, -Cl, -HSO3, phenols,

    aniline and sugars tend to form negative ions due tostronger tendency to donate proton.

    Many compounds form both positive & negative ions

    due to multi function groups.

     Acquire positive & negative mass spectra and compare

    sensitivity and spectrum quality.

  • 8/19/2019 LC-MSMS (EN)

    22/69

    43

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

     protonation R--NH2

    R--NH--R’

    R--OHHR--SH

    R--O--R’’R--C=O

    [benzene ring]-]-OH

    R--COOH

    R--SO33HR--PO33H

    Positive ion

     Negative iondeprotonation

    Functional group

    44

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    ESI: CH3CN/H2O and MeOH/H2O

     APCI: MeOH/H2O recommended; CH3CN/H2O may

    cause coking on the corona needle in negative mode.

    THF can be used for LCMS ionization.

    The ratio is not so critical, but higher water content may

    cause lower ionization efficiency.

    Gradient elution with changing aqueous phase between

    0 and 100% can be used.

  • 8/19/2019 LC-MSMS (EN)

    23/69

    45

    MASS SPECTROMETER 

    Ionization methods

    HKDUY 2013

    Non-volatile buffer like phosphate is not recommended

    Using volatile buffer to replace phosphate buffer:

    NH4 Ac/HAc, NH3/TFA, NH3/NH4 Ac etc

    pH control:

    • pH 1.8 ~ 2.5 : TFA, conc. < 0.1%

    • pH 2.5 ~ 4 : FA, conc. ~ 0.1%

    • pH 4 ~ 5 : HAc, conc. 0.1~5%

    • pH 7 : NH4 Ac

    • pH > 7 : NH3 aqueous solution

    46

    MASS SPECTROMETER 

    Other ionization methods

    HKDUY 2013

    •  APPI : Atmospheric Pressure Photo ionisation [Non Polar]

    • DART : Direct Analysis in Real Time [Solid samples]

    • DESI : Desorption Electro Spray Ionisation [Min. sample prep

    for bio fluids, Tablets, creams etc. [Thermo]

    •  ASAP : Atmospheric Solids Analysis Probe [Solid Sample

    probe] Waters

    • DUIS : Combined ESI + APCI [Shimadzu]

  • 8/19/2019 LC-MSMS (EN)

    24/69

    47

    MASS SPECTROMETER 

    Other ionization methods - DUIS

    HKDUY 2013

    48

    MASS SPECTROMETER 

    Other ionization methods - DART

    HKDUY 2013

  • 8/19/2019 LC-MSMS (EN)

    25/69

    49

    IONIZATION METHODS

    HKDUY 2013

     Analysis target: Areas differ according to ionization method

    High

    polarity

    Molecular weight GC/MS

    (Also if derivatization is

    required.)

    Non-polar

    Volatile

    Thermally stable

    LC/MS(MS)

    (Simple, requiring almost

    no pretreatment.)

    High polarity

    Non-volatile

    Large mass numbers

    Thermally unstable

    Medium

    polarity

    Non-

    polar 

    1,000

    10,000

    10,000

    GC/MS

    LC/MS

     APCI

    (Low/medium

    polarity)

    LC/MS

    ESI

    (High polarity)Contents:

    polyvalent ions

    50

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Quadrupole

    Time-of-flight (TOF)

    Ion-trap

    Magnetic-sector

    Fourier-transform

    Tandem MS (TQ, IT-TOF, …)

    Qualification of unknown samples

    Quadrupole < Ion trap < TOF

    Sensitivity, quantitation

    Quadrupole (SQ/SIM) < TOF (Scan) < Quadrupole (TQ/MRM)

  • 8/19/2019 LC-MSMS (EN)

    26/69

    51

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Quadrupole MS: Good for quantification. Ions selected by four poles.

    Good for quantification of unknown substances.

    Features: General-purpose, most widely used type. Low cost and easy

    maintenance. Acquires SCAN and SIM data.

     Advantages: (1) Compact and lightweight, (2) Easy to operate, (3) High sensitivity

    excellent for quantification.

    Disadvantages: Poor resolution. Little qualitative information (nominal mass only).

    52

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Quadrupole MS: Good for quantification. Ions selected by four poles.

    Advantages:

     – Better detector than UV/PDA.

     – More sensitive.

     – Useful for screening and Quantitation.

    Disadvantages:

     – No Fragmentation.

     – Not very sensitive.

     – Not useful for Identification and confirmation of unknown

    compounds.

  • 8/19/2019 LC-MSMS (EN)

    27/69

    53

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Quadrupole MS: Good for quantification. Ions selected by four poles.

    R&D Pharma / API

    • Reaction Monitoring.

    • Basic Impurity Identification.

    Chemical Synthesis

    • Reaction monitoring.

    • High Thro put screening.

    Food testing

    •  Analysis of permitted colours.• Mycotoxins.

    Academia

    54

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Quadrupole MS: Good for quantification. Ions selected by four poles.

      min

    (x100,000)

    negative

    1

    2

    3 4

    5 6

    7 8

    109

    1 2

    3 4

    5 6

    7 8

    9 10

    Positive

    m/z 307

    m/z 291

    m/z 459

    m/z 443

    m/z 473

    m/z 305

    m/z 289

    m/z 457

    m/z 441

    m/z 471

     Analysis of catechins in tea1: (-)-gallocatechin,

    2: (-)-epigallocatechin,

    3: (+)-catechin,

    4: (-)-epicatechin,

    5: (-)-epigallocatechin gallate,

    6: (-)-gallocatechin gallate,

    7: (-)-epicatechin gallate,

    8: (-)-catechin gallate9, 10: methylated catechins

    O

    OH

    HO

    OH

    OH

    OH

    (-)-epicatechin

    Ultra-fast detection of catechins in Pos/Neg modes by LCMS-2020

  • 8/19/2019 LC-MSMS (EN)

    28/69

    55

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Triple Quadrupole MS

    Full Scan MS

    Q1

    Selection of Ions in

    selected m/z range

    Q2 Collision cell

    Only RF to move

    ions

    Q3

    Only RF to move

    ions to detector 

    56

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Triple Quadrupole MS

    Q1

    Selection of

    Precursor Ion

    Q2 Collision cell

    Fragmentation of

    Precursor Ion

    Q3

    Scanning of all

    Product Ions

    Full Scan MSMS

  • 8/19/2019 LC-MSMS (EN)

    29/69

    57

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Triple Quadrupole MS

    MRM

    Q1

    Selection of

    Precursor Ion

    Q2 Collision cell

    Fragmentation of

    Precursor Ion

    Q3

    Selection of

    Product Ion

    58

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    SIM

    5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    (x100,000)

    8:575.60>415.70 (1.00)7:563.60>403.70 (1.00)6:497.70>337.70 (1.00)5:485.70>325.70 (1.00)3:417.80>257.90 (1.00)2:405.80>245.90 (1.00)

    14:971.40>811.30 (1.00)13:959.40>799.30 (1.00)12:733.40>573.60 (1.00)11:721.40>561.60 (1.00)10:655.60>495.70 (1.00)9:643.60>483.70 (1.00)

