Land-Use Planning and Engineering Geology Chapter 19.

38
Land-Use Planning and Engineering Geology Chapter 19
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    222
  • download

    1

Transcript of Land-Use Planning and Engineering Geology Chapter 19.

Page 1: Land-Use Planning and Engineering Geology Chapter 19.

Land-Use Planning and Engineering Geology

Chapter 19

Page 2: Land-Use Planning and Engineering Geology Chapter 19.

Land Use Planning – Why?

• Safety?

• Is it the best use of a tract of land?

• Will the intended use be a misuse of the land?

• Are the resources required (water – for example) for the intended use available?

• Is there a potential for pollution from this intended use of a tract of land?

Page 3: Land-Use Planning and Engineering Geology Chapter 19.

Conversion of Rural Land

• Between 1997 to 2001 2.2 million acres of rural land were converted to developed uses

• The rate of development is accelerating and the amount of available land has not increased

• Some lands will not support any or all forms of uses

Page 4: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.1 a Land use in the United States

Page 5: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.1 b Land converted to developed land

Page 6: Land-Use Planning and Engineering Geology Chapter 19.

Considerations in Planning

• What is the optimum use of a tract of land?

• We must consider:– Biological factors

– Ecological factors

– Geological factors

– Economic factors

– Political factors

– Aesthetic factors

Page 7: Land-Use Planning and Engineering Geology Chapter 19.

Land-Use Options• Multiple Use – using the same land for two

or more purposes– Parks or green areas used for recreation and

to catch fresh water during a storm to allow it to infiltrate into the ground water

• Sequential use – utilize the land for two or more different purposes, one after another– Mines are used to provide the commodities

found in the subsurface, then they are re-used for sanitary waste dumps, storage, or in-filled for parks

Page 8: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.3 Multiple land use

Page 9: Land-Use Planning and Engineering Geology Chapter 19.

Figures 19.4 a and b Sequential Land Use

Page 10: Land-Use Planning and Engineering Geology Chapter 19.

Federal Government and Land-Use Planning

• Historically, federal lands are not equally distributed throughout the states

• Originally, federal emphasis was on resource development rather than preservation

• Federal lands fall into two categories:– Lands intended for preservation (national

parks and wilderness areas)– Lands intended for multiple use and

compatible use such as grazing, logging, mining, exploration and drilling for petroleum (national forest)

Page 11: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.5 Land ownership by state, 1997

Page 12: Land-Use Planning and Engineering Geology Chapter 19.

Maps as a Planning Tool

• Land use planning requires abundant information, maps often provide much of the information:– Topography, bedrock geology, surface

materials and geology, soils, depth to ground water, vegetation, population information, location of fault zones and flood plains, and more

– Maps can assist planners in long term planning, establishing restrictive zoning for earthquake or flood hazards, avoidance of other hazards as well

Page 13: Land-Use Planning and Engineering Geology Chapter 19.

Figures 19.6 Map representation of geologic considerations

Page 14: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.7 U.S. land-use classifications

Page 15: Land-Use Planning and Engineering Geology Chapter 19.

Maps as a Planning Tool

• Computers have aided planners– Information required by planners is voluminous– Computers have played an increasing role for

planners to manipulate large volumes of quantitative information

– Geographic Information Systems (GIS) allow planners to manipulate the data to see and use what data is useful to a planning task while minimize, or obscuring, unimportant data

– GIS can allow a planner to see distinct “layers” of information that are important to the decision making process

Page 16: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.8 Digitized maps can represent data

Page 17: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.9 a composite map for land-use planning

Page 18: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.10 a

Page 19: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.10 b

Page 20: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.10 c

Page 21: Land-Use Planning and Engineering Geology Chapter 19.

Engineering Geology• Geologic factors and considerations vary

depending on the site and the project• A few considerations for a major project

may include:• Rock types present in project area, are they

uniform or variable• Are they fractured or faulted?• If they are, are the faults active?• Is there a landslide risk?• What types of soil or soils are present? Are they

suitable for the project?• What are the hydrologic factors? Surface and

subsurface• The list is nearly endless

Page 22: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.13 a Failure of structure on unstable soil

Page 23: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.13 b Relative magnitudes of loss of life and

property damage from various geologic hazards

Page 24: Land-Use Planning and Engineering Geology Chapter 19.

Engineering Geology

• Major projects often encounter major obstacles– Alaskan Oil Pipeline Project (1300 km long)

• Spans a variety of geologic settings (rock types, structures, faults, slopes, soils, mountains, streams)

• Active earthquakes, seasonal flooding, animal migration routes – all required solutions

• Climate factors – North Slope is very cold with permafrost and a variable permafrost table

Page 25: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.14 a

Page 26: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.14 b

Page 27: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.15 permafrost and permafrost table

Page 28: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.16 Differential subsidence of railroad tracks due to partial thawing of permafrost

Page 29: Land-Use Planning and Engineering Geology Chapter 19.

Role of Testing and Scale Modeling

• Models are physically constructed (at a reduced scale)

• Models may be tested in a computer

• Failures of a variety of structures can be tested – dams, bridges, or earthquake resistant buildings

Page 30: Land-Use Planning and Engineering Geology Chapter 19.

Fig. 19.18 Scale modeling

Page 31: Land-Use Planning and Engineering Geology Chapter 19.

Case Histories

• Leaning Tower of Pisa: the flow of the unstable soft clay layers

• Panama Canal: Dipping layers of young volcanic rocks, lava flows, and pyroclastic deposits and dipping beds of shale and sandstone

• Boston’s “Big Dig”: Glacial sediments and weakly metamorphosed mudstone

Page 32: Land-Use Planning and Engineering Geology Chapter 19.

Fig. 19.20 Geologic factors complicated construction of the Panama Canal

Page 33: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.22 Boston’s “Big Dig”: Slurry walls keep excavations from collapsing and nearby building foundations from failing

Page 34: Land-Use Planning and Engineering Geology Chapter 19.

Dams - Failures and Consequences• A catastrophic dam failure can impact many

cities, thousands of lives, and cause millions of dollars worth of property damage

• St. Francis Dam: coarse sandstones; schists and mica-rich metamorphic rocks; a fault

• Baldwin Hills reservoir: an active fault zone

• Three Gorges Dam: control the flooding, enhance navigation, and produce energy

Page 35: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.23 a Hoover Dam

Page 36: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.23 b A regional overview of Hoover Dam

Page 37: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.24 Failure of the St. Francis Dam in California

Page 38: Land-Use Planning and Engineering Geology Chapter 19.

Figure 19.27 Benefits and issues in dam construction