LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le...

22
1025 The Canadian Mineralogist Vol. 48, pp. 000 (2010) DOI : 10.3749/canmin.48.4.000 LATE- TO POST-TECTONIC SETTING OF SOME MAJOR PROTEROZOIC ANORTHOSITE – MANGERITE – CHARNOCKITE – GRANITE (AMCG) SUITES James m. mcLeLLaND § aND Bruce W. seLLecK Department of Geology, Colgate University, Hamilton, N.Y. 13346, U.S.A. michaeL a. hamiLTON Jack Satterly Laboratory, Department of Geology, University of Toronto, Toronto, Ontario M5S 2B3, Canada mariON e. BicKFOrD Department of Earth Sciences, Syracuse University, Syracuse, N.Y. 13244–1070, U.S.A. aBsTracT Recent zircon-based geochronological investigations in the Adirondack Mountains, in the state of New York, demonstrate that 1155 ± 6 Ma massif anorthosite was emplaced during the post-contractional phase (1160–1140 Ma) of the ca. 1200–1140 Ma Shawinigan orogeny. Emplacement of many other anorthosite – mangerite – charnockite – granite (AMCG) suites also correlates with the waning stage of orogeny and includes the ca. 1155 Ma Morin and Lac-St-Jean complexes, the ca. 1650 Ma Mealy Mountain complex, and the ca. 1450 Ma complexes of eastern Labrador. The correlation also applies to the ca. 930 Ma Rogaland anorthosite complex of Norway and the ca. 1060–1020 Ma late- to post-Ottawan anorthosites of central Quebec and the Appalachians of Virginia and southeastern Pennsylvania. These correlations suggest models involving delamination of overthickened orogenic lithosphere by foundering or convective removal, followed by athenospheric ascent, and ponding of gabbroic melt at the crust–mantle interface. Orogen rebound following delamination results in stable, dynamically balanced settings in which gabbroic magma evolves slowly at high pressure to produce high-aluminum pyroxene and coarse, intermediate plagioclase characteristic of massif anorthosite. Related melting of the lower crust produces mangeritic and charnockitic magma. Ultimately, both anorthositic and granitic magmas ascend, and lower-pressure fractionation yields the classic AMCG suites. Transtensional reactivation of lithospheric-scale shear zones and old sutures also correlates with important AMCG magmatism and provides conduits for gabbroic magma that ponds at the crust–mantle interface or in the deep crust to produce AMCG suites. Flat-slab subduction, back-arc extension, slab breakoff, and hotspots represent alternative settings that can account for gabbroic underplating and fractionation into AMCG suites, if consistent with geochronological constraints. Keywords: anorthosite, post-orogenic, geochronology, delamination, shear zone, AMCG (anorthosite – mangerite – charnockite – granite) suites. sOmmaire Nos travaux géochronologiques récents portant sur les monts Adirondack, état de New York, démontrent que les massifs d’anorthosite ont été mis en place à 1155 ± 6 Ma, lors de la phase post-contractionnelle (1160–1140 Ma) de l’orogenèse Shawinigan, dans l’intervalle ca. 1200–1140 Ma. La mise en place de plusieurs autres suites de type AMCG (anorthosite – mangérite – charnockite – granite) semble associée aux stades finaux d’une orogenèse, par exemple ca. 1155 Ma pour les complexes de Morin et de Lac-St-Jean, ca. 1650 Ma pour le complexe de Mealy Mountain, ca. 1450 Ma pour les complexes de l’est du Labrador. La corrélation s’applique aussi au complexe anorthositique de Rogaland, en Norvège, à ca. 930 Ma, et les anorthosites du centre du Québec et des Appalaches en Virginie et de Pennsylvanie, liées au stades tardifs de l’orogenèse Ottawa à ca. 1060–1020 Ma. Ces corrélations font penser à un événement de délamination par affaissement d’une lithosphère orogénique surépaissie ou bien par érosion convective, ce qui aurait provoqué une montée de manteau asthénosphérique, et accumulation de magma gabbroïque à l’interface croûte–manteau. Le soulèvement de l’orogène suivant la délamination a produit un contexte stable, dynamiquement équilibré, dans lequel le magma gabbroïque a évolué lentement à pression élevée pour produire un clinopyroxène alumineux et un plagioclase intermédiaire à grains grossiers, caractéristiques de l’anorthosite en massif. En même temps, une fusion de la croûte inférieure a produit les magmas mangéritiques et charnockitiques. Éventuellement, les magmas § E-mail address: [email protected] 1025_vol_48-4_art_04.indd 1025 10-05-19 15:52

Transcript of LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le...

Page 1: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1025

The Canadian MineralogistVol.48,pp.000(2010)DOI:10.3749/canmin.48.4.000

LATE- TO POST-TECTONIC SETTING OF SOME MAJOR PROTEROZOIC ANORTHOSITE – MANGERITE – CHARNOCKITE – GRANITE (AMCG) SUITES

Jamesm.mcLeLLaND§aNDBruceW.seLLecK

Department of Geology, Colgate University, Hamilton, N.Y. 13346, U.S.A.

michaeLa.hamiLTON

Jack Satterly Laboratory, Department of Geology, University of Toronto, Toronto, Ontario M5S 2B3, Canada

mariONe.BicKFOrD

Department of Earth Sciences, Syracuse University, Syracuse, N.Y. 13244–1070, U.S.A.

aBsTracT

Recentzircon-basedgeochronologicalinvestigationsintheAdirondackMountains,inthestateofNewYork,demonstratethat1155±6Mamassifanorthositewasemplacedduringthepost-contractionalphase(1160–1140Ma)oftheca.1200–1140MaShawiniganorogeny.Emplacementofmanyother anorthosite–mangerite– charnockite–granite (AMCG) suites alsocorrelateswith thewaningstageoforogenyand includes theca.1155MaMorinandLac-St-Jeancomplexes, theca.1650MaMealyMountaincomplex,andtheca.1450MacomplexesofeasternLabrador.Thecorrelationalsoappliestotheca.930MaRogalandanorthositecomplexofNorwayandtheca.1060–1020Malate-topost-OttawananorthositesofcentralQuebecandtheAppalachiansofVirginiaandsoutheasternPennsylvania.Thesecorrelationssuggestmodelsinvolvingdelaminationofoverthickenedorogenic lithospherebyfounderingorconvectiveremoval, followedbyathenosphericascent,andpondingofgabbroicmeltat thecrust–mantle interface.Orogen rebound followingdelamination results in stable,dynamicallybalancedsettingsinwhichgabbroicmagmaevolvesslowlyathighpressuretoproducehigh-aluminumpyroxeneandcoarse,intermediateplagioclasecharacteristicofmassifanorthosite.Relatedmeltingofthelowercrustproducesmangeriticandcharnockiticmagma.Ultimately,bothanorthositicandgraniticmagmasascend,and lower-pressure fractionationyields theclassicAMCGsuites.Transtensionalreactivationoflithospheric-scaleshearzonesandoldsuturesalsocorrelateswithimportantAMCGmagmatismandprovidesconduitsforgabbroicmagmathatpondsatthecrust–mantleinterfaceorinthedeepcrusttoproduceAMCGsuites.Flat-slabsubduction,back-arcextension,slabbreakoff,andhotspotsrepresentalternativesettingsthatcanaccountforgabbroicunderplatingandfractionationintoAMCGsuites,ifconsistentwithgeochronologicalconstraints.

Keywords:anorthosite,post-orogenic,geochronology,delamination,shearzone,AMCG(anorthosite–mangerite–charnockite–granite)suites.

sOmmaire

NostravauxgéochronologiquesrécentsportantsurlesmontsAdirondack,étatdeNewYork,démontrentquelesmassifsd’anorthosite ont étémis en place à 1155± 6Ma, lors de la phase post-contractionnelle (1160–1140Ma) de l’orogenèseShawinigan,dans l’intervalleca.1200–1140Ma.Lamiseenplacedeplusieursautres suitesde typeAMCG(anorthosite–mangérite – charnockite – granite) semble associée aux stadesfinauxd’uneorogenèse, par exempleca. 1155Mapour lescomplexesdeMorinetdeLac-St-Jean,ca.1650MapourlecomplexedeMealyMountain,ca.1450Mapourlescomplexesdel’estduLabrador.Lacorrélations’appliqueaussiaucomplexeanorthositiquedeRogaland,enNorvège,àca.930Ma,etlesanorthositesducentreduQuébecetdesAppalachesenVirginieetdePennsylvanie,liéesaustadestardifsdel’orogenèseOttawaàca.1060–1020Ma.Cescorrélationsfontpenseràunévénementdedélaminationparaffaissementd’unelithosphèreorogéniquesurépaissieoubienparérosionconvective,cequiauraitprovoquéunemontéedemanteauasthénosphérique,etaccumulationdemagmagabbroïqueàl’interfacecroûte–manteau.Lesoulèvementdel’orogènesuivantladélaminationaproduituncontextestable, dynamiquement équilibré, dans lequel lemagmagabbroïque a évolué lentement à pression élevéepour produire unclinopyroxènealumineuxetunplagioclaseintermédiaireàgrainsgrossiers,caractéristiquesdel’anorthositeenmassif.Enmêmetemps,unefusiondelacroûteinférieureaproduitlesmagmasmangéritiquesetcharnockitiques.Éventuellement,lesmagmas

§ E-mail address:[email protected]

1025_vol_48-4_art_04.indd 1025 10-05-19 15:52

Page 2: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1026 ThecaNaDiaNmiNeraLOgisT

anorthositiquesetgranitiquesmigrentverslasurface,etleurfractionnementàplusfaiblepressionproduitl’associationclassiquedessuitesAMCG.Uneréactivationtranstensionnellelelongdezonesdecisaillementàl’échellelithosphériqueetd’anciennessuturesmontre aussi une corrélation avec lemagmatismeAMCG, et fournit des conduits pour lemagmagabbroïque, quis’accumuleàl’interfacecroûte–manteauoubiendanslacroûteprofondepourproduirelesassociationsAMCG.Unesubductionsubhorizontale,uneextensionderrièrel’arc,l’affaissementd’uneplaque,etl’existencedepanachesmantelliquesreprésenteraientd’autres contextes possibles pour expliquer la venuedemagmasgabbroïques et leur fractionnement pour donner les suitesAMCG,comptetenudescontraintesgéochronologiques.

(TraduitparlaRédaction)

Mots-clés:anorthosite,post-orogénique,géochronologie,délamination,zonesdecisaillement,suitesAMCG(anorthosite–man-gérite–charnockite–granite).

(1996, 2004), Corrigan&Hanmer (1997), Scoates(1994,2008),andMorissetet al.(2009),amongothers,havesummarizedtheseissues.

In the present paper, we provide evidence andarguments that stress 1) the importance of gabbroicparentalmagmas that pond and differentiate underrelatively quiescent conditions at the crust–mantleinterface,yieldinganorthositicderivativesthatascendintothemiddletouppercrusttogetherwithgranitoidsderived by crustal anatexis, and 2) results of precisezircongeochronologythatplacestheseeventsinlate-to post-tectonic settings. Such settings are prone todelaminationofoverthickenedlithosphereandtopost-collisionalextensionpromotingtheinfluxandpondingofgabbroicmagmaformedbydecompressionmelting.

iNTrODucTiON

Proterozoicmassif anorthosites have attractedinterestformanydecadesowing,inpart,totheirlargesize, almostmonomineralic compositions, occurrenceas plutonic rocks only, and their somewhat restrictedoccurrence (Fig. 1) to Proterozoic belts (Herz 1969,Rämöet al.2003).Theyarecharacterizedbycompositebatholithsconsistingofmultiple,coalescedplutonsofvariable composition, but dominated by anorthositeand leuconorite.Althoughmanyof their petrologicalproblemshavebeenresolved,theissueoftheirtectonicsetting is still unsettled, and their spatial–temporalrestriction remains enigmatic.Ashwal (1993),Emslie(1978, 1985),Emslieet al. (1994),McLellandet al.

Fig.1. DistributionofAMCGsuitesandferroan-potassic(A-typeandrapakivi)granitesacrossNorthAmericaandwesternEurope.Symbols:AD:AdirondackMountains,G:Grenvilleorogen,HC–L:HorseCreekandLaramieAMCGcomplexes,M:Mazatzalorogen,N:NainAMCGcomplex,R:RogalandAMCGcomplexintheSveconorwegianorogen,SF:SaintFrancoisMountains(blackcross),SG:SanGabrielAMCGcomplex,Y:Yavapaiorogen.Dashedlinesapproximateboundariesoforogenicbelts.ModifiedafterHaapala&Rämö(1999).