    5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

    0.25

    0.50

    0.75

    1.00

    1.25

    (x10,000,000)

    405.80 (10.00)TIC

    575.60 (10.00)573.60 (10.00)563.60 (10.00)561.60 (10.00)497.70 (10.00)495.70 (10.00)485.70 (10.00)483.70 (10.00)417.80 (10.00)

    971.40 (10.00)959.40 (10.00)811.50 (10.00)799.50 (10.00)TIC

    MRM

  • 8/19/2019 LC-MSMS (EN)

    30/69

    59

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Tri-BDE (BDE-028)SIM MRM

    Penta-BDE (BDE-100)SIM MRM

    11.5 12.0 12.5 13.0

    1.0

    2.0

    3.0

    (x100,000)

    245.90405.80

    11.5 12.0 12.5 13.0

    1.0

    2.0

    3.0

    4.0

    5.0

    (x10,000)

    405.80>247.90405.80>245.90

    19.0 19.5 20.0 20.5

    0.25

    0.50

    0.75

    1.00

    1.25(x100,000)

    403.80563.60

    18.5 19.0 19.5 20.0

    0.5

    1.0

    1.5

    2.0

    2.5

    (x100,000)

    563.60>405.70563.60>403.70

    Hexa-BDE (BDE-154)

    22.0 22.5 23.0 23.5

    2.5

    5.0

    7.5

    (x1,000)643.60483.70

    22.0 22.5 23.0 23.5

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    (x10,000)

    643.60>485.70643.60>483.70

    SIM MRM

    Hexa-BDE (BDE-153)

    Hepta-BDE (BDE-183)

    Deca-BDE (BDE-209)

    SIM MRM

    23.0 23.5 24.0 24.5

    1.0

    2.0

    3.0

    4.0

    (x10,000)

    643.60>485.70643.60>483.70

    23.0 23.5 24.0 24.5

    0.5

    1.0

    1.5

    2.0

    (x10,000)

    643.60483.70

    26.0 26.5 27.0 27.5

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    (x1,000)

    721.50561.60

    SIM MRM

    26.0 26.5 27.0 27.5

    1.0

    2.0

    3.0

    4.0

    5.0

    (x10,000)

    721.40>563.60721.40>561.60

    37.0 37.5 38.0   38.5

    0.25

    0.50

    0.75

    1.00

    1.25

    (x100,000)959.40799.50

    37.0 37.5 38.0 38.5

    2.5

    5.0

    7.5(x100,000)

    959.40>801.30959.40>799.30

    SIM MRM

    60

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Triple Quadrupole MS

    Advantages:

     – Very fast and highly sensitive.

     – Useful for screening and Quantitation of trace level impurities.

     – So far, the best tool for trace level quantitation.

    Disadvantages:

     – Low Resolution, Mass accuracy is less.

     – Fragmentation is only up to MS2.

     – Not useful for Identification and confirmation of unknown

    compounds

  • 8/19/2019 LC-MSMS (EN)

    31/69

    61

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Triple Quadrupole MS

    R & D Pharma / API

    Quantitation of trace level impurities.

    BA/BE studies.

    PK/PD studies.

    Impurity profiling [limited]

    Chemical Synthesis

    High Through put screening.

    Environmental Food safety

    Screening of wide range of impurities in water and food.

     Analysis of Banned colours.

    Mycotoxins.

    Trace level impurities like pesticides.

    62

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Triple Quadrupole MS

    Clinical

    New born screening.

    Immunosuppressant.

    Vitamin D.

    TDM.

    Clinical trials phase I to III.

    Forensic and Toxicology

    Screening of banned substances in various matrices.

    Quantitation and confirmation of banned substances.

    Academia

  • 8/19/2019 LC-MSMS (EN)

    32/69

    63HKDUY 2013

    Ion-trap: Good for structure analysis. Ion-trap + MSn combination possible..

    Good for structure analysis.

    Features: Comparatively small and

    cheap. Easy operation and maintenance.

    Permits SCAN and SIM.

     Advantages: (1) High sensitivity by

    detecting all trapped ions.

    (2) Permits MSn.

    Disadvantages: Unsuited to quantitation.

    Poor resolution. Inferior dynamic range to

    quadrupole MS due to limit on trapped

    quantity.

    MASS SPECTROMETER 

    Type of Mass filter

    64HKDUY 2013

    Ion-trap: Good for structure analysis. Ion-trap + MSn combination possible..

    MASS SPECTROMETER 

    Type of Mass filter

    +V -V

    0V

    0V 0V

    1. Selection of precursor ion

    2. Fragmentation by

    acceleration and collision with Argon

     Ar   Ar 

  • 8/19/2019 LC-MSMS (EN)

    33/69

    65HKDUY 2013

    TOFMS: Good for qualification. Measures ion time of flight.

    Good for qualification of unknown substances.

    Features: Has become commonly used in recent years. Comparatively large

    and expensive. Acquires SCAN data.

     Advantages: (1) High resolution, (2) High mass measurement accuracy, (3) High

    spectral sensitivity.

    Disadvantages: Unsuited to quantitation. Requires high vacuum. Difficult to handle.

    MASS SPECTROMETER 

    Type of Mass filter

    66HKDUY 2013

    TOFMS: Good for qualification. Measures ion time of flight.

    MASS SPECTROMETER 

    Type of Mass filter

    • Resolution (R ): R = m/ m

    m = mass difference of two adjacent resolved peaks (typically m = mass

    of first peak or average).

    • Example: R = 500 (“low” resolution)

    resolves m/z=50 and 50.1, and m/z=500 and 501

    • Example: R = 150,000 (“high” resolution)

    resolves m/z=50 and 50.0003, and m/z=500 and 500.0033

  • 8/19/2019 LC-MSMS (EN)

    34/69

    67HKDUY 2013

    TOFMS: Good for qualification. Measures ion time of flight.

    MASS SPECTROMETER 

    Type of Mass filter

    785.0 785.2 785.4 785.6 785.8 786.0 786.2 786.4 786.6 786.8 787.0 787.2 787.4 787.6 787.8 788.0 788.2

    m/z

    0

    20

    40

    60

    80

    100

    0

    20

    40

    60

    80

    100

    0

    20

    40

    60

    80

    100

       R  e   l  a   t   i  v  e   A   b  u  n   d  a  n  c  e

    0

    20

    40

    60

    80

    100

    785.8419R=5901 786.3435

    R=5900

    786.8447R=5900

    787.3463R=6000 787.8453

    R=5800785.5934R=6200

    785.8421R=23801

    786.3434R=23900

    786.8446R=24000

    787.3457R=24100 787.8471

    R=15600785.5992R=24300

    785.8419R=48101 786.3435

    R=47700

    786.8446R=48200 787.3458

    R=47500787.8477R=42000

    785.5994R=47100

    785.8413R=94801

    786.3428R=95200

    786.8442R=93600

    787.3458R=98000

    785.5989R=95800

    787.8477R=89200

    0.9 s

    1.6 s

    RP 75000.2 s

    RP 300000.5 s

    RP 60000

    RP 100000

    68

    TOFMS: Good for qualification. Measures ion time of flight.

