Lamb shift in muonic hydrogen - Boston Universityg2pc1.bu.edu/lept14/talks/Pohl_LM14_V3.pdf ·...

111
Muonic news Muonic hydrogen and deuterium Randolf Pohl Lamb shift in muonic hydrogen The Proton Radius Puzzle Muonic deuterium and helium Randolf Pohl Max-Planck-Institut f ¨ ur Quantenoptik Garching 1

Transcript of Lamb shift in muonic hydrogen - Boston Universityg2pc1.bu.edu/lept14/talks/Pohl_LM14_V3.pdf ·...

  • Muonic news

    Muonic hydrogen and deuterium

    Randolf Pohl

    Lamb shift inmuonic hydrogen

    The Proton Radius Puzzle

    Muonic deuterium

    and helium

    Randolf Pohl

    Max-Planck-Institut für

    Quantenoptik

    Garching

    [fm]Proton charge radius R0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

    H spectroscopy

    scatt. Mainz

    scatt. JLab

    p 2010

    p 2013 electron avg.

    7.9

    1

  • There is the muon g-2 puzzle.

    Randolf Pohl Lepton Moments, July 22 2014 2

  • There is the muon g-2 puzzle.– – – – – – – – – – – – – – – –

    Randolf Pohl Lepton Moments, July 22 2014 2

  • There are TWO muon puzzles.

    Randolf Pohl Lepton Moments, July 22 2014 2

  • Two muon puzzles

    •Anomalous magnetic moment of the muon ∼ 3.6σ

    J. Phys. G 38, 085003 (2011).

    Randolf Pohl Lepton Moments, July 22 2014 3

  • Two muon puzzles

    •Anomalous magnetic moment of the muon ∼ 3.6σ

    • Proton radius from muonic hydrogen

    Randolf Pohl Lepton Moments, July 22 2014 3

  • Two muon puzzles

    •Anomalous magnetic moment of the muon ∼ 3.6σ

    •Proton radius from muonic hydrogen ∼ 7.9σThe measured value of the proton rms charge radius from muonic hydrogen µ pis 10 times more accurate, but 4% smaller than the value from both hydrogenspectroscopy and elastic electron proton scattering.

    [fm]ch

    Proton charge radius R0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

    H spectroscopy

    scatt. Mainz

    scatt. JLab

    p 2010µ

    p 2013µ electron avg.

    σ7.9

    RP et al., Nature 466, 213 (2010); Science 339, 417 (2013); ARNPS 63, 175 (2013).

    Randolf Pohl Lepton Moments, July 22 2014 3

  • Two muon puzzles

    •Anomalous magnetic moment of the muon ∼ 3.6σ

    •Proton radius from muonic hydrogen ∼ 7.9σ

    • These 2 discrepancies may be connected.

    rp aµ

    Karshenboim, McKeen, Pospelov, arXiv 1401.6156

    Randolf Pohl Lepton Moments, July 22 2014 3

  • Outline

    Introduction: Proton radius, hydrogen and all that

    Muonic hydrogen

    The proton radius puzzle

    (Electronic) hydrogen

    Proton polarizability aka two-photon-exchange

    BSM

    Muonic deuterium

    Muonic helium

    Randolf Pohl Lepton Moments, July 22 2014 4

  • Proton radius vs. time

    1962

    1963

    1974

    1980

    1994

    1996

    1997

    1999

    2000

    2001

    2003

    2006

    2007

    2010

    0.780

    0.800

    0.820

    0.840

    0.860

    0.880

    0.900

    0.920

    OrsayStanfordSaskatoonMainzMergell VMD

    Sick, 2003HydrogenCODATA 2006Bonn VMD

    year →

    Pro

    ton

    radi

    us (

    fm)

    The proton rms charge radius is not the most accurate quantity in the universe.

    e-p scattering: rp = 0.895(18) fm (ur = 2 %)

    Hydrogen: rp = 0.8760(78) fm (ur = 0.9 %)

    •••

    electron scattering

    slope of GE at Q2 = 0

    •• hydrogen spectr.