1025_vol_48-4_art_04.indd 1026 10-05-19 15:52

Page 3: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1027

Suchmagmas can also be tapped by the interactionof steep shear-zoneswith ancient crustal boundaries.Examples of anorthosites in all of these settings arepresentedalongwithrelevantzircongeochronology.

peTrOLOgicaLcONsTraiNTsONaNOrThOsiTegeNesis

There has been general agreement (seeAshwal1993forasummary)thatmassifanorthositeisderivedfrom a high-alumina gabbroicmagmaponded at thecrust–mantle boundary, where it underwent early(Phase 1) fractionation of olivine and pyroxene thatsankback into themantle,aswellas fractionationofintermediate plagioclase that floated in the increas-inglydense residualmagmas (Kushiro 1980,Scoates2000). Ultimately, plagioclase-rich crystalmushesascended into themiddle andupper crust,where thestabilityfieldofplagioclaseexpandedandliquidfrac-tions underwent lower-pressure differentiation (Phase2) that yieldedmore anorthosite and leuconorite aswell as small volumes of late ferrodiorite andFe–Tioxide ores.During early ponding, advected heat, aswell as heat of crystallization of the high-aluminagabbros, caused partialmelting in the lower conti-nental crust, resulting in quartz-poor, potassic, iron-rich, orthopyroxene-bearing granitoids that, togetherwith the anorthositicmagmas, form coeval (but notcomagmatic) anorthosite –mangerite – charnockite– granite (AMCG) suites.Experimental data (Wyllie1977) indicate that high-pressure, anhydrousmeltingof continental crust produces silica-poor, potassium-richminimummeltsthatwillfractionateduringascentinto orthopyroxene-bearingA-type granitoids similartomangerites,charnockites,andgranites. Inaddition,fractionationofmagnesianmaficphaseswilldrivethecompositionstowardironenrichmentcharacteristicoftheMCGrocks.ThevolumeofMCGgranitoidsgreatlyexceeds thatof anorthosite inmost complexes and isconsistentwith a coeval, but not comagmatic origin.InacompetingpetrogeneticmodelproposedbyDuch-esne,VanderAuwera and coworkers (e.g.,Duchesneet al.1999,VanderAuweraet al.1998),mantle–crustinteractionduringpartialmeltingofslabsofanhydrousgabbronoriticlowercrustthrustintotheuppermantleproducesjotuniticmagmasthatfractionatedplagioclase(i.e.,anorthosite)andevolvedtowardsilicaenrichment(i.e., theMCGgranitoids). Scoates (1994, 2008) hasshown that these jotuniticmagmas cannot produceolivine-normativemagmas characteristic of the earlyphases ofmany anorthosites, nor do they follow theiron-enrichment, silica-depletion differentiation trendcharacteristic of anorthositicmagmas (Scoates 1994,2008,Morissetet al.2009).

It is generally agreed that a link exists betweenlayeredmaficintrusionsandmassifanorthosites(Morse1968,Ashwal 1993), and it is not uncommon tofindthe two spatially associated (e.g.,Kiglapait andNain

complexes,Morse1968).Thelineageistobeexpected,since both are products of gabbroicmagmatism, butidentifyingandexplainingthecausesofthedifferencesbetweenthetwoareothermatters.Weproposethattoalargeextent,thedifferencesreflectvariationsinbothdepths of fractionation andmagma-residence time atthose depths,with anorthosites evolving at greaterdepths and for longer times thanmafic layered intru-sions. Inwhat follows,we shall endeavor to demon-stratehowtheappropriateconditionsforthegenerationofmassifanorthositearise.

Emslie(1975)notedthatpondingofahigh-aluminagabbroicmagmaatthemantle–crustinterfaceisconsis-tentwiththepresenceofmegacrysts(5–50cmandupto1m)ofaluminouspyroxene(mostcommonlyortho-pyroxene)withinmanymassifanorthosites.Thesemayoccurassubroundedsinglecrystalsorgroupsofcrystals(TypeI)orinsubophiticintergrowthwithequallycoarseplagioclase (Type II), the latter type forming rafts ofmegacrystic anorthositewithinfiner-grained anortho-site and leuconorite.Both types ofmegacrysts haveelevatedconcentrationsofAl,butType2isespeciallyhigh, rangingfrom~4 to9wt.%Al2O3, indicativeofpressuresofcrystallizationof5–12kbaror~15–40kmdepth(Green1969,Fram&Longhi1992,Longhiet al.1999).Thehigh-pressurecrystallizationdocumentedbythe pyroxenemegacrysts is consistentwith composi-tionsofassociatedmegacrystsofplagioclase(An48–55)inthecoarserafts.AsshownexperimentallybyFram&Longhi (1992), theAn content of plagioclase inequilibriumwithhigh-aluminagabbrodecreaseswithrisingpressuresothatthecompositionofplagioclaseontheliquiduschangesfromAn74at1kbartoAn54at11.5kbar,whichoverlapsmegacrysticplagioclase(~An48–60)inthemassifsandisconsistentwithcrystallizationfromabasicmeltatpressuresof10–12kbar.Thesepressuresagreewith those associatedwith giantmegacrysts ofhigh-Alpyroxeneaswellasthefieldevidencethatbothcrystallizedunder thesamedeepconditionsandweretransportedas raftsorcrystalmushes to theirpresentpositions.

Alsoimpliedforthedeep(Phase1)environmentarehigh-temperature,anhydrousconditions,andsufficienttectonicstabilitytopermitthegrowthoflargecrystalsand retention ofmelts for long periods of time.Theabsenceofsignificantzoningwithinmostplagioclaseimplies replenishments of newhigh-aluminumbasicmelt to keep magma composition approximatelyconstantaswellas toincreasethequantityofplagio-clasecumulatebeyondthatproducedbyasinglemelt.AsdescribedbyEmslieet al.(1994)andBickfordet al.(2010),AFCinteractionofthegabbroswithpyroxenegranulite restites in the lower crust imparts amild,but very significant, crustal trace-element signatureto them,and to theirderivativeanorthosites,andalsoextends the lifetimeofplagioclaseonthe liquidus.Ina relatedmanner,Duchesneet al. (1999) argued thatelevatedvaluesof187Os/188OsintheSuwalkianortho-

1025_vol_48-4_art_04.indd 1027 10-05-19 15:52

Page 4: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1028 ThecaNaDiaNmiNeraLOgisT

site inPoland require a predominantly crustal sourcefor theanorthosite.However,Hannah&Stein(2002)have shown that theOs isotope characteristics canbe explained by assimilation of crustalmaterials bymantle-derivedanorthositicmagmas.

FieLDreLaTiONshipsaNDTecTONicseTTiNgsOFaNOrThOsiTegeNesis

ThefieldrelationsofmassifanorthositeshavebeenclearlysummarizedbyEmslie(1978),whopointedoutthatwhereas these bodies commonly occur in high-grade terranes, they rarely, if ever, showevidenceofbeing synchronouswith regional contraction. Someareoverprintedby latermetamorphism(e.g.,Marcy),andothersappeartobepristine(e.g.,Nain,Fig.2).Onthe basis of suchobservations, anorthosites and theirassociatedMCGgranitoids came to be regarded as“anorogenic”plutonicrocksthat,togetherwithferroan,potassicgranitoids(i.e.,A-typeandrapakivigranites),formed a Proterozoicmagmatic belt across NorthAmerica(Fig.1).Althoughtheterm“anorogenic”wasneverclearlydefined,ithasgenerallybeenunderstoodto implyaregionofmild toabortiverifting inwhichpondedbasicmagmascouldevolveasdescribedabove(Emslie1978,1985).Within thisenvironment, itwaspresumed that riftingwas sufficiently slow to ensurethatthepondedmagmaswerenotprematurelyremovedfrom their site of fractionation, and that the absenceofmajor contraction precluded large-scalemixingwithcrustalmaterialsthatwouldproduceintermediatemagmas. In short, an “anorogenic” environmentwasoneofthick,tectonicallystablecrustthatcouldprovidethe hot, high-pressure, tectonically stable, and anhy-drousconditionsrequiredbypetrologicalmodelskeyedtodeep,protractedfractionationofthebasicmagmas.Insomecases,fieldevidenceisconsistentwithaback-arcsetting (e.g.,Mistastin,Michikamau, andHarpLakemassifs:Rivers&Corrigan 2000,Rivers 2008b). Inotherinstances,reactivationalongmajorfaultzonesorterraneboundaries (e.g., theHorseCreekanorthosite:Scoates&Chamberlain1995,1997,Frostet al.2000;theNain complex:Myers et al. 2008) correspondswithfieldrelations.Someinvestigators(e.g.,Hoffman1989) suggested that subcontinental hot spots andplumes could produce the conditions necessary for“anorogenic”magmatism,butdemonstrating that thishasproventobeelusive.Allofthesemechanismsarepotentiallyconsistentwiththepetrogeneticconstraintsoutlinedabove;however,acriticalboundary-conditionforactualanorthositegenesisisprovidedbygeochro-nology,whichwediscussbelow.

u–pBzircONgeOchrONOLOgyOFamcgsuiTes

By the1980s,U–Pbzircondatingbecamewidelyaccessible andwas applied to high-grade terranes,

includingmany in theGrenville Province (Fig. 2).Within theAdirondacks,McLelland et al. (1988b)produced ages bymultigrain thermal-ionizationmassspectrometry (TIMS) on an array ofmetamorphosedigneousrocks,includingsevengranitoidsamplesfromtheMarcyAMCGsuitethatrangedfrom1155to1125Ma(Table1).SimilareffortsbyEmslie&Hunt(1990)inthecentralGrenvilleProvinceyieldedfivemultigrainTIMSages (1160–1123Ma) formassifMCG suites,[excludingtheLabrieville(1018Ma),RivièrePentecôte(1365–1350Ma), andMealyMountains (1646–1635Ma), allofwhich suggestedmore thanoneperiodofAMCGmagmatism]. Itwas assumedon the basis offieldrelationshipsthatallmembersofthesesuiteswerecoeval,butintheabsenceofdirectdatingofanorthositewith zircon, this represented littlemore than awell-informedassumption.

Difficulty in dating anorthosite arose from thepaucityofigneouszirconintheserocks.Silver(1969),in his landmark application of zircon geochronologytotheAdirondacks,notedthattheanorthositescontainnumeroussmall,multifacetedgrainsofzirconhavinga“soccerball”morphologythatyieldedmultigrainTIMSagesofca.1050Ma,buthestressedthatthesezircongrainswere clearlymetamorphic in origin.Machado&Martignole (1988) andMartignole et al. (1993)obtainedthefirstU–Pbzirconageformagmaticzirconfromananorthosite(i.e.,1354±3MafortheRivièrePentecôte intrusion inQuebec).Subsequentdatingofcharnockiteassociatedwiththatmassifyieldedanageofca.1350(Emslie&Hunt1990),helpingtosupportthecoevalnatureofAMCGsuites.InWyoming,Frostet al.(1993)obtainedasingle-grainzirconageof1439±7MaforamonzoniticrockfromtheLaramieanorthositecomplex.Directdatingof theAdirondackanorthositedidnotgetunderwayuntiltheJ.C.RoddickSHRIMPfacilitybecameavailableat theGeologicalSurveyofCanadaandmadeitpossibletoobtainageswithhighspatial resolutiononasmallnumberofsinglegrains.Atthatpoint,McLellandet al.(2004)andHamiltonet al. (2004) initiated a series ofSHRIMPU–Pb zirconinvestigations of theAdirondackAMCGsuite.Theseresults(Table1)demonstratedthatallmajormembersoftheAdirondackAMCGsuitewereemplacedwithinerrorof eachother at1155±8Maandarebasicallycoeval (Fig. 3).As canbe seen inTable 1,SHRIMPages aremore consistent and reliable for these rocksthanresultsofmultigrainTIMSanalyses,andwehaveusedthemwhereverpossible.

Uranium–Pbzirconagesforanorthositesnowexistelsewhere in theGrenville Province (e.g., Higgins&vanBreemen1992,Hébert&vanBreemen2004,Morisset et al. 2009).These ages not only clarifiedissues regarding petrology; they also provided anessentialframeworkenablingAMCGsuitestobeplacedwithinthecontextofregionaltectonicsettings,aswassubsequently done byMartignole (1996),McLelland

1025_vol_48-4_art_04.indd 1028 10-05-19 15:52

Page 5: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1029

et al.(1996)andCorrigan&Hanmer(1997).Itisthepurposeofthispapertopresentthisevidencetogetherwiththeconclusionthatratherthanbeing“anorogenic”,mostAMCGmagmatismtookplacewithinthecontextof regional orogenic settings.However, this does notruleoutextensional,transtensional,orhotspotsettings

wherethesesettingscanbeshowntobelate-topost-tectonic.Thekeytosuchdemonstrationappearstoliewiththorough,precisegeochronologyandfieldrelation-ships.A detailed discussion beginswithAdirondackmassif anorthosite,withwhich the authors aremostfamiliar.

Fig.2. GeneralizedmapshowingtheGrenvilleProvince,whosethreemajortectonicdivisions(Rivers1997)areindicated.Symbols:ABT:AllochthonousBoundaryThrust,CCZ:Carthage–ColtonShearZone,CMBBZ:CentralMetasedimentaryBeltboundaryzone,F:Frontenacterrane,H:Highlands,L:Lowlands,LDZ:LabelleDeformationZone,MH:MountHollycomplex,MSZ:MaberlyShearZone,MT:Morin terrane,PIN:Pinware terrane,SLR:St.LawrenceRiver,TO:Torngatorogen,X:oceanicperidotite.Themajoranorthositemassifsoftheregion(withagesandnumberedreferencestoage)are:MM:Marcy(ca.1150Ma,1,6),Mo:Morin(ca.1153Ma),LSJ:Lac-St-Jean(ca.1155Ma,3,4,7,8),HSP:HavreSt-Pierre(ca.1126Ma,2),dashedwhitelineisAbbe-Huardlineament,LA:LacAllard(ca.1060Ma,10),MR:MagpieRiver(ca.1060Ma,4)A:Atikonak(ca.1130Ma,2),HL:HarpLake(ca.1450Ma,9),Labrieville(1060Ma,12),C:charnockitesofParcdesLaurentides(ca.1050Ma,11),M:Mistastin(ca.1420Ma,90,Mi:Michikamau(ca.1460Ma,9),N:Nain–Kiglapait(ca.1383–1269Ma,1,9),P:Pentecôte(ca.1350Ma,5),S:St.Urbain(ca.1060Ma,10),SG-MG:Shabogamo–Michaelgabbros,ca.1470–1460Ma,9).Agereferences:1)Hamiltonet al. (2004),2)Emslie&Hunt(1990),3)Higgins&vanBreemen(1992,1996),4)vanBreemen&Higgins(1993),5)Machado&Martignole(1988),6)McLellandet al.(2004),7)Hébert&vanBreemen(2004),8)Hervetet al.(1994),9)Gower&Krogh(2002),10)Morissetet al.(2009),11)Corrigan&vanBreemen(1996),12)Owenset al.(1994).

