LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

17
1 LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for COMPUTATIONAL DESIGN OF SEMICONDUCTOR THIN FILM SYSTEMS Principal Investigator: Nasr M. Ghoniem (UCLA) Collaborator: Lizhi Z. Sun (Univ. of Iowa) NSF Grant: DMR-0113555 University of Illinois June 17-19, 2004

description

LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for COMPUTATIONAL DESIGN OF SEMICONDUCTOR THIN FILM SYSTEMS. Principal Investigator: Nasr M. Ghoniem (UCLA) Collaborator: Lizhi Z. Sun (Univ. of Iowa) NSF Grant: DMR-0113555 University of Illinois June 17-19, 2004. Project Objectives. - PowerPoint PPT Presentation

Transcript of LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

Page 1: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

1

LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS

for

COMPUTATIONAL DESIGN OF SEMICONDUCTOR THIN FILM SYSTEMS

Principal Investigator:

Nasr M. Ghoniem (UCLA)

Collaborator: Lizhi Z. Sun (Univ. of Iowa)

NSF Grant: DMR-0113555

University of Illinois

June 17-19, 2004

Page 2: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

2

(1) Investigate single and collective dislocation interaction phenomena in anisotropic materials, which determine plasticity and failure of semiconductor devices.

(2) Multiscale coupling of the parametric dislocation dynamics with the finite element

(3) Develop unique software on parallel, scaleable computer clusters to simulate the collective behavior of topologically complex line defects.

(4) Apply the developed software to investigate key dislocation mechanisms.

(5) Large-scale simulation and optimization of semiconductor material systems.

Project ObjectivesProject Objectives

Page 3: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

3

10a from z = 10000a boundaryscale factor = 1

50a from z = 10000a boundaryscale factor = 10

250a from z = 10000a boundaryscale factor = 10

Figure 5.4.2.3: Image force distributions for a 2000a radius loop at different distances from the z=10000a boundary. Scale factors as indicated.

Motivation: FEM+DD Superposition is Difficult

Many Thin Film ApplicationsRequire Mutilayers of Anisotropic Materials (Poly, or single crystal)

Page 4: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

4

Dislocation in Anisotropic Materials

The field of a dislocation loop in a non-homogeneous solid:

Page 5: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

5

Dislocations in Anisotropic Multilayer Materials

Page 6: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

6

Peach-Koehler Force DistributionsPeach-Koehler Force Distributions

-3 -2 -1 0 1 2 30.0

0.1

0.2

0.3

0.4

0.5

0.64

0.5

0.25

2

A=1

Fg

l

y/R-3 -2 -1 0 1 2 3

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12 4

0.5

0.25

2

A=1

Fcl

y/R

y

Forces divided by 0.5(C11-C12)bb2/R , d=1.5R

xRd

b b2

Page 7: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

7

Self-Force DistributionsSelf-Force Distributions

0 20 40 60 80 100 120 140 160 180

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

4

0.5

0.25

2

A=1

Fse

lf

R

b

[-110]

[111]

0.5

1

1.5

Z

-0.5

0

0.5X

-0.5

0

0.5Y

Magnitude=0.2

0.5

1

1.5

z/R

-0.5

0

0.5x/R

-0.5

0

0.5y/R

Magnitude=0.2

Al (A=1.21) Cu (A=3.21)

Page 8: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

8

Dislocation DynamicsDislocation Dynamics-Dipole Breakup-Dipole Breakup

11/=0.1% 11/=0.12%[-1 1 0]

[-1-12]

-500 0 500-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

900

A=1A=2A=0.5

Stable dipole

b

stable

[-1 1 0]

[-1-12]

-500 0 500

-750

-500

-250

0

250

500

750

1000

A=2, Stable dipole

A=1, Stable

A=0.5, t=20 ns

b

(Resolved shear stress is 0.05%)(Resolved shear stress is 0.04%)

( =(C11-C12)/2 )

Page 9: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

9

Results of Large Scale Simulation (cont.)

Page 10: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

10

Results of Large Scale Simulation (cont.)

Junction

Junction

Dipole

Dipole

Page 11: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

11

Strain Hardening in Cu

strain (x10-3)

stre

ss

(Mpa

)

0 0.5 1 1.50

20

40

60

80

100

120

Isotropic, =50GPa, =0.31Isotropic, =42.1GPa,=0.431Anisotropic, C11=168.4GPaC12=121.4GPa,C44=75.4GPa

(Cube size: 0.75 m; density: 5*109cm-2)

12

3

Page 12: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

12

0.5

1

1.5

z/R

-0.5

0

0.5

x/R

-0.50

0.5

y/R

Magnitude=0.2

Al film

Cu half space

Interface

Free surface

0.5

1

1.5

z/R

-0.5

0

0.5 -0.50

0.5

y/R

Magnitude=0.2

Ni film

Free surface

Cu half space

Interface

The stress field of dislocation loop in a thin film- Peach-Koehler force due to interface

Al (film)-Cu (half space) Ni (film)-Cu (half space)

[100][010] [100]

[010]

[100]

[001]

Page 13: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

13

Film thickness, h=144nm

Above critical stress - Biaxial stress=280MPa

Critical Stress= 250 MPa

Dislocation Motion with Interface Image Forces, ~ 30 nm < h < ~ 200 nm

Page 14: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

14

Critical Stress with Anisotropy & Image Forces

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Cri

tica

l Yie

ld S

tre

ss (

GP

a)

Cu layer thickness h (nm)

Freund critical stress Experiment (Misra, et al.,1998) Simulation, image force

Page 15: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

15

Deformation Modes in Multilayer Thin Films

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Crit

ical

Yie

ld S

tres

s (G

Pa)

layer thickness h (nm)

IPI

IVQE

IIIHP

IICLS

Page 16: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

16

Elastic anisotropy results in unexpected effects (e.g. dislocation climb, dipole & F-R source stability).

Larger values of the anisotropy ratio (A) results in an “equivalent” larger self-force.

Equivalent isotropic elastic constants do not result in equivalent strain hardening.

A method has been established to satisfy all interface & free surface B.C’s in anisotropic thin films.

Loops develop climb forces near interfaces. Good agreement with experiments on nano-

indentation.

ConclusionsConclusions

Page 17: LARGE-SCALE DISLOCATION DYNAMICS SIMULATIONS for

17

1. X. Han, N. M. Ghoniem and Z. Wang, “Parametric Dislocation Dynamics of Anisotropic Crystals,” Phil Mag., Vol. 83, Nos. 31–34, 2004.

2. N.M. Ghoniem, E. Busso, and N. Kioussis, “Multiscale modelling of nanomechanics and micromechanics: an overview,” Phil Mag., Vol. 83, Nos. 31–34, 3475–3528, 2004.

3. J. Huang, N.M. Ghoniemy and J. Kratochv, “On the Sweeping Mechanism of Dipolar Dislocation Loops Under Fatigue Conditions, MSMSE, 2004.

4. Zhiqiang Wang, Rodney J. McCabe,Nasr M. Ghoniem, Richard LeSar, Amit Misra; and Terence E. Mitchel, “Dislocation Motion in Thin Cu foils: A Comparison Between Computer Simulations and Experiment, “ Acta Mater., 2004.

5 Nasr M. Ghoniem, and Nicholas Kioussis. “Hierarchical Models of Nano and Micro-Mechanics,” Chapter in Encyclopedia of Nano Science & Technology, American Publishers, In Press.

MMM-2 : http://www.multiscalemodeling.com/

Publications & ActivitiesPublications & Activities