    MASS SPECTROMETER 

    Type of Mass filter

    Quadrupole& ion trap

    Unregistered

    461460459458457456455

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    Unregistered

    461460459458457456455

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    R = 1,000

    R = 3,000

    R = 12,000

    TOF

    455.3

    455.29

    455.2910   Unregistered

    461460459458457456455

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    HKDUY 2013

  • 8/19/2019 LC-MSMS (EN)

    35/69

    69

    TOFMS: Good for qualification. Measures ion time of flight.

    MASS SPECTROMETER 

    Type of Mass filter

    HKDUY 2013

    Bovine Insulin spectrum [M+6H]6+

    Inten.

    1 Da

    FWHM: 0.08 Da

    Resolution: 12,000

    < 5 ppm

    453.0 454.0 455.0 456.0 457.0 458.0 459.0 460.0 461.0 462.0 463.0 464.0 m/z0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2.0

    Inten.(x1,000,000)

    455.2897

    Mass accuracy = -2.9 ppm

    R > 10,000

    H3CO

    H3CO

    CH3H

    3C

    CN N

    CH3

    OCH3

    OCH3

    C27H38N2O4

    Exact Mass: 454.2832, Mol. Wt.: 454.6017

    Verapamil spectrum [M+H]+

    High resolution means high mass accuracy - we can determine veryaccurately the mass of ion to 3rd or 4th decimal point.

    70HKDUY 2013

    TOFMS: Good for qualification. Measures ion time of flight.

    MASS SPECTROMETER 

    Type of Mass filter

    • Mass Accuracy :

    • For exampleC9H12NO3 Theoretical mass = 182.0811

    Observed mass = 182.0819

    Mass Accuracy = 4.01 ppm

  • 8/19/2019 LC-MSMS (EN)

    36/69

    71HKDUY 2013

    TOFMS: Good for qualification. Measures ion time of flight.

    MASS SPECTROMETER 

    Type of Mass filter

    Identification and confirmation.

    Non- Targeted Screening approach.

    High level confidence in Research.

     Analysis of compounds in Highly complex matrix.

    72HKDUY 2013

    TOFMS: Good for qualification. Measures ion time of flight.

    MASS SPECTROMETER 

    Type of Mass filter

    Advantages:

     – High Resolution and Accurate mass.

     – High speed of analysis.

    Disadvantages:

     – No Trapping of ions, No fragmentation.

     – Just TOF is not enough for Identification and Confirmation.

  • 8/19/2019 LC-MSMS (EN)

    37/69

    73

    HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter - QTOF

    74HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter - QTOF

    Advantages:

    High Resolution and Accurate mass.

    High speed of analysis.

    High Mass Range [20,000 or more].

    MS2 fragmentation helps in better confirmation.

    Works well for both Small Molecules and Big Molecules.

    Disadvantages:

    No MSn.

    Quantitation is not so good.

  • 8/19/2019 LC-MSMS (EN)

    38/69

    75HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    Stage 2: The entry of the octopole “is closed”

    Stage 1: The ions enter the octopole during a definite time

    V

    Lens 1

    Skimmer (+8 V) ‘Open’ Lens 1

    (+60 V)

    Skimmer 

    Skimmer (-30 V) ‘Closed’

    76HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    V

    Lens 1Skimmer 

    Skimmer (-30 V) ‘Closed’Lens 1

    (-80 V)

    Stage 3: The ions are transferred to the trap

  • 8/19/2019 LC-MSMS (EN)

    39/69

    77HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    - V 0 V0 V

    Octopole

    lens 1

    Ion trapDuring entry of the ions, no RF isapplied to the ring electrode

    78HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    0V 0V

    Octopole

    Ion trap

    RF

    When ions are in the trap, the RF is applied

    and focuses them in the center

    Ar Ar

  • 8/19/2019 LC-MSMS (EN)

    40/69

    79HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    Ion trap

    0V 0VRF

    +V -V

    0V

    Simultaneous ejection (BIE: Ballistic Ion Extraction) of

    all the ions into the TOF to obtain a TOF mass

    spectrum

    Detector

    ReflectronTOF

    80HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    ESIIon inlet CDL

    DQ Array

    Octopole

    3D Ion trap Time of Flight

    SIIon inlet CDL

     

    Octopole

     

    MCP detector 

    Ion Trap for ion

    selection, CID

    and MSn

    TOF of high

    resolution spectrum

    of MS and MSn

  • 8/19/2019 LC-MSMS (EN)

    41/69

    81HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    0 V 0 V

    octopole

    Lens 1

    Ion trap

    MS/MS duty cycle

    • Ion trapping

    • Ion cooling

    • Ion selection

    • Fragmentation by CID (Ar)

    • Ion cooling

    • Ejection to TOF

    MS duty cycle

    • Ion trapping

    • Ion cooling

    • Ejection to TOF

    MS/MS/MS

    MS/MS/MS/MS (MSn)

    Multi stage CID

    in the ion trap

    82HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    Advantages:

    High Resolution and Accurate mass.

    High speed of analysis.

    MS10 fragmentation helps in better confirmation.

    Works well for small molecule applications [with less complex

    matrix].

    Disadvantages:

    • Resolution is not enough if the matrix is complex.

    • Specifications are lower compared to any HRAM instrument.

    • Not suitable for proteomics applications.

  • 8/19/2019 LC-MSMS (EN)

    42/69

    83HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    Reserpine Reserpine Degradation A

    MS/MS

     Analysis

    MS/MS

     Analysis

    Side Reaction

    Intact structure could be

    observed as either common

    product ion or neutral loss on

    MS/MS spectra of reserpine and

    its degradation products.

    Degradation A

    MS/MS

    spectrum

    Reserpine

    MS/MS

    spectrum

    NH

    N

    O   OO

    O

    OO

    O OO

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    H

    HH

    NH

    N

    O   OO

    O

    OO

    O OO

    CH3CH3

    CH3

    CH3

    CH3

    H

    HH

      m/z

    Inten. (x1,000,000)

    448.1967

    195.0650

    397.2104

    236.1265 365.1851

    577.2504336.1566

      m/z

    Inten. (x1,000,000)

    381.1801

    227.1168 349.1538

    363.1688595.2684

    NL212 NL212

    NL212 NL212

    84HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    Reserpine, Theoretical: 609.2807

    Column : ODS column 2.0mmI.D.x50mmL

    Mobile phase A : 5mmol/L ammonium formate - water

    Mobile phase B : acetonitrile

    Gradient program : 20%B (0min) →80%B (15min)

    Flow rate : 0.2 mL/min

    Injection volume : 1 uL

    Column temp. : 40 deg. C

    Ionization mode : ESI (+)

    Nebulizing gas : 1.5 L/min

    Drying gas press. : 100 kPa

    Probe voltage : +4.5 kV

    CDL temp. : 200 deg. C

    BH temp. : 200 deg. C

    Reserpine Degradation Products

  • 8/19/2019 LC-MSMS (EN)