1025_vol_48-4_art_04.indd 1029 10-05-19 15:52

Page 6: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1030 ThecaNaDiaNmiNeraLOgisT

geOLOgicseTTiNgOFTheaDirONDacKhighLaNDsaNDLOWLaNDsTerraNes

Overview

TheAdirondackMountains are a southwesternextension of theGrenville Province towhich theyconnectviatheFrontenacArchandThousandIslandsregionoftheSt.LawrenceRiver(Fig.2).TheregionistopographicallydividedintotheAdirondackHighlandsandLowlands,separatedbytheCarthage–ColtonShearZone(CCZ,Fig.4).Theformerisunderlainlargelybyorthogneissmetamorphosedtothegranulitefacies,andthelatterbyupper-amphibolite-grademetasedimentaryrocks,notablymarble.Bothsectorshaveexperiencedmultiple deformations resulting in refoldedmajor

isoclines.TheCarthage–ColtonZonedips~45°NW,andthelatestdisplacementalongit(ca.1050Ma)wasdowntothenorthwest,juxtaposingtheLowlandsandHighlands (Buddington 1939, 1969, Johnson et al.2004,Streepeyet al.2001,Sellecket al.2005,Bairdet al.2008).

Themajor events ofAdirondack tectonic evolu-tion are summarized in Figure 5.The oldest rocksrecognizedintheregionarecalc-alkalinetonalitesandgranodioritesdatedatca.1350–1250MaandexposedinthesouthernandeasternAdirondackHighlands(McLel-land&Chiarenzelli1990).Rocksofsimilarcomposi-tionandagehavebeenrecognizedintheMountHollycomplex(Fig.4)ofVermont(Ratcliffeet al.1996),theProterozoicofwesternConnecticut(Walshet al.2004),and theNew JerseyHighlands (Volkert&Aleinikoff

1025_vol_48-4_art_04.indd 1030 10-05-19 15:52

Page 7: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1031

2008).Inaddition,calc-alkalineplutonicrocksranginginagefrom1450to1300MaoccurwithinthewesternCentralMetasedimentaryBeltoftheGrenvilleProvince(D, Fig. 2),which includes all of theAllochthonousMonocyclicBelt,exceptfortheAdirondackHighlandsandMorinterranes(Fig.2).Dickin(2000)andRivers&Corrigan(2000),amongothers,interpretedthesecalc-alkalineplutonsaspartofasoutheast-facingAndean-stylearcdevelopedalongtheLaurentianmarginduringtheintervalca.1450–1300Ma.TectonicslicesofthisarcarepreservedatthewesternmarginoftheCentralMetasedimentaryBeltBoundaryZone (D,Fig. 2) aswellasinthecompositeElzevirianarc(Fig.5A),andarereferredtoastheDysartsuite(Easton1992,Dickin&McNutt2007).McEachern&vanBreemen(1993)andHanmeret al.(2000)proposedthatthe1400–1300Ma tonalitic rocks of the southernAdirondackHigh-lands and theMountHolly complex of theGreenMountains, inVermont (Fig.5A,AD–GM), representremnants of this arc rifted from Laurentia duringformationof theCentralMetasedimentaryBelt back-arcbasin,andreferredtothemastheDysart–MountHolly suite (Rivers&Corrigan2000).From1280 to1220Ma,theseremnantsservedasnucleiforoutboardarcmagmatism(Fig5A).Atca.1220Ma,thecompositeElzevirianarcunderwentaccretiontoLaurentiaalongthelong-livedCentralMetasedimentaryBeltBoundaryZone,shuttingoffElzevirianmagmatismasthesubduc-tion zone stepped eastward (Fig. 5B).This sequenceof events, aswell as the configuration of terranes inFigure5,differsfromthoseofCarret al.(2000)withrespecttotheplacementoftheAdirondackLowlands,whichishereconsideredtorepresentthetrailingedgeof theElzevirian-ageCentralMetasedimentaryBelt(Fig. 5A).This assignment is based on the presenceof ca. 1210–1200Ma calc-alkaline plutonic rocksof theAntwerp–Rossie suite (Figs. 2, 5B)within theLowlands,togetherwithoxygenisotopeevidencethatthese plutonswere emplaced above awest-dippingsubductionzone(Pecket al.2004),asshowninFigure5B.NotethattheserocksareabsentfromtheHighlands,consistentwithitsseparationfromtheLowlandsatthattime.Recently,Chiarenzelliet al.(2010)havereportedthediscoveryof anophiolitic peridotitewithoceaniccrust affinities in the northeasternLowlands (X,Fig.2).TheserockshaveNdmodelagesofca.1400–1350Maandcontainmetamorphiczircondatedatca.1214Ma.Thisimportantresultiswhollyconsistentwiththetectonicmodelpresentedabove.

TheFrontenacterranenorthwestoftheSt.LawrenceRiverisstructurallyseparatedfromtheLowlandsbythelateOttawan,steeplydippingBlackCreekShearZone(Fig.4),whichtheca.1160KingstondikesofCanadado not cross.Although similarities exist between theFrontenac andLowlands terranes, there thusmaybea significant discontinuity between them.Among thesimilaritiesbetweenthetworegionsisthefactthatbothexhibithigh-gradeShawiniganmetamorphism(~650°<

T<800°C,~6.5<P<8MPa),butnothermalOttawaneffects exceeding the closure temperature of titanite(~650°C); local 40Ar/39Ar hornblende ages indicatethatOttawan temperatures did not exceed ~500°C(Mezgeret al. 1991, Streepeyet al. 2001,Heumannet al. 2006).These results have been interpreted toindicate thatduringpeakShawinigancontraction(ca.1190–1160Ma), theLowlandswere thrust over theHighlands along a suture zone coincidentwith thepresentCarthage–Colton zone (Fig. 4E).TheDianaquartz syenite complex intruded the suture zone at1164±11Ma,anditsoldestkinematicindicatorsareconsistentwith thrustdisplacement to theeast (Baird2008).At1050Ma,reactivationofnormalfaultsalongtheCarthage–Coltonzoneresultedintopsidedown-to-the-westdispacement(Fig.4F),asrecordedbyinematic

Fig.3. PlotofU–PbzirconagesforAdirondackanorthositesandassociatedcharnockite–mangerite–graniteAMCGmembers.NumbersinparenthesesarekeyedtonumbersinTable1.ModifiedafterMcLellandet al.(2004).

1025_vol_48-4_art_04.indd 1031 10-05-19 15:52

Page 8: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1032 ThecaNaDiaNmiNeraLOgisT

indicatorsintheca.1050MaLyonMountaingranite,thatlocallyintrudedthezone(Sellecket al.2005).TheFrontenacandLowlandsterranesareinterpretedaspartsoftheOrogenicLidofRivers(2008a).

The Shawinigan orogeny

Atca.1200Ma,theAdirondackHighlands–GreenMountainterranewasaccretedtotheLaurentianmargin(Fig. 5C), and the early, contractional phase of theShawiniganorogenyensued.Deformationincludedtheformationofearly(F1)nappes,lithosphericthickening,high-grademetamorphism,andtheemplacementofthesynkinematicHermon(ca.1190Ma)andHydeSchool(ca.1170Ma)granitoids(Fig.5C).Simultaneously,theLowlands,attheleadingedgeoftheupperplate,were

thrusteastwardovertheHighlandsalonganearly,west-dipping precursorCarthage–ColtonZone (Fig. 5C).During the thrusting, the precursorCarthage–ColtonZonewasintrudedbythe1164±11MaDianaquartzsyenite, which contains numerous early kinematicindicatorsshowingtop-side-up-to-the-east(Baird2008,Bairdet al. 2008).Followingaccretion,delaminationof overthickened lithosphere took place and influxesof asthenosphere led to underplating of the crust bygabbroicmagmaandtheevolutionoflateShawiniganAMCGsuites(Figs.5C,D).

Corrigan (1995) appears to have been thefirst torecognize ca. 1190–1140MaShawinigan tectonismduring investigations near the small town of thatname northeast ofQuebec.At about the same time,Friedman&Martignole(1995),Martignole&Friedman

Fig.4. Generalizedgeological–geochronologicalmapof theAdirondacks.Unitsdesignatedbypatternsand initialsconsistofigneousrocksdatedbyU–Pbzircongeochronology,withagesindicated.UnitspresentonlyintheHighlands(HL)are:RMTG:RoyalMountaintonaliteandgranodiorite(southernHLonly),HWK:Hawkeyegranite,LMG:LyonMountaingraniteandANT:anorthosite.UnitspresentintheLowlands(LL)onlyare:HSRG:HydeSchoolandRockportgranites(HydeSchoolalsocontains tonalite),RANT:RossiedioriteandAntwerpgranodiorite.Granitoidmembersof theAMCGsuite (MCG)arepresentinboththeHighlandsandLowlands.Unpatternedareasconsistofmetasediments,glacialcover,orundividedunits.A:Antwerp,BCSZ:BlackCreekshearzone,CCZ:Carthage–Coltonshearzone,LL:Lowlands,HL:Highlands,MM:Marcyanorthositemassif,OD:OregonDomeanorthositemassif,SM:SnowyMountainanorthosite,IL:IndianLakeLM:LyonMountain,IL:IndianLake,R:Rossie,C:Canton,SLR:St.LawrenceRiver.ModifiedafterMcLellandet al.(2004).

1025_vol_48-4_art_04.indd 1032 10-05-19 15:52

Page 9: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1033

(1998)andMartignole(1996)reportedwidespreadca.1190–1140MametamorphismandtectonismwithintheAllochthonousMonocyclicBelt(Fig.1).Subsequently,Rivers (1997) andRivers&Corrigan (2000) definedtheShawiniganorogenyasencompassingtheinterval

1190–1140Ma.However,bothMartignole&Friedman(1998) andMartignole (1996, and references therein)stressed that contractionalorogenyhad largely termi-natedby1160Ma,andcontinuingmetamorphismwasduetothermalinfluxesfromca.1160–1140MaAMCG

Fig. 5. Plate tectonic summary for theAdirondack region.AH–GM:AdirondackHighlands –GreenMountains belt,AL:AdirondackLowlands,BSZ:Bancroftshearzone,CCZ:Carthage–Coltonshearzone,CGB:CentralGneissBelt,CMBBZ:CentralMetasedimentaryBeltboundaryzone,E:Elzevir terrane,F:Frontenacterrane,HSG:HydeSchoolgneiss,MSZ:MaberlyShearZone.ModifiedafterHeumannet al.(2006).

1025_vol_48-4_art_04.indd 1033 10-05-19 15:52

Page 10: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1034 ThecaNaDiaNmiNeraLOgisT

plutons (e.g., theMorin suite at 1155± 3Ma:Doig1991).Wodickaet al. (2004)utilizedU–PbSHRIMPanalysisanalysestodatethepost-tectonicmonzonitic–gabbroicChevreuil suite at ca. 1170–1160Ma, thuspost-datingregionalca.1200–1180Magranulite-faciesmetamorphismin theAllochthonousMonocyclicBeltnorthwestof theMorinanorthosite (Fig.1).Corrigan&Hanmer(1997)stressedthat,“…evidencefordefor-mation related to contractional tectonics appeared toberestrictedtotheinterval1.19–1.16Ga”.Inarelatedway,theundeformedca.1160MaKingstondikeswarmcross-cutsdeformed1176–1162plutonsand1180–1160Magranulite-faciesassemblageswithintheFrontenacterrane(Marcantonioet al.1990).WithintheAdiron-dackLowlands, titaniteandmonaziteagesof1156±and1171±Ma, respectively, exhibitno resetting,andnopost-1172Maregionaltectonismormetamorphismisobserved(Mezgeret al.1991,Heumannet al.2006).Local ca. 1155MaAMCGplutons exhibitminimaldeformation outside of shear zones, and tectonismappearstohavepeakedatca.1180–1160Ma.Thelargeca.1170MaMaberlyshearzoneatthewesternmarginof the Frontenac domain (Fig. 1) terminated thrustmotionat1156±2Ma(Corfu&Easton1992,Rivers&Corrigan2000).Insummary,theShawiniganregionalcontractionoccurredthroughoutthisentireareafromca.1200to1160Ma,whereasmetamorphismfrom1160to1140MawaslargelylimitedtoheatfromAMCGsuitesortolocalshearzones.AssumingthattheShawiniganorogeny in theGrenville Province continues to beassignedtotheinterval1200–1140Ma,itshouldalwaysbeemphasizedthatregionalcontractionceasedbyca.1160Ma.Within thesouthernAppalachians,Shawin-igancontractionalorogenesisdoesextendfromca.1200to1140Ma,andanorthositesaresmall,scarce,orabsent(Tolloet al.2006).