    Lamb shift (S-states)

    Randolf Pohl Lepton Moments, July 22 2014 5

  • Proton radius vs. time

    1962

    1963

    1974

    1980

    1994

    1996

    1997

    1999

    2000

    2001

    2003

    2006

    2007

    2010

    0.780

    0.800

    0.820

    0.840

    0.860

    0.880

    0.900

    0.920

    OrsayStanfordSaskatoonMainzMergell VMD

    Sick, 2003HydrogenCODATA 2006Bonn VMD

    year →

    Pro

    ton

    radi

    us (

    fm)

    The proton rms charge radius is not the most accurate quantity in the universe.

    e-p scattering: rp = 0.895(18) fm (ur = 2 %)

    Hydrogen: rp = 0.8760(78) fm (ur = 0.9 %)

    •••

    electron scattering

    slope of GE at Q2 = 0

    •• hydrogen spectr.

    Lamb shift (S-states)

    Electron scattering:

    〈r2p〉=−6h̄2 dGE (Q

    2)

    dQ2

    ∣∣∣Q2=0

    ⇒ slope of GE at Q2 = 0

    Vanderhaeghen, Walcher

    1008.4225

    Randolf Pohl Lepton Moments, July 22 2014 5

  • Proton radius vs. time

    1962

    1963

    1974

    1980

    1994

    1996

    1997

    1999

    2000

    2001

    2003

    2006

    2007

    2010

    0.780

    0.800

    0.820

    0.840

    0.860

    0.880

    0.900

    0.920

    OrsayStanfordSaskatoonMainzMergell VMD

    Sick, 2003HydrogenCODATA 2006Bonn VMD

    year →

    Pro

    ton

    radi

    us (

    fm)

    The proton rms charge radius is not the most accurate quantity in the universe.

    e-p scattering: rp = 0.895(18) fm (ur = 2 %)

    Hydrogen: rp = 0.8760(78) fm (ur = 0.9 %)

    •••

    electron scattering

    slope of GE at Q2 = 0

    •• hydrogen spectr.

    Lamb shift (S-states)

    Hydrogen spectroscopy (Lamb shift):

    L1S(rp) = 8171.636(4)+1.5645〈r2p〉 MHz

    1S

    2S 2P

    3S 3D4S8S

    1S-2S

    2S-8S 2S-8D

    EnS ≃−R∞

    n2+

    L1S

    n3

    2 unknowns⇒ 2 transitions

    • Rydberg constant R∞

    • Lamb shift L1S← rp

    Randolf Pohl Lepton Moments, July 22 2014 5

  • Proton radius vs. time

    our goal

    1962

    1963

    1974

    1980

    1994

    1996

    1997

    1999

    2000

    2001

    2003

    2006

    2007

    2010

    0.780

    0.800

    0.820

    0.840

    0.860

    0.880

    0.900

    0.920

    OrsayStanfordSaskatoonMainzMergell VMD

    Sick, 2003HydrogenCODATA 2006Bonn VMD

    year →

    Pro

    ton

    radi

    us (

    fm)

    muonic hydrogen goal (1998): ur = 0.1 %

    20x improvement(aim: 10x better QED test in H)

    The proton rms charge radius is not the most accurate quantity in the universe.

    e-p scattering: rp = 0.895(18) fm (ur = 2 %)

    Hydrogen: rp = 0.8760(78) fm (ur = 0.9 %)

    •••

    electron scattering

    slope of GE at Q2 = 0

    •• hydrogen spectr.

    Lamb shift (S-states)

    Randolf Pohl Lepton Moments, July 22 2014 5

  • Atomic physics

    Spectrum of atomic hydrogen

    Bohr model→ quantum mechanics

    n=1

    n=2

    1S

    2S 2P

    3S 3D4S8S ...

    Randolf Pohl Lepton Moments, July 22 2014 6

  • Atomic physics

    Bohr model→ quantum mechanics

    planetary orbits→ wave function

    n=1

    n=2

    Orbital pictures from Wikipedia

    1S

    2S 2P

    3S 3D4S8S ...

    Randolf Pohl Lepton Moments, July 22 2014 6

  • Atomic and nuclear physics

    Wave functions of S and P states:

    Orbital pictures from Wikipedia

    r [Zr/a0]0 1 2 3 4 5 6 7 8

    radi

    al w

    .f.