    43/69

    85HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

    85

      m/z

     Inten. (x1,000,000)

    448.1967

    195.0650

    397.2104

    236.1265365.1851

    577.2504336.1566

    MS2

    Precursor ion: m/z609.2802NL 161.0835

    NL 212.0698

    NL 244.0951NL 373.1537

    NL 414.2152

    NL 178.0853436.1949

    NH

    N

    O   OO

    O

    OO

    O OO

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    H

    HH

    C10H11O4+

    Theoretical:195.0652

    C22H25N2O3+

    Theoretical:365.1860

    C13H18NO3+

    Theoretical:236.1281

    C23H29N2O4+

    Theoretical:397.2122

    C22H30NO8+

    Theoretical:436.1966C23H30NO8

    +

    Theoretical:448.1966

    Found Theoretical Error  

    PI 195.0650 195.0652 -0.0002

    NL 414.2152 414.2155 -0.0003

    PI 236.1265 236.1281 -0.0016

    NL 373.1537 373.1526 0.0011

    PI 365.1851 365.1860 -0.0009

    NL 244.0951 244.0947 0.0004

    PI 397.2104 397.2122 -0.0018

    NL 212.0698 212.0685 0.0013

    PI 436.1949 436.1966 -0.0017

    NL 173.0853 173.0841 0.0012

    PI 448.1967 448.1966 0.0001

    NL 161.0835 161.0841 -0.0006

    86HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

      m/z

    Inten. (x10,000,000)

    415.2235

      m/z

    Inten. (x1,000,000)

    254.1381

    174.0905383.1990

    Mass difference from Reserpine= -194.0567Da

    …C10H10O4 (Theoritical: 194.0579)

    Common neutral loss with Reserpine…161.08

    The product ion which yields NLS 161 was m/z 448 in

    reserpine

    Peak #1 is supposed to have -194 Da difference

    (C10H10O4) on the m/z 448 in the substructure of

    reserpine.

    NH

    N

    O   OO

    O

    OO

    O OO

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    H

    HH

    NL161

    NH

    N

    OHO

    OO

    O

    CH3CH3

    CH3

    H

    HH

    C23H30N2O5M+H]+: 415.2227

    Putative Structure of Peak #1

    MS1

    MS2

    m/z 448

  • 8/19/2019 LC-MSMS (EN)

    44/69

    87HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

      m/z

    Inten. (x10,000,000)

    593.2496

    436.1966

      m/z

     Inten. (x10,000,000)

    381.1801

    227.1168 349.1538

    MS1

    MS2

    NL212

    Difference from reserpine = -16.0304Da

    …CH4 (Theoritical: 16.0313)

    Common NLS with reserpine:…212.07

    The product ion which yields NLS 212 was

    m/z 397 in reserpine

    Peak #3 is supposed to have -16 Da

    difference (CH4) on the m/z 397 in the

    substructure of reserpine.

    N

    H

    N

    O   OO

    O

    OO

    O OO

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    H

    HH

    m/z397 of

    reserpine

    88HKDUY 2013

    MASS SPECTROMETER 

    Type of Mass filter – IT-TOF

      m/z

    Inten. (x1,000,000)

    236.1266   365.1845174.0911

    192.1008265.1341159.0668   350.1629

    396.1950

    Reserpine

    m/z609

    397

    MS3 measurement for the PI which yields NLS 212

    Peak

    m/z593

    381

    305.1609

    305.1628

    Common product ion onreserpine and Peak #3 was

    m/z305.16.

    It is supposed that peak #3

    has -16 Da (CH4) difference

    from reserpine except the

    structure of m/z305.

    = demethylation

    NH

    N

    O   OO

    O

    OO

    O OO

    CH3CH3

    CH3

    CH3

    CH3

    H

    HHC32H36N2O9M+H+:593.2494

    Putative structure of Peak #3

    NH

    N

    O   OO

    O

    OO

    O OO

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    H

    HH

  • 8/19/2019 LC-MSMS (EN)

    45/69

    89HKDUY 2013

    MASS SPECTROMETER 

    Ion Detection

    90HKDUY 2013

    MASS SPECTROMETER 

    Ion Detection

    TOF detector 

     –6.5KV

    ∆650 V

    ∆6KV

     –700V

    Optical lens

    Scintillator 

    Microchannel

    Plate (MCP)

    e –e –

    e –

    e –

    Overall gain ~ 2x106

    Ground

    Photomultiplier 

    tube (PMT)

  • 8/19/2019 LC-MSMS (EN)

    46/69

    93HKDUY 2013

    MASS SPECTROMETERS

    Triple quadrupoles

    94

    LC-MS/MS

    Configuration

    HKDUY 2013

    Ionization probe

    Solvent delivery module(gradient)

    Note) The LC detector can be removed, if not required.

    Mobile phase

    Mobile phase

    Mixer

     Autosampler

    Controller

    LC detector

     Autosampler rinsing solutionColumn oven

    Column

    Degasser

    Reservoir tray

    Rotarypump

    Nitrogen gasgenerator

    LCMS-8040

  • 8/19/2019 LC-MSMS (EN)

    47/69

    95

    LC-MS/MS

    HKDUY 2013

    Positive ions(protonatedmolecules)

    Protonation Removeprotons

    Negative ions(deprotonated

    molecules)

    Protons (hydrogen ions)

    Separation in column

    Inject mixed sample

    Components enter MS sequentiallyfrom components with weak retention

    Mobile phase

     Atmosphericpressure region

    Mass separation unit(Q1)

    DetectorIonization probe

    Vacuum region

    Mass separation unit(Q3)

    Collision cell(q2)

    Ionization probe

    Ionization probe

    Ionization probe q2

    Q1

    Q3

    Detector

    96

    LC-MS/MS

    SIM Mode

    HKDUY 2013

    Ions pass through MS1 and collision cell, but only specified ions pass through

    MS2.

     As the detection time for the specified ions exceeds the scan time, sensitivity

    increases 10 to 100 times.

     Analysis method for quantitation of target compounds.

    Cannot analyze unknown compounds as the mass spectra are not saved.

    Effective for simultaneous full scan and SIM.

    Optimal parameters must be confirmed in advance.

    Pass through SIM

    Q 1 Collision cell Q 3 Detector 

    Pass

    through

    Same as LC/MS (SQ) SCAN

  • 8/19/2019 LC-MSMS (EN)

    48/69

    97

    LC-MS/MS

    MRM Mode

    HKDUY 2013

    Specific ions selected by MS1 undergo collision-induced dissociation (CID) in the

    collision cell and specific ions can also be selected by MS2.

    Precursor ion-derived product ions are selected.

    Despite reduced ion quantity, significantly reduced chemical noise enhances S/N.

    High selectivity is ideal for highly sensitive quantitative analysis.

     Analysis method for target compounds.