FollowingtheShawiniganorogeny, theredoesnotappeartohavebeenanysignificantregionaldeforma-tionintheAdirondacksuntilca.1090Mawhen,afterabriefinterval(ca.1103–1090Ma)ofgraniticmagma-tism(theHawkeyesuite,McLellandet al.1996), theentireGrenvilleProvincebegan to experience effectsof theOttawanorogeny, considered tohavebeen theresult of collision ofLaurentia andAmazonia (Figs.5F,G),with the suture zone lying somewhere to thesoutheastof thepresent-dayAppalachians.Accordingtogeothermometry,geobarometry,andseismic inves-tigations,duringtheOttawanorogeny,theAdirondackHighlands regionattainedadouble thicknessofcrustandunderwentgranulite-faciesmetamorphismandF2nappeemplacement(Bohlenet al.1985,Valleyet al.1990,Kitchen&Valley1995,McLellandet al.1996).ThemajorcontractionalphaseoftheOttawanorogenyappearstohaveterminatedbyca.1050–1040Ma,andminimallydeformedplutonsofLyonMountaingranite(Figs.4,5G)wereintrudedatthistime(McLellandet al.2001).Locally,youngereventsoflessermagnitudecontinuedtoaffecttheregionuntilca.950Maandare

recordedbymetamorphiczircon,titanite,andmonazite.TounderstandhowAdirondackanorthositesfitintothistectonicframework,weneedtofocusupontheresultsofrecentgeochronologyforboththeAMCGsuiteandtheShawiniganorogeny.

Details of the Shawinigan Orogeny in the Adirondacks

Evidence ofShawinigan plutonism andmetamor-phismiswelldevelopedintheAdirondackLowlands,perhaps better so than elsewhere in theGrenvilleProvince, and thus deserves some additional discus-sion.Figure 4 shows the presenceof largequantitiesof igneous plutons in the Lowlands, and SHRIMPU–Pbzirconages,aswellassingle-grainTIMSages,demonstrate that all of these fall into the interval1214–1155Ma.The oldest rocks in the LowlandsconsistoftheRossiediorite–quartzdioritesuiteandtheAntwerpgranitoid suite, consistingprincipally ofbiotitegraniteandgranodiorite.Bothunitsarestronglycalc-alkaline.TheRossiedioritehasbeendated(LA–ICP–MS) byBaird et al. (2008) at 1214 ± 38Ma,andtheAntwerpgranitoidsuite(SHRIMP),at1210±10MabyWasteneyset al. (1999).The calc-alkalinebiotite–hornblendeHermonmegacrystic granite hasbeendated(SHRIMP)at1182±8Ma(Heumannet al.2006).Nextinageistheca.1172±2Ma(single-grainTIMS)Ma calc-alkalineHydeSchool gneiss,whichconsistsofsubequalamountsofpinkleucograniteandgraytonalite(McLellandet al.1992,Wasteneyset al.1999).Thegranitic facies of theHydeSchool gneissisthesamecompositionandageasthepinkRockportleucogranitethatoccursalongtheSt.LawrenceRiver,and the two are interpreted as belonging to a single,widespreadShawinigan event.Both theHermon andHydeSchoolunitshaveemplacement ages that coin-cidewithmetamorphicagesdiscussedinthefollowingparagraphandareinterpretedassyntectonicintrusionsconsistentwith their fabrics (McLellandet al. 1992).Notethatnoneoftheca.1210–1170Macalc-alkalinerocks of theLowlands are present in theHighlands,indicatingthatthetwoterraneswereseparatepriortothisinterval,andduringmuchofit,butwereaccretedtooneanotherbyca.1155MawhenAMCGstitchingplutonswereemplacedacrossbothregions.

InarecentSHRIMPU–Pbzirconstudyofanatexisinmigmatiticmetapelitesof theLowlands,Heumannet al.(2006)showedthatpartialmeltingtookplaceat1180–1160Ma,andzircongrainsexhibitnoyoungerovergrowths.Thisresultisconsistentwiththetitanitedataanddemonstrates that theonlyhigh-grademeta-morphism experienced by the Lowlandswas at ca.1210–1160Ma(i.e.,theShawiniganorogeny).Shawin-iganmetamorphicagesoccurintheHighlandsaswell(Heumannet al.2006,Bickfordet al.2008),andxeno-lithsofhigh-gradeShawinigangarnet–sillimanitegneissarepreservedwithinan~1106Ma(J.Aleinikoff,pers.

1025_vol_48-4_art_04.indd 1034 10-05-19 15:52

Page 11: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1035

commun. 2006,SHRIMP)metagabbroof the easternHighlands(McLellandet al.1988a).ItissignificantthatShawinigan-age regionalBarrovianmetamorphism intheHighlandswasnotdocumenteduntilHeumannet al.(2006)andBickfordet al.(2008)obtainedcrystalliza-tionagesof1180–1170Maforanatecticassemblages.These findings imply the following: 1) Shawiniganca. 1200–1180Maplutons are commononlywithinthe Lowlands, and 2) there is extensive Ottawangranulite-faciesmetamorphism in theHighlands hasoverprintedearlierevents.Similarconsiderationsmayhave obscured recognition of Shawiniganmetamor-phisminpartsoftheeasternGrenvilleProvince,anditwouldbe instructive toobtainzirconagesand in situmonazite ages for leucosome in paragneisses olderthanca.1200Ma.Importantly,Wodickaet al.(2003)havereportedU–Pbzirconagesof1170–1180MaforgranitoidplutonsinthevicinityofHavreSt-Jeanmassif,andfurtherdatingislikelytorevealmoreoftheseages.

Whenthe1156±7Maaverageage(Table1)oftheAMCGsuiteiscomparedwiththeageofShawiniganplutonismandanatexisintheAdirondacks(ca.1210–1160Ma), it is clear that the ages closely approachoneanother at 1160Ma. In addition, the threeoldestmembers of the granitoid suite have average agesexceeding1170Ma,andthenextfouroldestmembersarewithinerrorofmid-1170MaagesoftheShawiniganorogeny.Eventhefouroldestanorthositesamplesarewithin error ofca. 1170Ma.Given this age overlap,and the proximity of all of these rocks, it cannot berealisticallysupposedthattheAdirondackAMCGsuiteisinanyfashion“anorogenic”.Instead,theformationandevolutionofthesuitemustbeincorporatedintoaworkingmodelwithinwhichitcanformandevolveinasettingthatislate-toearlypost-tectonic.Asweshalllaterargue,thistypeofenvironmentappliestoseveralmajorAMCGcomplexes.

amODeLFOrThegeNesisOFamcgsuiTes

Themodel is based upon the quantitative inves-tigations ofHousemanet al. (1981),Dewey (1988),Turneret al.(1992)andPlatt&England(1994),amongothers,who have applied geophysical reasoning andcalculations to orogeny,mountain building, and thelate collapse of orogens.These authors concludedthat contractional orogeny results in overthickenedlithospheric roots, and that the latter are likely to bedenser than the asthenosphere.A largeportionof theoverthickened lithosphere is then removed either bymechanicaldelaminationorbyconvectiveremovalofthe thermalboundary-layer (Fig.6).Thedelaminatedlithosphereisreplacedbyasthenospherethatundergoescompressionmeltingtoproducegabbroicmagmasthatpondatthecrust–mantleinterface.Duringremovalofthe lithospheric root, the orogen rises in elevation ashotter,lessdensematerialreplacesthedensekeelandproduces buoyancy forces.The increased elevation

results in increased potential energy of the plateau,whichrespondsbyexertingoutwardlydirected,exten-sionalhorizontal(FB)thatcausetheunderlyingcrusttopushsidewaysuntilitbalanceswhatevercontractionalforces (FC) continue to exist andprovide support fortopographicelevations.At thispoint, theorogenmaybesaidtohaveattainedastateofmechanicalequilib-rium that supportsmountainous topography and thatsimultaneously experiences collapse along low-anglenormal faults until isostatic equilibrium is attained.It is estimated that the equilibrium statemay last for10–20Ma(Platt&England1994).Duringthisinterval,AFCprocessesmayresultincrust–mantleinteractionsrecorded in geochemical signatures of trace elements(Emslieet al.1994,Bickfordet al.2010).

The creation of amechanically equilibrated statein the delaminatedorogen is conducive to the devel-opment of anAMCG suite, because: 1) it remainstectonically stable for protracted periods of time, 2)it is associatedwith the ponding of large quantitiesof gabbro at the crust–mantle interfacewhere hot,dry conditions exist, 3) it promotes the formation ofcoarse,commonlyunzonedplagioclaseofintermediatecomposition thatfloats indenserhigh-pressuremelts,and4)itfacilitatesthereturnofolivineandpyroxenecumulates back to themantle. Finally, 5) themodelprovides the heat necessary to partiallymelt largevolumesofdeepcontinentalcrust.Althoughlatentheatprovidesmuchoftherequiredthermalenergy,Platt&England(1994)showedthattheconvectiveremovalofthelithosphericboundary-layerproceedssorapidlythathotasthenospherearrivesatthebaseofthecrustwithouthaving lostmuchheatbyconduction, thuscreatingathermal environmentmuch like that associatedwithplumesorhotspots.Inshort,thelate-topost-tectonicenvironmentthatexistsinoverthickened,delaminatedorogenspossessesallofthepropertiesoncethoughttocharacterize“anorogenic”environments,andmoreover,it is consistentwith geochronological data andfieldevidence.

During the late- to post-tectonic phase of theShawiniganorogeny,regionalextensiontookplaceascontractionalforceswaned.MajormanifestationsofthisextensionaretheFlintonandTwelveMilebasins(Fig.5D),whichhostbasinalsedimentscontainingca.1155Madetritalzirconandwhichhavebeenconstrainedtoca. 1150–1100Ma in age (Sager-Kinsman&Parrish1993,Wodickaet al.1996).

amcgmassiFsBeyONDTheaDirONDacKs

The Central Grenville Province

Figure 2 shows themajor anorthositemassifs ofthe northeasternGrenvilleProvince, aswell as thosesituatednorth of theGrenvilleFront inLabrador.Ofspecial importance to this discussion are theMorin(1153±2Ma,Doig1991)andtheLac-St-Jeanmassifs

1025_vol_48-4_art_04.indd 1035 10-05-19 15:52

Page 12: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1036 ThecaNaDiaNmiNeraLOgisT

(Higgins&vanBreemen1992, 1996,Higginset al.2002,Hébert&vanBreemen2004),whichwediscussbelow.TheAtikonak(1133±10Ma,Emslie&Hunt1990) and the northern part of theHavre St. Pierre(1126±7Ma,Emslie&Hunt 1990)massifs remainproblematic,becausetheseagesareinferredfromdatingadjacent granitoids.However,Wodickaet al. (2003)haverecentlydatedanorthositeinthenorthwestlobeoftheHavreSt.Pierremassifandobtainedanagerangeof1139–1150Ma,withinerroroftheAdirondack,Morin,andLac-St-JeanAMCGsuites.

Asstatedpreviously,Friedman&Martignole(1995),Martignole(1996),Corrigan&Hanmer(1997),Marti-gnole&Friedman (1998)andWodickaet al. (2004),amongothers, stressed that intrusionof the1153±3MaMorinAMCGsuitepostdatesregionalShawinigancontractionalorogeny(Fig.7).Accordingly,itappearsthattheMorinanorthositeandrelatedgranitoidsformedinatectonicsettingcloselyresemblingthatproposedfortheAdirondacks(i.e.,earlypost-tectonicdelaminationwithinfluxesoffreshasthenospheretothebaseofthecrust,wheretheAMCGmagmasevolved).

TheentireMorin terranewasaffectedbyShawin-igancontractionalmetamorphismfromca.1190to1160Ma, and the type localityof theShawiniganorogenyliesatthesoutheasternedgeoftheMorinterrane~250km southwest of the enormousLac-St-Jeanmassif.AlthoughtheLac-St-Jeanmassifwasdisplacedfromitsoriginalsiteofintrusion,itseemsunlikelythatShawin-igandeformationandmetamorphismdidnotaffecttheregionintowhichthebatholithwasemplaced.Notwith-standing, therearecurrentlynoShawiniganages thathavebeenreportedforthearea.However,asdescribedearlier,ca.1190–1160MaShawiniganmetamorphismwasnotrecognizedintheAdirondackHighlandsuntilSHRIMP analysis of zircon grains in the leucosomeofmigmatiticmetapelites revealed its presence.AgeochronologicalreconnaissanceofsimilarlithologiesinthecentralGrenvilleProvincemightwellyieldsomeShawiniganagesandshouldbeundertaken.Moreover,asdescribedbelow,intrusionoftheLac-St-Jeanbatho-lithisdemonstrablyassociatedwithlarge-scale,ductilestrike–slipshearzonesthatmanifestcompressiveforcesatca.1157Ma.

Fig. 6. Schematic representation of an overthickened collisional orogen undergoinglithospheric delamination and consequent orogen rebound and collapse along low-angle normal faults during late phases of orogenesis.Delamination represented byfounderingof lithospherickeel; a convectiveerosionof the thermalboundary-layerisjustaslikely,however.ASreferstoasthenospherethatascendstothecrust–mantleinterfaceandundergoesdecompression-inducedmelting toyieldagabbroicmagmathatfractionatesolivine(ol)andpyroxene(px),whichsinkbackintothemantle,andintermediateplagioclase(pgf),whichfloats.Theplagioclaseaccumulatesintoacrystalmush(blacksquares)atthebaseofthecrust.Ambientheatandheatofcrystallizationresult inmelting of the lower crust to yieldmangeritic, charnockitic, and graniticmagmas(MCG)oftheAMCGsuite.OrogeniccontractionalforcesarerepresentedbyFC,andthehorizontalcomponentsofbuoyancyforces,byFB.