    0

    0.5

    12S

    2P

    S states: max. at r=0

    Electron sometimes inside the proton.

    S states are shifted.

    Shift ist proportional to the

    size of the proton

    P states: zero at r=0

    Electron is not

    inside the proton.

    1S

    2S 2P

    3S 3D4S8S ...

    Randolf Pohl Lepton Moments, July 22 2014 6

  • Atomic and nuclear physics

    Orbital pictures from Wikipedia

    S states: max. at r=0

    Electron sometimes inside the proton.

    S states are shifted.

    Shift ist proportional to the

    size of the proton

    P states: zero at r=0

    Electron is not

    inside the proton.

    radius [fm]0 0.5 1 1.5 2 2.5

    arb.

    uni

    ts

    Coulomb potential: V = 1/r

    1S

    2S 2P

    3S 3D4S8S ...

    Randolf Pohl Lepton Moments, July 22 2014 6

  • Atomic and nuclear physics

    Orbital pictures from Wikipedia

    S states: max. at r=0

    Electron sometimes inside the proton.

    S states are shifted.

    Shift ist proportional to the

    size of the proton

    P states: zero at r=0

    Electron is not

    inside the proton.

    radius [fm]0 0.5 1 1.5 2 2.5

    arb.

    uni

    ts

    Coulomb potential: V = 1/r

    proton charge

    1S

    2S 2P

    3S 3D4S8S ...

    Randolf Pohl Lepton Moments, July 22 2014 6

  • Atomic and nuclear physics

    Orbital pictures from Wikipedia

    S states: max. at r=0

    Electron sometimes inside the proton.

    S states are shifted.

    Shift ist proportional to the

    size of the proton

    P states: zero at r=0

    Electron is not

    inside the proton.

    radius [fm]0 0.5 1 1.5 2 2.5

    arb.

    uni

    ts

    Coulomb potential: V = 1/r

    proton charge

    true potential

    1S

    2S 2P

    3S 3D4S8S ...

    Randolf Pohl Lepton Moments, July 22 2014 6

  • Muonic hydrogen

    Regular hydrogen:

    electron e− + proton p

    Muonic hydrogen:

    muon µ− + proton p

    electron

    Randolf Pohl Lepton Moments, July 22 2014 7

  • Muonic hydrogen

    Regular hydrogen:

    electron e− + proton p

    Muonic hydrogen:

    muon µ− + proton p

    electron

    from Wikipedia✒

    Randolf Pohl Lepton Moments, July 22 2014 7

  • Muonic hydrogen

    Regular hydrogen:

    electron e− + proton p

    Muonic hydrogen:

    muon µ− + proton p

    muon mass mµ ≈ 200 ×me

    Bohr radius rµ ≈ 1/200 ×re

    µ inside the proton: 2003 ≈ 107

    muon much is more sensitive to rp

    electron

    muon

    Randolf Pohl Lepton Moments, July 22 2014 7

  • Proton charge radius and muonic hydrogen

    2S1/2

    2P1/22P3/2

    F=0

    F=0

    F=1

    F=2

    F=1 F=1

    23 meV

    8.4 meV

    3.7 meVfin. size:

    206 meV50 THz6 µm

    225 meV55 THz5.5 µm

    µp(n=2) levels:Lamb shift in µp [meV]:

    ∆E = 206.0668(25)−5.2275(10)r2p [meV]

    Proton size effect is 2% of the µ p Lamb shift

    Measure to 10−5 ⇒ rp to 0.05 %

    Experiment:

    R. Pohl et al., Nature 466, 213 (2010).

    A. Antognini, RP et al., Science 339, 417 (2013).

    Theory summary:

    A. Antognini, RP et al., Ann. Phys. 331, 127 (2013).

    Randolf Pohl Lepton Moments, July 22 2014 8

  • Muonic measurements.

    Randolf Pohl Lepton Moments, July 22 2014 9

  • Setup

    Randolf Pohl Lepton Moments, July 22 2014 10

  • The resonance: discrepancy, sys., stat.

    laser frequency [THz]49.75 49.8 49.85 49.9 49.95

    ]-4

    dela

    yed

    / pro

    mpt

    eve

    nts

    [10

    0

    1

    2

    3

    4

    5

    6

    7

    e-p scattering

    CODATA-06 our value

    O2Hcalib.