    Q 1 Q 3 Detector 

    SIMCollision cell

    Fragmentation

    SIM

    98

    LC-MS/MS

    MRM Mode

    HKDUY 2013

    Ionization probe

    Eliminates background fortrace-level quantitation withhigh S/N

    MRM10 ppb

    1.0 1.5 2.0 2.5 min0

    2500

    5000

    7500

    High sensitivity buthigh background

    10 ppb

    1.0 1.5 2.0 2.5 min0

    10000

    20000

    30000

    40000

    50000 SIM

    Quadrupole Q1

    Scan/SIM

    Detector Collision cell

    FragmentQuadrupole Q3

    Scan/SIM

    Ion source Detector 

  • 8/19/2019 LC-MSMS (EN)

    49/69

    99

    LC-MS/MS

    Progesteron

    HKDUY 2013

    300 305 310 315 320 325 330m/z0

    100

    %

    315.1

    316.1

    Mass Spectrum from

    MS1

    100 125 150 175 200 225 250 275 300 325m/z0

    100

    %

    109.097.0

    Product ion spectrum from MS2Product ions

    OCH

    2

    CH2

    CH3

    O

    CH3

    CH3

    O

    O

    CH3

    CH3

    CH3

    Precursor ion

    100

    LC-MS/MS

    HKDUY 2013

    UV

    MS-TIC

    Tuning condition

    MS-TIC

    CID condition

  • 8/19/2019 LC-MSMS (EN)

    50/69

    101

    LC-MS/MS

    HKDUY 2013

    Peak 2, RT = 7.31

    100 200 300 400 500 600 m/z0.0e6

    5.0e6

    10.0e6

    Int. 232

    171 200   246270119   332 384354 482416 611536 667

     

    100 200 300 400 500 600 m/z0e3

    50e3

    Int. 232

    144169

    187201

    246215101 129   398269   343   479442

    N

    H3C

    H3CCH2   C N C

    H2

    CS

    CH

    S

    H2

    C CH2

    NH2

    m/z155

    m/z187

    m/z215

    m/z144

    m/z187

    NH3C

    H3C

    CH2   C NC

    H2C

    SCH

    CH2

    SCH2

    NH2

    m/z169

    m/z201

    m/z215

     Normal

    CID

    102

    LC-MS/MS

    HKDUY 2013

    Peak 13, RT = 24.81 (Main-3)

    100 200 300 400 500 600 m/z0.0e6

    5.0e6

    10.0e6

    Int. 343

    365   517407   482298255 460155 214106 553326132 623 671 700597

     

    100 200 300 400 500 600 m/z0e3

    50e3

    100e3

    Int.   343

    298255

    365155 286187 391112 482367223 328 434

     

    N

    H3C

    H3C

    CH2   C NC

    H2C

    SCH

    S

    H2C

    CN C

    S

    CH2

    CH

    N

    CH3

    CH3

    m/z187

    m/z155

    m/z255

    m/z298

     Normal

    CID

  • 8/19/2019 LC-MSMS (EN)

    51/69

    103HKDUY 2013

    MS vs MS/MS

    Tetra-Dioxins Tetra-Furans

    RT: 16.93 - 20.35  SM:  3G

    1 7. 0 1 7. 2 1 7.4 1 7. 6 1 7.8 1 8. 0 1 8.2 1 8. 4 1 8. 6 1 8. 8 1 9. 0 1 9. 2 1 9.4 1 9.6 1 9. 8 2 0.0 2 0. 2

    Time (min)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

      R  e  l  a  t  i  v  e  A  b  u  n  d  a  n  c  e

    NL:

    2.25E5

    m/z=

    321.50-

    322.50

    MS

    pcb1248-

    20psi-05

    NL:

    4.70E4

    m/z=

    333.50-

    334.50

    MS

    pcb1248-

    20psi-05

    RT: 16.93 - 20.35  SM:  5G

    1 7. 0 1 7. 2 1 7. 4 1 7.6 1 7. 8 1 8. 0 1 8. 2 1 8. 4 1 8.6 1 8. 8 1 9. 0 1 9. 2 1 9.4 1 9.6 1 9.8 2 0. 0 2 0. 2

    Time (min)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

      R  e  l  a  t  i  v  e  A  b  u  n  d  a  n  c  e

    NL:

    2.66E5

    m/z=

    305.50-

    306.50

    MS

    pcb1248-

    20psi-05

    NL:

    5.20E4

    m/z=

    317.50-

    318.50

    MS

    pcb1248-

    20psi-05

    2,3,7,8

    TCDD-IS2,3,7,8

    TCDF-IS

    2,3,7,8

    TCDD  2,3,7,8

    TCDF

    104HKDUY 2013

    MS vs MS/MS

  • 8/19/2019 LC-MSMS (EN)

    52/69

    106

    LCMS-8040

    HKDUY 20138030 UF Lens UF Sweeper II

    UF Lens

    UF Sweeper II

    107

    LC-MS/MS

    Cross Talk 

    HKDUY 2013

    Compound A

    m/z 402 Q1)>167Q3)

    Compound B

    m/z 382 

    Q1)>167Q3)

    Ghost peaks may appear or performance in

    quantitation may be deteriorated.

    Compound C

    m/z 215 

    Q1)>167Q3)

    Detector 

    Ionizationprobe

    Collision cellq2

    Q1 Q3 Cross Talk: The phenomenon where ions

    loses momentum by collisions with the

    collision gas remain in the collision cell and

    are detected by the subsequent analysis.

    MRM

    Transition 1

    MRM

    Transition 2

    MRM

    Transition 3

  • 8/19/2019 LC-MSMS (EN)

    53/69

    112

    Environment

    Economy

    Economy

    • Production Capacity

    • Cost

    Environment

    • Solvent.

    • Energy.

     

    Time.

     

    Solvent.

    HKDUY 2013

    LC-MS/MS

    Ultra-fast Analysis

    113

    Mobile phase

    •   Mobile phase changing → re-built of analysis method.

    •   Flow → Pressure.

    Stationary phase

    •   Stationary phase changing → Column, Analysis methods.

    •   Column length → Separation.

      Efficiency ?

    Amount of used solvent ?

    HKDUY 2013

    LC-MS/MS

    Ultra-fast Analysis

  • 8/19/2019 LC-MSMS (EN)

    54/69

    Column

    Packing particles < 3 μm

    System

    Pressure ≥ 1000 bar 

    Detector 

    High response (> 50 Hz)

    Flow-cell 2.5 μL, 5 mm (traditional detector)

    Higher resolution.

    Shorter analysis time.

    Higher sensitivity.

    Lower solvent consumption.

    Use as HPLC

    Easy to migrate from HPLC → UHPLC

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    Column size example:Reducing column sizeto 1/5 reduces analysistime to approx. 1/5.

    Mobile phaseexample:Doubling pumpingrate reducesanalysis time toapprox. 1/2.

    50 km

    Both measures reduceanalysis time to 1/10.

    Maintaining the resolution

    Passing through 100 m tunnel at 100 km/h

    Time to pass through tunnel

    reduced to 1/2

    Passing through 20 m tunnel at 100 km/h

    Time to pass through tunnel

    reduced to 1/10

    Particle size:Reducing particle sizeimproves resolution(at constant pumpingrate).

    Pumping rate:Reducing particlesize maintains highresolution, even ifpumping rate isincreased.