1025_vol_48-4_art_04.indd 1036 10-05-19 15:52

Page 13: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1037

Datingof the largeLac-St-Jeananorthositemassifwas undertaken byHervet et al. (1994),Higgins&vanBreemen (1992, 1996), Higgins et al. (2002),and byHébert& vanBreemen (2004).The resultsof these investigations (Table 2) are commonly citedas documenting a~20m.y. interval of crystallizationfrom1160–1140Ma(e.g.,Rivers1997,Hébert&vanBreemen 2004).However, examination of the datainTable2 reveals that support for this interval isnotcompelling, and amuchmore restricted interval ofcrystallizationismorelikely.Specifically,therearesixagesthatdirectlydatethecrystallizationofanorthositeorpetrogeneticallyrelatedrocks(samples1,2a,3,8,10,and13).Fiveofthesesixfallbetween1157and1148Mawitherrors(2s)of2–4Ma.Thesixth(sample13)isdatedat1140±10Ma.Theaverageofallsixsamplesis1154±4Ma,whichweconsidertobetheemplacementage of the anorthosite. It is an age that is coincidentwith the 1160–1140Ma post-contractional phase ofthe Shawinigan event andwith emplacement of theMarcyandMorinmassifs(Fig.7).Thisageisfurthersupportedbytheobservationthat1)the1146±3MaLacLaBrèquegraniticplutoniscompletelyenclosedbytheanorthosite,and2)theDuBrasgranophyricplutoncross-cutstheanorthosite.Inaddition,lateanorthositicpegmatiteswithin theLac-St-Jeanmassif commonlycontainacoreofgranophyre,twoofwhichyieldagesof1155±2Maand1152±2Ma.Thustheanorthositemustbeofthisageorolder.Onegranophyriccorehas

been dated at 1142± 2Ma, andwas interpreted byHiggins&vanBreemen(1992)asa latedifferentiateof the anorthositicmagma, although no persuasiveevidenceispresentedforthis.Moreover,residualgrano-phyricliquidsarenotlikelytoformfromanorthositicparentmagmas,whichfollowastrongiron-enrichmentFennertrend,leadingtoferrodioriticresiduasuchasinsamples1,8,and10.WesuggestthatthegranophyresarecrustalA-typepartialmeltsproducedbyheatfromunderplatedgabbroandthemassifsthemselves.Finally,we note thatmetamorphic zircon in the granophyresyieldsagesof1142±2Ma,clearlydemonstratingthatthisagedoesnotreflectemplacementoftheanorthosite.Infact,Higgins&vanBreemen(1992)arguedpersua-sively that field and textural evidence in theNNE-trendingmegadykes (samples 1, 2) demonstrate thattheywereemplacedwhiletheanorthositewasstill,inpart,notfullycrystallized.Bythetimethattheyoungerofthetwomegadykes(Sample2)hadbeenemplaced,theanorthositewasundergoingsolid-statestrain.Theyused this evidence to argue for rapid emplacement(i.e.,aonetotwomillionyearinterval,not~20m.y.)of the anorthositicmagma,withwhichweagree.Wealso agree that the steepNNE strike-slip faults (withreleasing bends) that cut the anorthositemightwellhaveservedasimportantconduitsfortheLac-St-Jeanmagmastoreachthemiddlecrustfromitsstagingareaat the crust–mantle interface.Such faultingwouldbeconsistentwiththelatetransitionoftheregionalstress-

Fig.7. ChartshowingthecorrelationbetweenemplacementofmajorAMCGmassifsofnortheasternNorthAmericaandthewaningphaseoforogeny.Blackrepresentscontractionalorogeny,lightgrayrepresentsmagmatism,anddarkgrayrepresentspre-contractionalarcmagmatism.

1025_vol_48-4_art_04.indd 1037 10-05-19 15:52

Page 14: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1038 ThecaNaDiaNmiNeraLOgisT

fieldfromcompressiontoregionalextension.Theagesof associatedgranitoids (samples 1, 9a,b, 11, 15) areconsistentwiththeforegoingarguments.

South of theAbbe–Huard lineament in theHavreSt.Pierremassif (Fig.1), theLacAllardandMagpieRiver lobes of theHavreSt. Pierre anorthosite havebeendirectly dated atca. 1060Ma (vanBreemen&Higgins1993,Morissetet al.2009),whichcoincideswith the terminal stages of theOttawan orogeny, asemphasizedbyMorissetet al.(2009).InadditiontotheHavreSt.Pierreexample,Owenset al.(1994),Dymek&Owens (1998)andOwens&Dymek (2001,2004)havemapped,analyzed,anddatedanumberofsmallbodies ofca. 1080–1010Ma anorthosite and related

ca. 1050MaA-type, post-orogenic granitoid plutonsin theParcdesLaurentides area (Fig.2) that lie in aNNE-trending belt (CRUMLbelt, Fig. 1) extendingfromQuebecCity to the northeasternmargin of theLac-St-Jeanmassif.Theca. 1080–1010Ma anortho-sitesoftheCRUMLBeltandthecentralAppalachiansdiffer from the largemassifs of theAdirondacksandGrenville Province in several importantways,e.g., they contain Fe3+-rich ilmenitewith exsolutionlamellae of hematite rather than ilmenite–magnetite,their antiperthitic plagioclase compositions are richerin sodium and potassium (An23–48Or4–25) than in theca.1150Mamassifs(An48–62Or2–3),andtheycontainorthopyroxene,butneitherclinopyroxenenorolivine.

1025_vol_48-4_art_04.indd 1038 10-05-19 15:52

Page 15: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1039

Theyareconsideredtohaveevolvedunderhigherf(O2)conditions andwithin somewhatmore hydrous envi-ronments,andassimilatedmorecontinentalcrustthanthelargemassifsoftheGrenvilleProvince.Theyhavebeenreferredtoasalkalicanorthosites(e.g.,Owenset al.1994,Owens&Dymek2001,2004).Incontrasttothe alkalic anorthosites, the pre-1100Ma anorthositemassifs are referred to as pyroxene–labradorite orpyroxene – olivine – labradorite anorthosites on thebasisoftheirdominantmineralogy.

Alloftheagescitedinthepreviousparagraphfallinto the late- to post-tectonic phase of theOttawanorogeny (Fig. 7) and are approximately synchronouswith late extension and collapse of the orogen atca.1060–1020Ma (Rivers 2008a)making them goodexamplesofthelate-topost-tectonicsettingforAMCGmagmatism (Morissetet al. 2009).More specifically,peak and late phases of theOttawanorogenywithintheAdirondacks were followed by delamination,pop-up,andcollapse,accompanied(andenhanced)bytheascentoflargevolumesofca.1050MaLyonMt.leucogranite(Figs.4,5G),consideredtobecorrelativewith ca. 1060–1050Ma Parc des Laurentides (Fig.2) granitoids.TheCRUMLBelt projects farther totheeastoftheAdirondacks,whereitmayliebeneathPhanerozoic cover.This belt re-emergeswithin theProterozoic inliers of the Pennsylvania andVirginiaAppalachians (i.e., theMontpelier anorthosite, 1045±10Ma,andtheRoselandanorthosite,1045±44Maanorthosites:Aleinikoff et al. 1996, Pettingill et al.1984).Thesesmallbodiesareassociatedwithca.1050Magranites and leucogranites similar to those in theCRUMLBeltMCGgranitoids andAdirondackLyonMountainGranite.Basedupontheseobservations,were-emphasizethatOttawanorogenesiswasfollowedbylate-topost-orogenicAMCGmagmatismwiththesamebasictimingandmechanismsasproposedforthelate-to post-ShawiniganAMCG complexes.Differencesbetweenthealkali-richanorthositesandthelabradoritemassifscanbeaccountedforbydifferencesinfluidsandmagmaticinteractionwithcrustalmaterials.

The AMCG Complexes complexes of eastern Labrador

Importantmassifsofolivine–pyroxenelabradorite-type anorthosite, leuconorite, and leucotroctolite,together withMCG granitoids, occur in Labradorimmediately north of the easternGrenville Province(i.e.,Michikamau,ca.1460Ma,HarpLake,ca.1448–1426Ma,Mistastin,ca.1420Ma,mainlyMCG,andNain, 1350–1290Ma complexes).TheseundeformedandpristineEarly toMiddleElsonian(1.46–1.29Ga)massifshavebeenregardedastypeexamplesof“anoro-genic”AMCGmagmatism and exhibit characteristiclargecrystalsofintermediateplagioclaseandaluminouspyroxene(Emslie1978,1985,Emslieet al.1994).TheNain complex is localizedwithin a steep Paleopro-

terozoicshearzone (theTorngatorogen)between theChurchill andNainprovinces, and theother three liejusttothesouthwest.Recentgeochronological,petro-logical,andtectonicreviewsbyGower(1996),Gower&Krogh(2002)andMyerset al.(2008)haveopeneda new chapter in our understanding of theseAMCGcomplexesandaresummarizedinnthissection.

Utilizingbothdetailedfieldworkandzircondating,Gower&Krogh (2002) have demonstrated that theeasternGrenvilleProvince experienced strongdefor-mation,metamorphism, andplutonismduring theca.1.52–1.46MaPinwarianorogeny,whoseAndean-typeplatemarginborderedsoutheasternLaurentiadirectlysouthof thefuturesitesof theearlyElsonianAMCGsuitesinLabrador.TerminalPinwarianevents(ca.1.46Ga)coincideintimewiththeonsetofAMCGmagma-tism(ca.1460Ma)intheHarpLake,Michikamau,andMistastinmassifs(Fig.7).Inaddition,theShabogamoandMichael gabbros, located south of themassifsandmostlywithintheGrenvilleProvince(Fig.2),aredatedat1459±23Maand1472±27Ga,respectively,andmanifest extension overlapping and followingPinwarian contraction. Gower & Krogh (2002)accounted for thePinwarian orogenybyproposing anorth-dipping subduction zone thatwas active from1520to1460Ma.Subsequently,orogenyandmagma-tism shut off along the continentalmargin, and theextension-related 1469–1426Ma Shabogamo andMichaelgabbros(Fig.2)wereemplacedinproximitytothepresent-dayGrenvilleFront.Ataboutthesametime(1460–1420Ma),theHarpLake,Michikamau,andMistastinAMCGcomplexeswereemplacedinpulsesthatgrewyoungerfromsouthtonorth.

Inorder to account for theseobservations,Gower&Krogh (2002), followingGutscher et al. (2000),advocatedflat-slabsubductioninvolvinganoverriddenspreadingridgethatprovidedthermalbuoyancyforthelowerplate.ThisproposalexplainstheshuttingoffofPinwarianmagmatismat thesubductionzoneaswellasthesouth-to-northyoungingofintrusiveages.Gower&Krogh(2002)suggestedthatthespreadingridgenotonlyprovidedbuoyancy,butmightalsohavefedathe-nosphericgabbrothroughtheoverlyinglithospheretothebaseofthecontinentalcrust,whereitpondedandfractionated.Gower&Krogh (2002) also noted thatthe“entireregionunderpinnedbyflat-subductedcrustisoneoftectonicinstabilityandpocketsofmagmatismmight be anticipated in anyweak spot”.We expandthis suggestion to include delamination or breakoffof the cooling lithosphere(s), resulting in the ascentof deeper, hotter asthenosphere and decompressionmelting,producinggabbro thatpondedat thebaseofthe crust.Anothervariation is that thenarrowwedgeof asthenosphere above the leading tip of the now-dehydratedoceaniccrustofthelowerplatewasreplen-ishedbyconvectivecirculationprovidingfresh,hotterasthenosphere that underwent decompressionmeltingtoyieldtheunderplatedgabbros.Althoughdifficultto

1025_vol_48-4_art_04.indd 1039 10-05-19 15:52

Page 16: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1040 ThecaNaDiaNmiNeraLOgisT

demonstrateatpresent,theflat-slabmodelisattractiveandconsistentwithwhatisobservedatthesurfacefortheHarpLake,Mistastin,andMichikamauplutonsaswellastheMichael–Shabogamodikeswarms(Fig.1).Moreover, it isconsistentwithalate-topost-tectonicsetting(Fig.7).Rivers&Corrigan(2000)andRivers(2008b)haveproposedthattheAMCGmagmatismofLabrador is the consequence of back-arc extension,whichmay be compatiblewith the flat-slabmodeldescribedhere.

It is difficult to reconcile theflat-slabmodelwiththeNaincomplex,whichis74millionyearsyoungerthan the neighboringAMCGplutons.However, therecent investigations ofMyerset al. (2008) has shedconsiderable lighton theoriginof theNaincomplex,whichweaddressinthenexttolastsectionofthepaper.

Anorthosites and AMCG suites of southern Norway

The1100–930Ma(Bingenet al.1993)Sveconorwe-gianOrogenbearsresemblancestotheGrenvilleProv-incewithwhichitwaspresumablycontiguousduringmuch ofmid-Proterozoic time; it alsowas affectedby deformation analogous to the ca.1100–1030MaOttawan(i.e.,Grenvillian)orogeny.Duringthepasttwodecades,agreatdealofhigh-qualitygeochronologicaldatahaveemergedontheSveconorwegianregionandhas served to clarify important details of its evolu-tion.Wenotethatthewesternportionoftheorogenisallochthonousandhasbeentransportedandoverprintedbymetamorphism in the JotunNappeComplex ofsouthwesternNorway.Theeasternpartof theorogenislocatedonthesouthwesterntipofNorwayandreap-pears in eastern Sweden.Anorthosites andAMCGsuitesexistinbothsectors.IntheJotunNappeportionoftheorogen,regionalconvergenceandmetamorphismappeartohavebegunatca.1110MaandwerefollowedbysubductionbeneathBalticafromca.1050to1040Ma (Bingen& vanBreemen 1998). Subsequently,thrustingmigrated eastward.Relaxation occurred atabout970Ma,andamassifanorthositewasemplacedatthattime(Lundmark&Corfu2008,Bingenet al.2005).Farther southeast, regionalmetamorphism extendeduntil930MawhentheverylargeRogalandanorthositecomplex, including theBjerkreim–Sokndal layeredleuconoriticlopolith,wasrapidlyemplaced(Schäreret al.1996,Bingenet al.2005).Alloftheseinvestigatorsremarkedon thebarelypost-tectonicemplacementoftheseAMCGmassifsandtheirrelationshiptoanexten-sional,collapsephaseoftheSveconorwegianOrogeny.

Miscellaneous examples of AMCG complexes in lithospheric-scale shear zones

Myers et al. (2008) have recently published theresultsofathoroughinvestigationoftheNainigneousplutoniccomplex(Figs.2,7)thatmustbepartofany

discussionofthetectonicsettingofAMCGsuites.Herewesummarize the resultsof theirwork.The~300 3 75–100kmNainbatholithwasintruded(1363–1289Ma)intothe~100km-wideTorngatorogen(Hamilton2008)thatmarksthesuturebetweentheChurchillandNainprovinces(Fig.2).TheNaincomplexconsistsoflargecoalescingandcross-cuttingplutonsofanortho-site,monzonitic, ferrodioritic, troctolitic, andgraniticrocksthatintrudeintosharp,well-definedfracturesandgivelittlesupportfordiapiricmodelsofintrusion.Ringcomplexes,cauldronsubsidence,dikesandsheetschar-acterizetheintrusivemodes.Emplacementoccurredinseveral distinct pulses ofAMCGmagmatism spreadover75millionyears.TheoriginoftheNaincomplexiscloselyrelatedtothe~1000 3 50kmlithospheric-scaleGardar–VoisceyBayFaultZonethat trendseast–westfrom theGardar Province,Greenland (Upton et al.2003)and intersects theNW–SETorngatorogenatahigh angle.The fault zone is steep, exhibits sinistraloffsetof~20km,andcontainsAMCGandotherintru-sionsthathavebeendatedandconstrainthetimingofdisplacement.Theagesofmagmatismanddisplacementcorrelatecloselywiththefive1363–1289MaintrusivepulsesthatbuilttheNaincomplexfrom1363to1289Ma.The interpretation is that transtensionaldisplace-menton the fault zone reactivated theTorngat suturecausingfracturing,pressuredrops,andpotentialopen-ings that led to decompressionmelting in themantleandprovidedconduitsforgabbroicmagma.

Emplacement ofAMCG suites into ancient,lithospheric-scale shear belts and suture zones hasbeen demonstrated in several areas other than theNainComplex, e.g., the Laramie andHorseCreekcomplexes(Fig.1)inWyoming(Scoates1994,Scoates&Chamberlain1995,1997),aswellasthePhanerozoic(410–420Ma)AMCGcomplexesinAïr,Niger(Moreauet al. 1994).TheWyoming examples occurwithintheCheyenneBelt thatmarks the suturebetween theArcheanWyomingProvinceandtheProterozoicColo-radoProvince.InthecaseoftheHorseCreekanortho-site,Scoates&Chamberlain(1995,1997)havedateditsemplacementatca.1.76Ga,whichcoincideswiththe late stages of theMedicineBoworogeny,whichinvolved a local transtensional zone along the suturethatservedasaconduitforAMCGmagmas(Frostet al.2000).Asimilaroriginmayapplytotheca.1.43GaLaramieanorthositecomplex(Frostet al.1990,2000,Scoates&Chamberlain1995,1997),but the tectonicsettingatthattimeremainsuncertain.

Although not Proterozoic, the ca. 410–420MasubvolcanicAMCG ring-dike complexes of theAïrregion inNiger (Brown et al. 1989,Demaiffe et al.1991,Moreauet al. 1994)deservemention.ThebeltwasoncethoughttoformaN–Shot-spottrack,~1200km long.However,more recent dating indicates thatconsistent younging to the south does not exist, andmost workers have abandoned the hotspotmodel.

1025_vol_48-4_art_04.indd 1040 10-05-19 15:52

Page 17: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1041

Instead,itnowappearslikelythatthebeltformedatca.410–420Mainresponsetoreactivationalongthe~1000km long,N–S trending, dextral strike–slipRaghanelithospheric-scaleshearzonethatgaverisetoacomplexarrayofN20–50°EReidelshearsthatservedasmagmaconduits(Moreauet al.1994).

summaryaNDDiscussiON

DetailedgeochronologyintheGrenvilleProvince,Labrador,andsouthernNorway indicates that signifi-cantexamplesofAMCGmagmatismarecloselycorre-latedwiththelate-topost-tectonicstagesoforogenyorwith strike–slip displacement along lithospheric-scalefault zones and reactivated sutures, or both (Fig. 7).Theredoesnotappeartobesupportforatruly“anoro-genic”emplacement.ThemostsignificantfactorinthegenesisofProterozoicmassifanorthositeisdeliveryofasthenosphere to the base of thick, stable continentalcrustwheredecompressionmeltingyields agabbroicmagma.Thesemelts undergo slow, high-pressure,anhydrous fractionation and are replenishedby freshinfluxes of gabbroicmagma.Relatedmelting of thelower crust produces felsicmembers of theAMCGsuite,andbatchesofthesegranitoidseventuallyascend,alongwith early, high-pressure anorthositic plagio-clase cumulates containedwithinmagmasof broadlyleucogabbroic to leuconoritic composition.Followingemplacementinthemiddletouppercrust,lower-pres-surefractionationtakesplaceintheproto-anorthositicmagmas.DetailedU–Pb zircon geochronology hasestablishedthatthispolybaricevolutionoccursinlate-topost-tectonicsettings.Althoughprecisemechanismsaredifficulttoprove,severalcandidatesseemplausibleandareconsistentwithevidence.Theseincludedelami-nation of overthickened lithosphere in contractionalorogens, flat-slab subduction, perhaps accompaniedby delamination, extension in back-arc basins, andslabbreakoff.Whatallofthesehaveincommonistheabilitytodeliverasthenospheretothebaseofthecrustandtodosowithinthecontextoflate-topost-tectonicconditions.Aspecialsubclassof thesesettings is thatof the transtensional reactivationof lithospheric-scaleshearzones,especiallythoseinvolvingthereactivationofancientsutures.Intheexamplesinvestigatedtodate,therearenogoodexamplesofAMCGsuitesgeneratedbyhotspotsorplumes.

In retrospect,we propose that the localization ofAMCGmagmatisminNorthAmericaalongarelativelynarrowbeltisduetothefactthatthebeltrepresentsaprotracted (ca. 1800–1000Ma) orogenic continentalmargin arc system ~4000 km long thatwas activealongthesoutheasternmarginofLaurentia(Anderson1983,Rivers&Corrigan2000,Karlstromet al.2001).Within this context, late- topost-tectonicmagmatismcouldproduceAMCGcomplexesviathemechanismspresentedinthispaper.However,byitself,thisproposal

does not explainwhy equivalentAMCGcomplexesofNeoproterozoic agehavenot beendiscovered.Onthe other hand, the PhanerozoicAMCG complexesofAïr document that these rockswere not restrictedto theProterozoic.TheAïr examplesare subvolcanicintrusions,whereasAMCG suites developedwithincompressionalbeltsareemplacedatmid-crustaldepthsandrequirelongerintervalsoferosiontoarriveatthesurface.

acKNOWLeDgemeNTs

OurAdirondack researchwas supportedNationalScienceFoundation,grantEAR–0125312toBickfordandMcLelland. The Colgate University ResearchCouncilandtheH.O.WhitnallChairprovidedfundstosupportSelleck.WethankTobyRivers,JamesScoates,andananonymousreviewer,andRobertF.Martinforveryhelpfulsuggestionsandinsights,andediting.

reFereNces

aLeiNiKOFF, J.N.,hOrTON, J.W., Jr.&WaLTer,m. (1996):Middle Proterozoic age for theMontpelier anorthosite,Goochland Terrane,easternPiedmont,Virginia.Geol. Soc. Am.. Bull.108,1481-1491.

aNDersON,J.L. (1983):Proterozoicanorogenicgraniticplu-tonismofNorthAmerica. In ProterozoicGeology (L.G.Medaris,Jr.,C.W.Byers,D.M.Mickelson&W.C.Shanks,eds.).Geol. Soc. Am., Mem.161,133-154.

ashWaL,L. 3 1993):Anorthosites. Springer-Verlag,NewYork,N.Y.

BairD,g.(2008):Tectonicsignificanceofmylonitekinematicindicatorswithin theCarthage–Coltonmylonite zone,northwestAdirondacks,NewYork.Geol. Soc. Am., Abstr. Programs39,228.

BairD,g.B.,shraDy,c.&JONes,J.h. (2008):PreliminaryconstraintsonthetimingofdeformationinthenorthwestAdirondackLowlands and along theBlackLakeShearZone,NewYork.Geol. Assoc. Can .– Mineral. Assoc. Can., Program Abstr.33,12.

BicKFOrD,m.e.(1988):Theformationofcontinentalcrust.1.Areviewofprinciples;2.AnapplicationtotheProterozoicevolutionofsouthernNorthAmerica.Geol. Soc. Am., Bull.100,1375-1391.

BicKFOrD,m.e.&hiLL,B.m.(2007):DoesthearcaccretionmodeladequatelyexplainthePaleoproterozoicevolutionofsouthernLaurentia?:anexpandedinterpretation.Geol-ogy35,167-170.

BicKFOrD,m.e.,mcLeLLaND,J.m.,mueLLer,p.a.,KameNOv,g.D.&NeaDLe,m.(2010):Hfisotopiccompositionsinzircon fromAdirondackAMCG suites: implications forthe petrogenesis of anorthosites, gabbros, and graniticmembersofthesuite.Can. Mineral.48,

1025_vol_48-4_art_04.indd 1041 10-05-19 15:52

Page 18: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1042 ThecaNaDiaNmiNeraLOgisT

BicKFOrD,m.e.,mcLeLLaND, J.m., seLLecK,B.W.,hiLL,B.m.&heumaNN,m.J.(2008):TimingofanatexisintheeasternAdirondackHighlands: implications for tectonicevolution during the ca. 1050MaOttawan orogenesis.Geol. Soc. Am., Bull.120,950-961.

BiNgeN,B.,DemaiFFe,D.,herTOgeN,J.,Weis,D.&michOT,J.(1993):K-richcalc-alkalineaugengneissesofGrenvil-lianageinSWNorway:minglingofmantlederivedandcrustalcomponents.J. Geol.101,763-778.

BiNgeN,B.,sTeiN,h.s.,BOgaerTs,O.B.,BOLLe,O.&maN-sFieLD,J. 3 2005):MolybdeniteRe–OsdatingconstrainsgravitationalcollapseoftheSveconorwegianorogen,SWScandinavia.Lithos87,328-346.

BiNgeN,B.&vaNBreemeN,O.(1998):TectonicregimesandterraneboundariesinthehighgradeSveconorwegianbeltofSWNorway,inferredfromU–Pbzircongeochronologyandgeochemicalsignaturesofaugengneisssuites.J. Geol. Soc. London155,143-154.

BOhLeN, s.r.,vaLLey, J.W.&esseNe,e.J. (1985):Meta-morphismin theAdirondacks. I.Petrology,pressureandtemperature.J. Petrol.26,971-992.

BrOWN,W.L.,mOreau, c.&DemaiFFe, D. (1989):Ananorthosite suite in a ring complex: crystallization andemplacementofananorogenic type fromAbotorok,Aïr,Niger.J. Petrol.30,1501-1540.

BuDDiNgTON,a.F.(1939):Adirondackigneousrocksandtheirmetamorphism.Geol. Soc. Am., Mem.7.

BuDDiNgTON,a.F. (1969):Adirondack anorthosite series. InOriginofAnorthositeandRelatedRocks(W.Y.Isachsen,ed.).New York State, Mem.18,215-231.

carr,s.D.,easTON,r.m.,JamiesON,r.a.&cuLshaW,N.G.(2000):Geologic transect across theGrenvilleProvinceofOntarioandNewYork.Can. J. Earth Sci.37,193-216.

chiareNzeLLi,J.r.,LupuLescu,m.,cOuseNs,B.,TherN,e.,cOFFiN,L.&regaN,s.(2010):EnrichedGrenvillianlitho-sphericmantleasaconsequenceoflong-livedsubductionbeneathLaurentia.Geology38,151-154.

chiareNzeLLi, J.r.&mcLeLLaND, J.m. (1991):Age andregionalrelationshipsofgranitoidrocksoftheAdirondackHighlands.J. Geol.99,571-590.

cOrFu,F.&easTON,R.M.(1992):SharbotLaketerraneandits relationships toFrontenac terrane,CentralMetasedi-mentaryBelt,GrenvilleProvince:newinsightsfromU–Pbgeochronology.Can. J. Earth Sci.34,1239-1257.

cOrrigaN,D.(1995):Mesoproterozoic Evolution evolution of the South-Central Grenville Orogen: Structural, Metamor-phic, and Geologic Constraints from the Mauricie Tran-sect.Ph.D.thesis,CarletonUniversity,Ottawa,Canada.

cOrrigaN,D.&haNmer,s.(1997):AnorthositesandrelatedgranitoidsintheGrenvilleorogen:aproductofconvectivethinningofthelithosphere?Geology25,61-64.

cOrrigaN,D.&vaNBreemeN,O. (1996):U–Pb age con-straints for the lithotectonic evolution of theGrenvilleProvince along theMauricie transect,Quebec.Can. J. Earth Sci.37,253-269.