       R  e  s  o   l  u   t   i  o  n

    Poor

    Good

    Small Large

       A  n  a   l  y  s   i  s   t   i  m  e

       (  m   i  n  u   t  e  s   )

    Column length (mm)250

    150100

    75

    5030

    Note) Relative time, taking the time

    of analysis with 4.6 x 150

    mm column as 100 minutes

    (at constant pumping rate).150

    100

    50

    I.D.6.0 mm4.6 mm3.0 mm2.0 mm

    Particle size5.0 m3.0 m2.2 m

    Speed 50 km/h

    Speed 100 km/h

    Passing through 100 m tunnel at 50 km/h

    Speed 50 km/h

    Speed 50 km/h

    Select a column with

    small particle size.

    But the resolution becomes poorer.

  • 8/19/2019 LC-MSMS (EN)

    55/69

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    Flowrate

    H = A dp + B / + C dp2 H : Height equivalent to a theoretical

    plate dp : Particle size of packing   : Linear flowrate A dp : Vortex diffusion B / : Molecular diffusion C dp 2 : Resistance to mass transfer

    A

    B

    C

    (Fast )(Slow )

       N

      u  m   b  e  r  o   f

       t   h

      e  o  r  e   t   i  c  a   l

      p   l  a   t  e  s

       (   H   i  g   h   )

       (   L  o  w

       )

    H

    Vortex diffusionDiffusion occurring between packing particles

    Resistance to mass transfer Diffusion occurring within packing particles

    Molecular diffusionNatural diffusion along mobile phase flow.

    Particle size(large)

    1. Size of gaps between particles

    2. Variability in particle size (particle size distribution)

    Particle size(small)

    Particle size

    distribution(large)

    Particle sizedistribution

    (small)

    Particle size(large)

    Particle size(small)

    Injection Analysis Injection Analysis Injection Analysis

    Start

    0 min 0 sec

    Injection   Analysis   Injection   Analysis   Injection   Analysis

    Other UHPLC

    30sec for injection

    Simadzu UFLC

    10sec for injection

    Injection   Analysis

    Injection   Analysis

    Injection   Analysis

    Finish

    3 min 0 sec

    Finish

    2 min 0 sec

    Finish

    1 min 40 sec

    33% Faster

    44% FasterNexera with

    overlapping

    injection

    The fastest Autosampler: 10 sec/injection.

    Overlapping injection.

    Minimized carryover.

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

  • 8/19/2019 LC-MSMS (EN)

    56/69

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    Low Carryover

    Low carryover, even with LC/MS/MS

     Automatic sample pretreatment functions: Auto injection of internal standard(measurement by LC/MS)

    Supports simple addition of an internal standard for correction of

    suppression(1) Take in internal standard

    (2) Rinse

    (3) Take in sample (4) Start analysis

    To columnSample

    0.0 2.5 5.0 7.5 10.0 12.5 15.0 min

    0

    25

    50

    75

    100

    125

    mAU

    C18

    (4.6mm ID, 150mm,

    5μm)

    1.0 mL/min

    Water/acetonitrile = 45/55

    40245nm

    5.4 MPa

    TPN at peak 5 = 11352

    Rs (4,5 = 10.849)

    C18

    (2.1mm ID, 50mm, 1.8 μm)

    1.8 mL/min

    Water/acetonitrilen = 45/55

    40245nm

    1. Acetophenone

    2. Propiophenone

    3. Butyrophenone4. Valerophenone

    5. Hexanophenone

    25 times faster

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 min

    1050

    1075

    1100

    1125

    1150

    1175

    mAU

    45.0

    46.0

    47.0

    48.0

    49.0

    50.0

    51.0

    52.0

    MPa

    105 MPa

    TPN at peak 5 = 6634

    Rs (4,5 = 8.40)

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

  • 8/19/2019 LC-MSMS (EN)

    57/69

    0.0 1.0 2.0 3.0 4.0 5.0 min

    0

    25

    50

    75

    100

    125

    mAU

    C18

    (4.6mm ID, 150mm, 5 μm)

    1.0 mL/minWater/acetonitrile = 30/70

    40245nm

    115 MPa

    TPN at peak 7 = 69325

    0.0 2.5 5.0 7.5 10.0 12.5   min

    1

    2 3

    4

    5

    67

    4.7 MPa

    TPN at peak 7 = 14800

    C18(2.1mm ID, 300mm, 1.8 μm)

    0.5 mL/min

    Water/acetonitrile = 20/80

    40245nm

    1. Acetophenone

    2. Propiophenone

    3. Butyrophenone

    4. Valerophenone

    5. Hexanophenone

    6. Heptanophenone

    7. Octanophenone

    5 times higher separation efficiency

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    0.0 2.5 5.0 7.5 10.0 12.5 15.0 min

    0

    25

    50

    75

    100

    125

    mAU

    C18

    (4.6mm ID, 150mm, 5μm)

    1.0 mL/min

    Water/acetonitrile = 45/55

    40245nm

    5.4 MPa

    TPN at peak 5 = 11352

    Rs (4,5 = 10.849)

    C18

    (2.1mm ID, 100mm, 1.8 μm)

    1.4mL/min

    Water/acetonitrile = 45/55

    60245nm

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 min0

    25

    50

    75

    100

    125

    150

    175

    mAU

    100 MPa

    TPN at peak 5 = 16510

    Rs (4,5 = 12.21)

    1. Acetophenone

    2. Propiophenone

    3. Butyrophenone

    4. Valerophenone

    5. Hexanophenone

    14 times faster1.5 times higher separation effciency

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

  • 8/19/2019 LC-MSMS (EN)

    58/69

    Peak capacity : 244 in 8 minutes

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 min

    0.0

    2.5

    5.0

    7.5

    10.0

    12.5

    15.0

    17.5

    mAU

    Bovin serum albumin triyptic digest

    Column : C182.1mm, 100mm, 1.8 μm

    Mobile phase : A : 0.03 % TFA in water 

    B : 0.03 % TFA in acetonitrile

    Gradient : B 5% → 40 % (8 min)

    Mixer  : 180 μL

    Flow rate : 0.9 mL/min

    Column temp. : 40

    Detection : 214 nm

    Sample : Trypsin digested BSA

    (total of 1 pmol / uL)

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    Water as mobile phase → Green LC

    LC

    Green LC 1 : Theophylline2 : Caffeine

    1

    2

    1

    2

    150

    Water only

    4030% methanol

    Green LC

    Column : Shodex ET-RP1 (3.0mm, 150mm)

    Mobile phase : water

    Flow rate : 0.5 mL/min

    Column temp. : 150 oC

    LC

    Column : C18 (4.6mm, 150mm, 5 μm)

    Mobile phase : methanol / water = 3/7

    Flow rate : 1.0 mL/min

    Column temp. : 40 oC

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

  • 8/19/2019 LC-MSMS (EN)

    59/69

    0 min 60 min

    0 min 30 min

    (15 min) 