DaLy, J.s.&mcLeLLaND, J.m. (1991): JuvenileMiddleProterozoiccrustintheAdirondackHighlands,GrenvilleProvince,northeasternNorthAmerica.Geology19,119-122.

DemaiFFe,D.,mOreau,c.,BrOWN,W.L.&Weis,D.(1991):Geochemicalandisotopic(Sr,Nd,andPb)evidenceontheoriginoftheanorthosite-bearinganorogeniccomplexesoftheAïrProvince,Niger.Earth Planet. Sci. Lett.105,28-46.

DeWey,J.F.(1988).Extensionalcollapseoforogens.Tectonics7,1125-1139.

DicKiN,a.p.(2000):CrustalformationintheGrenvilleProv-ince:Nd-isotopicevidence.Can. J. Earth Sci.37,165-181.

DicKiN,a.p.&mcNuTT,r.H.(2007):TheCentralMetasedi-mentaryBelt(GrenvilleProvince)asafailedback-arcriftzone:Nd-isotope evidence.Earth Planet. Sci. Lett.259,97-106.

DOig,r.(1991):U–PbzircondatesoftheMorinanorthositesuiterocks,GrenvilleProvince,Quebec.J. Geol.99,729-738.

DuchesNe, J.-c., LiégeOis, J.-p.,vaNDerauWera, J.&LONghi,J.(1999):Thecrustaltonguemeltingmodelandtheoriginofmassiveanorthosites.Terra Nova11,100-105.

.

DymeK,r.&OWeNs,B.(1998):Abeltoflate-topost-tectonicanorthositemassifs,CentralGranuliteTerrane,GrenvilleProvince,Quebec.Geol. Soc. Am. Abstr. Programs30,A-24.

easTON,r.m.(1992):TheGrenvilleProvinceandtheProtero-zoichistoryofCentralandSouthernOntario.InGeologyofOntario(P.C.Thurston,H.R.Williams,R.H.Sutcliffe,&G.M. Stott, eds.).Ontario Geol. Surv., Spec. Vol.4,715-904.

emsLie,r.F. (1975):Pyroxenemegacrysts fromanorthositicrocks:Newclues to the sources andevolutionofparentmagmas.Can. Mineral.13,138-145.

emsLie,r.F. (1978):Anorthositemassifs, rapakivi granites,and lateProterozoic riftingofNorthAmerica.Precamb. Res.7,61-98

emsLie,r.F. (1985):Proterozoicanorthositemassifs.InTheDeepProterozoicCrust of theNorthAtlanticProvinces(A.C.Tobi,&J.L.R.Touret,eds.).D.Reidel,Dordrecht,TheNetherlands(39-60).

emsLie,r.F.&huNT, p.a. (1990):Ages and petrogeneticsignificance of igneousmangerite–charnockite suitesassociatedwithmassifanorthosites,GrenvilleProvince.J. Geol.98,213-231.

1025_vol_48-4_art_04.indd 1042 10-05-19 15:52

Page 19: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1043

emsLie,r.F.,hamiLTON,m.a.&ThériauLT,r.J. (1994):Petrogenesisofamid-Proterozoicanorthosite–mangerite–charnockite–granite (AMCG) complex: isotopic andchemicalevidenceformtheNainplutonicsuite.J. Geol.102,539-558.

Fram,m.s.&LONghi,J. 3 1992):,PhaseequilibriaofdikesassociatedwithProterozoic anorthosite complexes.Am. Mineral.77,605-616.

FrieDmaN,r.m.&marTigNOLe,J.(1995):Mesoproterozoicsedimentation,magmatism, andmetamorphism in thesouthern part of theGrenvilleProvince:U–Pbgeochro-nologicalconstraints.Can. J. Earth Sci.32,2103-2144.

FrOsT,B.r.,FrOsT,c.D.,LiNDsLey,D.h.,scOaTes, J.s.&miTcheLL,J.m.(1993):,TheLaramieanorthositecomplexandShermanbatholith: geology, evolution, and theoriesoforigin.InTheGeologyofWyoming(A.W.Snoke,J.R.Steidmann&S.M.Roberts,eds.).InTheGeologyofWyo-ming.Geol. Surv. Wyoming Mem.5,119-161.

FrOsT,c.D.,meier,m.&OBerLi,F. (1990):Single-crystalU–Pb zircon age determination of the RedMountainpluton, Laramie anorthosite complex,Wyoming.:Am. Mineral.75,21-26.

FrOsT,c.D.,chamBerLaiN,K.r., FrOsT,B.r.&scOaTes,J.s. (2000):The1.76GaHorseCreek anorthosite com-plex,Wyoming:amassifanorthositeemplacedlateintheMedicineBoworogeny.Rocky Mountain Geol.35,71-90.

gOWer,c.(1996):TheevolutionoftheGrenvilleProvinceineasternLabrador,Canada.InPrecambrianCrustalEvolu-tionintheNorthAtlanticRegion(T.S.Brewer,ed.).Geol. Soc. Lond., Spec. Publ.112,197-218.

gOWer,c.F.&KrOgh,T.e. 3 2002):AU–Pbgeochrono-logical reviewof the Proterozoic history of the easternGrenvilleProvince.Can. J. Earth Sci.39,795-829.

greeN,T.h.(1969):High-pressureexperimentalstudiesontheoriginofanorthosite.Can. J. Earth Sci.6,427-440.

guTscher,m.-a.,maury,r.,eisseN, J.-p.&BOurDON,e.(2000):Can slab-melting be caused byflat subduction?Geology28,535-538.

haapaLa,L.&rämö,T.(1999):Rapakivigranitesandrelatedrocks.Anintroduction.Precamb. Res.95,1-7.

hamiLTON,m.a. (2008):Geochronological synopsis of theNainPlutonic Suite,Labrador:Age variations, patternsofAMCGmagmatism,andGardarconnectionsrevisited.Geol. Assoc. Can. – Mineral. Assoc. Can., Program Abstr.33,26.

hamiLTON,m.a.,mcLeLLaND, J.& seLLecK, B. (2004):SHRIMPU/Pb zircon geochronologyof the anorthosite–mangerite – charnockite – granite suite,AdirondackMountains,NewYork:agesofemplacementandmetamor-phism.InProterozoicTectonicEvolutionoftheGrenvilleOrogeninNorthAmerica(R.P.Tollo,L.Corriveau,J.M.

McLelland&M.J.Bartholomew, eds.).Geol. Soc. Am., Mem.197,337-355.

haNmer, s., cOrrigaN,D., pehrssON, s.&NaDeau, L.(2000):SWGrenvilleProvince,Canada:thecaseagainstpost-1.4Ga accretionary tectonics.Tectonophysics319,33-51.

haNNah,J.L.&sTeiN,h.J.(2002):Re–Osmodelfortheori-ginofsulfidedeposits inanorthosite-associatedintrusivecomplexes.Econ. Geol.97,371-383.

héBerT,c.& vaNBreemeN,O. (2004):MesoproterozoicbasementoftheLacSt.JeananorthositesuiteandyoungerGrenvillian intrusions in the Saguenay region,Québec:structural relationships andU–Pb geochronology. InProterozoicTectonicEvolution of theGrenvilleOrogeninNorthAmerica(R.P.Tollo,L.Corriveau,J.M.McLel-land&M.J.Bartholomew, eds.).Geol. Soc. Am., Mem.197,65-79.

herveT,m.,vaNBreemeN,O.&higgiNs,m.(1994):U–Pbcrystallization ages of intrusive rocksnear the southeastmarginoftheLac-St-Jeananorthositecomplex,GrenvilleProvince,Quebec.InRadiogenicAgeandIsotopicStudies:Report8,Ottawa,Ontario.Geol. Surv. Can., Rep.1994-F,115-124.

herz,N.(1969):Anorthositebelts,continentaldrift,andtheanorthositeevent.Science104,944-947.

heumaNN,m.J.,BicKFOrD,m.e.,hiLL,B.m.,mcLeLLaND,J.m.,seLLecK,B.W.&JerciNOvic,m.J. (2006):TimingofanatexisinmetapelitesfromtheAdirondacklowlandsandsouthernhighlands:amanifestationoftheShawiniganorogeny and subsequent anorthosite–mangerite–char-nockite–granitemagmatism.Geol. Soc. Am.,Bull. 118,1283-1298.

higgiNs,m.D.,iDer,m.&vaNBreemeN,O.(2002):U–Pbagesofplutonism,wollastonite formation, anddeforma-tion in thecentralpartof theLac-Saint-Jeananorthositesuite.Can. J. Earth Sci.39,1093-1105.

higgiNs,m.D.&vaNBreemeN,O. (1992):The age of theLac-Saint-JeanAnorthositeComplexandassociatedmaficrocks,GrenvilleProvince,Canada.Can. J. Earth Sci.29,1412-1423.

higgiNs,m.D.&vaNBreemeN,O. (1996):Three genera-tions of anorthosite –mangerite – charnockite – granite(AMCG)magmatism, contactmetamorphism and tecto-nismintheSaugenay–Lac-St-JeanregionoftheGrenvilleProvince,Canada.Precamb. Res.79,327-346.

hOFFmaN,p.(1989):SpeculationsonLaurentia’sfirstgigayear(2.0–1.0Ga).Geology17,135-138.

hOusemaN,g.a.,mcKeNzie,D.p.&mOLNar, p. (1981):Convectiveinstabilityofathickenedboundarylayeranditsrelevanceforthethermalevolutionofcontinentalcon-vergencebelts.J. Geophys. Res.B86,6115-6132.

1025_vol_48-4_art_04.indd 1043 10-05-19 15:52

Page 20: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1044 ThecaNaDiaNmiNeraLOgisT

JOhNsON,e.,gOergeN,e.&Fruchey,B.(2004):Rightlateralobliqueslipmovementsfollowedbypost-Ottawan(1050–1020Ma) orogenic collapse along theCarthage–Coltonshear zone: data from theDanaHillmetagabbro body,AdirondackMountains,NewYork.InProterozoicTectonicEvolutionoftheGrenvilleOrogeninNorthAmerica(R.P.Tollo,L.Corriveau,J.M.McLelland&M.J.Bartholomew,eds.).Geol. Soc. Am., Mem.197,357-368.

KarLsTrOm,K.e.,ÅhäLL,K.-i.,harLaN, s.s.,WiLLiams,m.L.,mcLeLLaND, J.&geissmaN, J.W. (2001):Long-lived(1.8–1.0Ga)convergentorogeninsouthernLauren-tia,itsextensionstoAustraliaandBaltica,andimplicationsforrefiningRodinia.Precamb. Res.111,5-30.

KiTcheN,N.e.&vaLLey,J.W.(1995):Carbonisotopether-mometry inmarblesof theAdirondackMountains,NewYork.J. Metam. Geol.13,577-594.

KushirO,i.(1980):Viscosity,density,andstructureofsilicatemelts at high pressure and their petrologic applications.InPhysicsofMagmaticProcesses(R.B.Hargraves,ed.).PrincetonUniversity Press, Princeton,New Jersey (93-120).

LONghi, J.,vaNDerauWera, J., Fram,m.s.&DuchesNe,J.-c.(1999):Somephaseequilibriaconstraintsontheori-ginofProterozoic(massif)anorthositesandrelatedrocks. J. Petrol.40,339-362.

LuNDmarK,a.m. & cOrFu, F. (2008):, Late-orogenicSveconorwegianmassif anorthosite in the JotunNappeComplex, SWNorway, and causes of repeatedAMCGmagmatism along theBaltoscandianmargin.Contrib. Mineral. Petrol.155,147-163.

machaDO,N.&marTigNOLe,J.(1988):ThefirstU–Pbageformagmaticzirconsinanorthosite:ThecaseofthePen-tecoteintrusioninQuebec.Geol. Assoc. Can. – Mineral. Assoc. Can., Program Abstr.13,76.

marcaNTONiO,F.,mcNuTT,r.h.,DicKiN,a.p.&heamaN,L.m.(1990):IsotopicevidenceforthecrustalevolutionoftheFrontenacArchintheGrenvilleProvinceofOntario.Chem. Geol.83,297-314.

marTigNOLe,J.(1996):Tectonicsettingofanorthositiccom-plexes of theGrenville Province,Canada. In PetrologyandGeochemistry ofMagmatic Suites ofRocks in theContinental andOceanicCrusts: aVolumeDedicated toProfessorJeanMichot(D.Demaiffe,ed.).UniversitéLibredeBruxelles,Brussels,Belgium(3-18).

marTigNOLe, J.&FrieDmaN,r. (1998):Geochronologicalconstraints on the last stages of terrane assembly in thecentralpartoftheGrenvilleProvince.Precamb. Res.92,145-164.

marTigNOLe, J.,machaDO,N.&NaNTeL, s. (1993):Tim-ingofintrusionanddeformationoftheRivièrePentecôteanorthosite(GrenvilleProvince).J. Geol.101,652-658.

mceacherN,s.J.&vaNBreemeN,O.(1993):Ageofdefor-mationwithintheCentralMetasedimentaryBeltboundary

thrustzone,southwestGrenvilleorogen:constraintsonthecollisionof theMid-ProterozoicElzevir terrane.Can. J. Earth Sci.30,1155-1165.

mcLeLLaND,J.M.,BicKFOrD,m.e.,hiLL,B.h.,cLecheNKO,c.c,vaLLey,J.W.&hamiLTON,m.a.(2004):Directdat-ingofAdirondackmassifanorthositebyU–PbSHRIMPanalysisofigneouszircon:implicationsforAMCGcom-plexes.Geol. Soc. Am., Bull.116,1299-1317.

mcLeLLaND, J.&chiareNzeLLi, J. (1990): Isotopic con-straints on the emplacement age of theMarcymassif,AdirondackMountains,NewYork.J. Geol.98,19-41.

mcLeLLaND,J.,chiareNzeLLi,J.&perham,a.(1992):Age,field, and petrological relationships of theHydeSchoolGneiss,AdirondackLowlands,NewYork:criteriaforanintrusiveigneousorigin.J. Geol.100,69-90.

mcLeLLaND,J.,chiareNzeLLi, J.,WhiTNey,p.&isachseN,y.(1988b):U–PbzircongeochronologyoftheAdirondackMountainsand implications for theirgeologicevolution.Geology16,920-924.

mcLeLLaND,J.,DaLy,J.s.&mcLeLLaND,J.m.(1996):TheGrenvilleOrogenicCycle(ca.1350–1000Ma):anAdiron-dackperspective.Tectonophysics265,1-28.

mcLeLLaND, J.,hamiLTON,m., seLLecK,B.,mcLeLLaND,J.m.,WaLKer,D.&OrreLL, s. (2001):ZirconU–Pbgeochronology of the Ottawan orogeny,AdirondackHighlands,NewYork:regionalandtectonicimplications.Precamb. Res.109,39-72.

mcLeLLaND, J.,LOcheaD,a.&vyhNaL,c. (1988a):Evi-denceformultiplemetamorphiceventsintheAdirondackMountains,N.Y.J. Geol.96,279-298.

mezger,K.,raWNsLey,c.m.,BOhLeN,s.r.&haNsON,g.N.(1991):U–Pbgarnet, sphene,monazite, and rutile ages:implicationofdurationofmetamorphismandcoolinghis-tories,AdirondackMts.,NewYork.J. Geol.99,415-428.

mOreau,c.,DemaiFFe,D.,BeLLiON,y.&BOuLLier,a.-m.(1994):AtectonicmodelforthelocationofPaleozoicringcomplexes inAïr (Niger,WestAfrica).Tectonophysics234,129-146.

mOrisseT,c.-e.,scOaTes,J.s.,Weis,D.&FrieDmaN,r.m.(2009):U–Pband40Ar/39Argeochronologyof theSaint-Urbain andLacAllard (Havre-Saint-Pierre) anorthositesand their associated Fe–Ti ores,Quebec: evidence foremplacement and slow cooling during the collisionalOttawan orogeny in theGrenville Province.Precamb. Res.174,95-116.

mOrse,s.a.(1968):Layeredintrusionsandanorthositegen-esis. InOrigin ofAnorthosite andRelatedRocks (Y.W.Isachsen,ed.).New .York. State Mus. Sci. Serv. Mem.18,175-187.

myers, J.s.,vOOrDOuW,r.J.&TeTTeLaar,T.a. (2008):Proterozoic anorthosite–graniteNain batholith: structure

1025_vol_48-4_art_04.indd 1044 10-05-19 15:52

Page 21: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

TecTONicseTTiNgOFsOmemaJOrprOTerOzOicamcgsuiTes 1045

and intrusion in an active lithospheric-scale fault zone,northernLabrador.Can. J. Earth Sci.45,909-934.

OWeNs, B.e.&DymeK,r.F. (2001): Petrogenesis of theLabrievillealkalic-anorthositemassif,GrenvilleProvince,Quebec.J. Petrol.42,1519-1546.

OWeNs,B.e.&DymeK,r.F.(2004):RediscoveryoftheMat-tawaanorthositemassif,GrenvilleProvince,Quebec.Can. J. Earth Sci.42,1699-1718.

OWeNs,B.e.,DymeK,r.F.,TucKer,r.D.,BraNNON, J.c.& pODOseK, F.a. (1994):Age and radiogenic isotopiccompositionofa late- topost-tectonicanorthosite in theGrenvilleProvince:theLabrievillemassif,Quebec.Lithos31,189-201.

pecK,W.h.,vaLLey, J.W.,cOrriveau, L.,DaviDsON,a.,mcLeLLaND,J.&FarBer,D.a.(2004):Oxygenisotopeconstraintsonterraneboundariesandtheoriginof1.18–1.13GagranitoidsinthesouthernGrenvilleprovince.InProterozoicTectonicEvolutionoftheGrenvilleOrogeninNorthAmerica(R.P.Tollo,L.Corriveau,J.M.McLelland&M.J.Bartholomew, eds.).Geol. Soc. Am., Mem.197,163-182.

peTTiNgiLL,h.s.,siNha,a.K.&TaTsumOTO,m.(1984):Ageandoriginofanorthosites,charnockites,andgranulitesinthecentralVirginiaBlueRidge:NdandSr isotopicevi-dence.Contrib. Mineral. Petrol.85,279-291.

pLaTT,J.p.&eNgLaND,p.c. (1994):Convectiveremovaloflithospherebeneathmountainbelts:thermalandmechani-calconsequences.Am. J. Sci.294,307-336.

rämö,T.O.,mcLemOre,v.T.,hamiLTON,m.a.,KOsuNeN,p.J.&haapaLa,i. (2003):Intermittent1630–1220Mamag-matismincentralMazatzalProvince:newgeochronologicpiercingpoints and some tectonic implications.Geology31,335-338.

raTcLiFFe,N.m.,aLeiNiKOFF, J.N.,BurTON,W.c.&Kara-BiNOs, p. (1996):Trondhjemitic, 1.35–1.31Ga gneissesof theMountHollyComplexofVermont:Evidence foranElzevirianevent in thebasementof theUnitedStatesAppalachians.Can. J. Earth Sci.28,77-93.

rivers,T. (1997):Lithotectonic elements of theGrenvilleProvince:reviewandtectonicimplications.Precamb. Res.86,117-154.

rivers,T. (2008a):Assembly and preservation of lower,middle,andupperorogeniccrustintheGrenvilleProvince–implicationsfortheevolutionoflargehotlong-durationorogens.Precamb. Res.167,237-259.

rivers,T. (2008b):LateMesoproterozoic toEarlyNeopro-terozoic (Geons 11–10)MagmatismmagmatismonSELaurentia–ImplicationsforthetectonicsettingofAMCGcomplexes.Geol. Assoc. Can.–Mineral. Assoc. Can., Pro-gram Abstr.33,144.

rivers,T.&cOrrigaN,D. (2000):Convergentmargin onsoutheasternLaurentia during theMesoproterozoic: tec-tonicimplications.Can. J. Earth Sci.37,359-383.

sager-KiNsmaN,a.e.&parrish,r.r. 3 1993):Geochronol-ogyofdetritalzirconsfromtheElzevirandFrontenacter-ranes,CentralMetasedimentaryBelt,GrenvilleProvince,Ontario.Can. J. Earth Sci.30,465-473.

schärer,u.,WiLmarT,e.&DuchesNe, J.-c. (1996):Theshort duration and anorogenic character of anorthositemagmatism:U–PbdatingoftheRogalandcomplex,Nor-way.Earth Planet. Sci. Lett.139,335-350.

scOaTes,J.s.(1994):Magmatic evolution of anorthositic and monzonitic rocks in the mid-Proterozoic Laramie anortho-site complex, Wyoming, USA.PhDthesis,Univ.Wyoming,Laramie,Wyoming.

scOaTes, J.s. 3 2000): The plagioclase–magma densityparadoxre-examinedandthecrystallizationofProterozoicanorthosites.J. Petrol.41,627-649.

scOaTes, J.s. (2008):The parentmagmas to Proterozoicanorthosites.Geol. Assoc. Can. – Mineral. Assoc. Can. Prog. Abs.33,37.

scOaTes, J.s.&chamBerLaiN,K.r. (1995): Baddeleyite(ZrO2)andzircon(ZrSiO4)fromanorthositicrocksoftheLaramieanorthositecomplex,Wyoming:petrologiccon-sequencesandU–Pbages.Am. Mineral.80,1317-1327.

scOaTes,J.s.&chamBerLaiN,K.r.(1997):Orogenictopost-orogenicorigin for the1.76GaHorseCreekanorthositecomplex,Wyoming,U.S.A.J. Geol.105,331-343.

seLLecK,B.W.,mcLeLLaNDJ.m.&BicKFOrD,m.e.(2005):Granite emplacement during tectonic exhumation: theAdirondackexample.Geology33,781-784.

siLver, L. (1969):A geochronologic investigation of theAdirondackComplex,AdirondackMountains,NewYork.,In,OriginofanorthositesAnorthositesandrelatedRelatedrocksRocks(Isachsen,W.Y.,ed.). New .York. State Mus. and Sci. Serv., Mem.18,233-252.

sTreepey,m.,JOhNsON,e.,mezger,K.&vaNDerpLuiJm,B.a. (2001):The early history of theCarthage–ColtonShearZone,GrenvilleProvince,northwestAdirondacks,NewYork(U.S.A.).J. Geol.109,479-492.

TOLLO,r.p.,aLeiNiKOFF,J.N.,BOrDuas,e.a.,DicKiN,a.p.,mcNuTT, r.h.& FaNNiNg,m.c. (2006):Grenvillianmagmatism in the northernVirginiaBlueRidge: petro-logicimplicationsofepisodicgraniticmagmaproductionandthesignificanceofpost-orogenicA-typecharnockite.Precamb. Res.151,224-264.

TurNer,s.,saNDiFOrD,m.&FODeN,J. (1992):Somegeo-dynamicandcompositionalconstraintson“postorogenic”magmatism.Geology,20,931-934.

upTON,B.g.J.,emeLeus,c.h.,heamaN,L.m.,gOODeNOugh,K.m.,& FiNch,a.a. (2003):Magmatism of themid-

1025_vol_48-4_art_04.indd 1045 10-05-19 15:52

Page 22: LATE- TO POST-TECTONIC SETTING OF SOME MAJOR … · sutures montre aussi une corrélation avec le magmatisme AMCG, et fournit des conduits pour le magma gabbroïque, qui s’accumule

1046 ThecaNaDiaNmiNeraLOgisT

ProterozoicGardarProvince, SouthGreenland: chronol-ogy,petrogenesis,andgeologicalsetting.Lithos68,43-65.

vaLLey,J.W.,BOhLeN,s.r.,esseNe,e.J.,&LamB,W.(1990):MetamorphismintheAdirondacks:II.Theroleoffluids.J. Petrol.31,555-596.

vaNBreemeN,O.&higgiNs,m.D.(1993):U–PbzirconageofthesouthwesternlobeoftheHavreSt.Pierreanorthositecomplex,Grenvilleprovince,Canada.Can. J. Earth Sci.,30,1453-1457.

vaNDerauWera,J.,LONghi,J.&DuchesNe,J.-c.(1998):Aliquidlineofdescentofthejotunite(hypersthenemonzo-diorite)suite.J. Petrol.39,439-468.

vOLKerT,r.&aLeiNiKOFF,J.N.(2008):1.3Gacontinental-marginmagmatic arc and back arc in theNew JerseyHighlandsand implications for theoriginof zinc+ irondeposits.Geol. Soc. Am. Abs. Prog.39,37.

WaLsh,g.J.,aLeiNiKOFF,J.N.&FaNNiNg,c.m.(2004):U–Pbgeochronology and evolution ofMesoproterozoic base-mentrocks,westernConnecticut.InProterozoicTectonicEvolutionoftheGrenvilleOrogeninNorthAmerica(R.P.Tollo,L.Corriveau,J.M.McLelland&M.J.Bartholomew,eds.).Geol. Soc. Am. Mem.197,729-753.

WasTeNeys,h.,mcLeLLaND,J.&LumBers,s.(1999):Pre-cise zircon geochronology in theAdirondackLowlandsandimplicationsforrevisingplate-tectonicmodelsofthe

CentralMetasedimentaryBeltandAdirondackMountains,GrenvilleProvince,OntarioandNewYork.Can. J. Earth Sci.36,967-984.

WODicKa,N.,cOrriveau,L.&sTerN,r.a.(2004):SHRIMPU–PbzircongeochronologyoftheBondygneisscomplex:evidenceforcirca1.39GaarcmagmatismandpolyphaseGrenvillianmetamorphismintheCentralMetasedimentaryBelt,GrenvilleProvince,Québec.InProterozoicTectonicEvolutionoftheGrenvilleOrogeninNorthAmerica(R.P.Tollo,L.Corriveau,J.M.McLelland&M.J.Bartholomew,eds.).Geol. Soc. Am., Mem.197,243-266.

WODicKa,N.,DaviD, J., pareNT,m.,gOBeiL,a.&ver-paeLsT, p. (2003):GéochronologieU–Pb et Pb–Pb dela régionSept-Iles –Natasquan, Province deGrenville,MoyenneCôte-Nord.InGéologieetRessourcesMinéralesdelaPartieEstdeProvince-de-Grenville(D.Brisebois&T.Clark,eds.).Ministère de Ressources naturelles, de la Faune et des Parcs, QuébecDV2002-3,59-118.

WODicKa,N., JamiesON,r.a.&parrish,r.r. (1996):TheParry Sound domain: a far-travelled allochthon?NewevidencefromU–Pbzircongeochronology.Can. J. Earth Sci.33,1087-1104.

WyLLie,p.(1977):Crustalanatexis:anexperimentalreview.Tectonophysics13,41-71.

Received January 9, 2009, revised manuscript accepted March 24, 2010.

1025_vol_48-4_art_04.indd 1046 10-05-19 15:52