    Column: 150 mm L x 4.6 mm I.D., 5 μm

    Flow rate: 1 mL/min

    Injection volume: 10 μL

     Analytical time: 60 min

    Consumption volume: 60 mL/sample

    Column: 75 mm L x 4.6 mm I.D., 2.2 μm

    Flow rate: 1 mL/min (or 2 mL/min)

    Injection volume: 10 μL

     Analytical time: 30 min (or 15 min)

    Consumption volume: 30 mL/sample

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    0 min 60 min

    0 min 60 min

    Column: 150 mmL x 4.6 mmI.ID., 5 μm

    Flow rate: 1 mL/min

    Injection volume: 10 μL

     Analytical time: 60 min

    Consumption volume: 60 mL/sample

    Column: 150 mmL x 2.0 mmI.ID., 5 μm

    Flow rate: 0.2 mL/min

    Injection volume: 2 μL

     Analytical time: 60 min

    Consumption volume: 12 mL/sample

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

  • 8/19/2019 LC-MSMS (EN)

    60/69

      Acetonitirile consumption reduced up to > 80%   while remaining the

    separation efficiency

    0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 min0

    50

    100

    150

    200

    250mAU

     

     

     

    mAU

    0.0 5.0 10.0 15.0 20.0 25.0 min0

    50

    100

    150

    200

    250

     

     

     

    Mobile phase : A: 0.1% formic acid-water, B: acetonitrile, Gradient elution

    Temperature : 40

    Flow rate : 1.0mL/min

    Peaks : 1:cefadroxil, 2:cephaprin, 3:cefaclor, 4:cefalexin, 5:cephradine, 6:cefotaxime. 7:cefazolin, 8 :cefuroxime, 9

    :cefoperazone, 10 :cefloxitin, 11 :cefamandole A, 12 :cephalothin, 13: cefamandole B

    HPLCShim-pack VP-ODS (4.6 mm 250 mm , 5μm)

    UHPLCShim-pack XR-ODS (3.0mm 100 mm , 2.2μm)

     Acetonitrile: 12.8mL

     Acetonitrile: 1.7mL

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    Maximized Throughput

    25 times faster analysis cycle, 10 sec injection speed , 2300 samples/day.

    Solvent consumption reduced to 1/40.

    Cost saving and environmentally-friendly UHPLC

    Maximized Performance

    5 times higher separation efficiency.

    Carryover reduced to one/third.

    Maximized Expandability

    Expanded configurations by more than 100 optional units.

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

  • 8/19/2019 LC-MSMS (EN)

    61/69

    Solvent Saving

    Flow Rate : 3/5 reduction x Analysis time : 1/25 reduction

    = Mobile phase consumption/analysis is reduced to 1/40 Cost for power 

     Analysis Time : 1/25 reduction

    = Power consumption is reduced to 1/25

    Cost for performance

    Initial cost + 5 years maintenance cost up to x 1.3 only

    Sample / System up to x 5

    = Cost / performance is reduced to 1/15

    Cost saving for method migration

     Method migration  conventional LC ↔ UHPLC) tool available

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    HKDUY 2013

    LC-MS/MS

    Ultra-fast LC

    S4-Plunger surface(x50)

    S4 –Plunger Super Smooth Surface Sapphire

    Minimized frictional heat on plunger surface

    Optimized material for UHPLC

    Plunger, Plunger seal, Needle seal, High-pressure valve, etc.

    New high pressure valve design

    High--strength

    seal materialS4-Plunger 

    High-pressure valve

    The World’s highest pressure 130MPa

  • 8/19/2019 LC-MSMS (EN)

    62/69

    HKDUY 2013

    LC-MS/MS

    MS responding to performance of UFLC

    What makes an MS instrument suitable for UFLC?

    The ability to acquire data at high speed without sacrificing data quality is

    required!

    Three things that enable ultrafast analysis:

    Ability to perform scan measurement at high speed

    UFscanning

    Ability to switch between positive and negative ion measurement at

    high speed

    UFswitching

    High sensitivity in high-speed measurement

    UFsensitivity

    HKDUY 2013

    LC-MS/MS

    MS responding to performance of UFLC

    20 points 10 points

    4 to 5 points

    Influence of Data Sampling Pointson Peak Form

    1.0min.

    UFLC Data

    If the number of data points decreases,

    the sensitivity also decreases.

    This adversely affects the reproducibility.

  • 8/19/2019 LC-MSMS (EN)

    63/69

    HKDUY 2013

    LC-MS/MS

    MS responding to performance of UFLC

    • Increase the scan speed.

    With conventional instruments,the sensitivity decreases.

    • Decrease the scan speed.

    It is difficult to handle high-speedanalysis.

    Scan: Data is acquired in the desired m/z range.m/z 

    100

    1,100

    Scan speed

    (scan cycle)

    t(s)

    Scan speed

    (scan cycle)m/z 

    100

    1,100

    t(s)

    Since LCMS-2020, it has become possible to

    maintain sensitivity when the scan speed is

    increased.

    HKDUY 2013

    APPLICATIONS

    Pesticides

  • 8/19/2019 LC-MSMS (EN)

    64/69

    HKDUY 2013

    APPLICATIONS

    Pesticides

    HPLC : Nexera UHPLC system

    Column

    Mobile phase

    Flow rate

    Gradient program

    Column temperature

    : Shim-pack XR-ODSII (75 mm x 2 mmI.D., 2.2 um)

    : 0.2 mL / min.

    : 5% B (0-2.5 min.)→55% B (2.51-6 min.)→80% B (6.01-12 min.)

    →100% (12-15 min.)→5% (15.01-20 min.)

    : 40 C

    MS : LCMS-8040 Triple quadrupole mass spectrometer 

    Ionization : ESI (Positive / Negative)

    Ion spray voltage : +4.5 kV / -3.5 kV

    MRM : 276 MRM transitions (2 MRMs / compound)

    Dwell time 5 msec. / Pause time 1 msec.

    : A ; 2 mM ammonium formate containing 0.1 % formic acid  – water 

    B ; Methanol

    DL temperature : 250 C

    HB temperature : 400 CNebulizing Gas : 3 L / min.

    Drying Gas : 15 L / min.

    HKDUY 2013

    APPLICATIONS

    Pesticides

    Number of compounds: 138

    LOQs of 138 pesticides in the EURL method by LCMS-8040

    Technique LOQs < 10 ppb LOQs > 10 ppb Not Ionization

    by LC/MS/MS 72 (100 %) 0 (0 %) 0 (0 %)

    by GC/MS/MS 47 (71 %) 6 (9 %) 13 (20 %)

    80 % of compounds which was refered to GC-QqQ

    were possible to be measured byLC-QqQ

    0.089.9 ppb

    72: LC/MS/MS

    66: GC/MS/MS

  • 8/19/2019 LC-MSMS (EN)

    65/69

    HKDUY 2013

    APPLICATIONS

    Pesticides

    HKDUY 2013

    APPLICATIONS

    Pesticides

  • 8/19/2019 LC-MSMS (EN)

    66/69

    HKDUY 2013

    APPLICATIONS

    Veterinary Drugs

    1 Salbutamol 25 Sulfamethoxazole

    2 5-Propylsulfonyl-1H-benzimidazole-2-amine 26 Tiamulin

    3 Lincomycin 27 Florfenicol

    4 Trimethoprim 28 Chloramphenicol

    5 Thiabendazole 29 Clorsulon6 Sulfacetamide 30 Ethopabate

    7 Ormetoprim 31 Sulfaquinoxaline

    8 Ractopamine 32 Sulfadimethoxine

    9 Sulfadiazine 33 Prednisolone

    10 Xylazine 34 Hydrocortisone

    11 Clenbuterol 35 Dexamethasone

    12 Sulfathiazole 36 Penicillin-G

    13 Sulfapyridine 37 Sulfanitran

    14 Sulfamerazine 38 Emamectin B1a

    15 Carbadox 39 beta-Trenbolone

    16 Pyrimethamine 40 alpha-Trenbolone

    17 Thiamphenicol 41 Zeranol

    18 Sulfadimidine 42 Oxacillin

    19 Sulfamonomethoxine 43 Famphur  20 Trichlorfon (DEP) 44 Fenobucarb (BPMC)

    21 Sulfamethoxypyridiazine 45 Phenylbutazone

    22 Sulfachlorpyridazine 46 Melengestrol Acetate

    23 Erythromycin 47 Temephos (Abate)

    24 Sulfadoxine 48 Allethrin

    HKDUY 2013

    APPLICATIONS

    Veterinary Drugs

  • 8/19/2019 LC-MSMS (EN)

    67/69

    HKDUY 2013

    APPLICATIONS

    Veterinary Drugs

    HKDUY 2013

    APPLICATIONS

    Veterinary Drugs

    Compounds

    Calibration curve

     Range (ng / g)  r 

    2 LOQ (ng / g)

    Compounds

    Calibration curve

     Range (ng / g)  r 

    2 LOQ (ng / g)

    Salbutamol 5-500 0.999 1 .1 Sulfamethoxazole 5-500 0.997 4 .5

    5-Propylsulfonyl-1H-benzimidazole-2-amine 5-500 0.997 2.5 Tiamulin 5-500 0.999 5.0

    Lincomycin 10-1000 0.999 1.6 Florfenicol 50-500 0.990 16.3

    Trimethoprim 5-500 0.996 3.2 Chloramphenicol 25-500 0.999 12.4

    Thiabendazole 5-500 0.998 2.5 Clorsulon 50-500 0.997 50.0

    Sulfacetamide 25-500 0.999 21.3 Ethopabate 5-500 0.997 5 .3

    Ormetoprim 5-500 0.998 1 .9 Sulfaquinoxaline 5-500 0.998 1 .3

    Ractopamine 5-500 0.999 2.0 Sulfadimethoxine 5-500 0.998 1.0

    Sulfadiazine 10-500 0.998 5.8 Prednisolone 10-500 0.999 6.2

    Xylazine 5-500 0.999 1.6 Hydrocortisone 10-500 0.996 5.2

    Clenbuterol 5-500 0.997 0.8 Dexamethasone 20-1000 0.999 15.3

    Sulfathiazole 5-500 0.996 1.5 Penicillin-G 5-500 0.999 1.4

    Sulfapyridine 5-500 0.998 2.5 Sulfanitran 5-500 0.989 2.0

    Sulfamerazine 10-1000 0.998 1.9 Emamectin B1a 5-500 0.999 5.0

    Carbadox 10-500 0.999 4.3 beta-Trenbolone 10-500 0.997 5.8

    Pyrimethamine 5-500 0.997 1.1 alpha-Trenbolone 10-500 0.998 5.4

    Thiamphenicol 50-500 0.989 16.7 Zeranol 25-500 0.995 18.9

    Sulfadimidine 10-1000 0.995 1.2 Oxacillin 5-500 0.999 0.3

    Sulfamonomethoxine 5-500 0.995 0.8 Famphur 10-500 0.999 7.9

    Trichlorfon (DEP) 25-500 0.999 10.3 Fenobucarb (BPMC) 5-500 0.999 1.1

    Sulfamethoxypyridiazine 5-500 0.997 2.7 Phenylbutazone 5-500 0.996 6.4

    Sulfachlorpyridazine 25-500 0.996 21.5 Melengestrol Acetate 5-500 0.997 3.1

    Erythromycin 5-500 0.999 0.1 Temephos (Abate) 10-500 0.999 3.4

    Sulfadoxine 5-500 0.993 1.1 Allethrin 5-500 0.999 3.9

    Calibration point (conc.)

    5, 10, 25, 50, 100, 250, 500 ng / g (=1, 2.5, 5, 10, 25, 50, 100 ng / mL)

    Veterinary drug standards were spiked into the pork matrix.

  • 8/19/2019 LC-MSMS (EN)

    68/69

    HKDUY 2013

    APPLICATIONS

    Veterinary Drugs

    HKDUY 2013

    APPLICATIONS

    Veterinary Drugs

  • 8/19/2019 LC-MSMS (EN)

    69/69

    HKDUY 2013

    APPLICATIONS

    Veterinary Drugs

    APPLICATIONS

    Veterinary Drugs

    Compounds  Spike level

    (ng / g  P ork Chicken Salmon   Compounds

      Spike level

    (ng / g  P ork Chicken Salmon

    Salbutamol 5   75 74 89   Sulfamethoxazole 5   76 100 99

    5-Propylsulfonyl-1H-benzimidazole-2-amine 5   108 99 101   Tiamulin 5   104 118   121

    Lincomycin 5   120   129 124   Florfenicol 50   122 134   113

    Trimethoprim 5   92 114 116   Chloramphenicol 50   121 156   119

    Thiabendazole 5   7 1 77 103   Clorsulon 50   108 108 93

    Sulfacetamide 50   104 91   157   Ethopabate 5   8 5 116 112

    Ormetoprim 5   97   144 150   Sulfaquinoxaline 5   79 91 108

    Ractopamine 5   61   133   107   Sulfadimethoxine 5   81 93 91

    Sulfadiazine 50   52 55   71   Prednisolone 50   114   122 155

    Xylazine 5   90 91 82   Hydrocortisone 50   139   114   127

    Clenbuterol 5   90 76 76   Dexamethasone 50   105   126 149

    Sulfathiazole 5   84   62   74   Penicillin-G 50   116 116 116

    Sulfapyridine 50   88 76 85   Sulfanitran 5   58   107 76

    Sulfamerazine 50   86 74 83   Emamectin B1a 5   101 129   130

    Carbadox 50   76   64   91   beta-Trenbolone 50   110 109 103

    Pyrimethamine 5   101 86 97   alpha-Trenbolone 50   108 109 110

    Thiamphenicol 50   95 90 92   Zeranol 50   116 111   122

    Sulfadimidine 5   104 84 83   Oxacillin 5   123 133   116

    Sulfamonomethoxine 50   90 78 82   Famphur 50   107 112   128

    Trichlorfon (DEP) 50   99   123 151   Fenobucarb (BPMC) 5   9 8 109 116

    Recovery (%) Recovery (%)