    Water-line/laser wavelength:

    300 MHz uncertainty

    ∆ν water-line to resonance:

    200 kHz uncertainty

    Statistics: 700 MHz

    Systematics: 300 MHz

    Discrepancy:

    5.0σ ↔ 75 GHz ↔ δν/ν = 1.5×10−3R. Pohl et al., Nature 466, 213 (2010).

    A. Antognini, RP et al.,Science 339, 417 (2013).

    Randolf Pohl Lepton Moments, July 22 2014 11

  • The proton radius puzzle.

    Randolf Pohl Lepton Moments, July 22 2014 12

  • The proton radius puzzle

    [fm]ch

    Proton charge radius R0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

    H spectroscopy

    scatt. Mainz

    scatt. JLab

    p 2010µ

    p 2013µ electron avg.

    σ7.9

    The proton rms charge radius measured with

    electrons: 0.8770 ± 0.0045 fm

    muons: 0.8409 ± 0.0004 fm

    RP, Gilman, Miller, Pachucki, Annu. Rev. Nucl. Part. Sci. 63, 175 (2013).

    Randolf Pohl Lepton Moments, July 22 2014 13

  • The proton radius puzzle

    [fm]ch

    Proton charge radius R0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

    H spectroscopy

    scatt. Mainz

    scatt. JLab

    p 2010µ

    p 2013µ electron avg.

    σ7.9

    The proton rms charge radius measured with

    electrons: 0.8770 ± 0.0045 fm

    muons: 0.8409 ± 0.0004 fm

    Randolf Pohl Lepton Moments, July 22 2014 13

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?µp theory wrong?

    H theory wrong?H experiments wrong? → R∞ wrong?

    AND e-p scattering exp. wrong?

    Standard Model wrong?!?

    RP, R. Gilman, G.A. Miller, K. Pachucki, “Muonic hydrogen and the proton radius puzzle”,

    Annu. Rev. Nucl. Part. Sci. 63, 175 (2013) (arXiv 1301.0905)

    Randolf Pohl Lepton Moments, July 22 2014 14

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    That is > 100 δ (µp) ! σtot = 650 MHz, [ 570 MHzstat, 300 MHzsyst ]

    4 line widths ! Γ = 19 GHz

    2 resonances in µp give the same rp

    laser frequency [THz]49.75 49.8 49.85 49.9 49.95

    ]-4

    dela

    yed

    / pro

    mpt

    eve

    nts

    [10

    0

    1

    2

    3

    4

    5

    6

    7

    e-p scattering

    CODATA-06 our value

    O2Hcalib.

    Randolf Pohl Lepton Moments, July 22 2014 15

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    µp experiment probably not wrong by 100 σ

    Randolf Pohl Lepton Moments, July 22 2014 15

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp theory wrong?

    Discrepancy = 0.31 meVTheory uncert. = 0.0025 meV

    =⇒ 120δ (theory) deviation

    ∆E = 206.0668(25)−5.2275(10)r2p [meV]

    Some contributions to the µp Lamb shift

    double-checked by many groups

    5th largest term!

    Theory summary:A. Antognini, RP et al.

    Annals of Physics 331, 127 (2013)0.5 1 1.5 2 2.5 3 3.5 4

    1-loop eVP

    proton size

    2-loop eVP

    µSE and µVPdiscrepancy

    1-loop eVP in 2 Coul.

    recoil

    2-photon exchange

    hadronic VP

    proton SE

    3-loop eVP

    light-by-lightmeV

    205 meV

    Randolf Pohl Lepton Moments, July 22 2014 16

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp theory wrong?

    Discrepancy = 0.31 meVTheory uncert. = 0.0025 meV

    =⇒ 120δ (theory) deviation

    ∆E = 206.0668(25)−5.2275(10)r2p [meV]

    Some contributions to the µp Lamb shift

    double-checked by many groups

    5th largest term!

    Theory summary:A. Antognini, RP et al.

    Annals of Physics 331, 127 (2013)

    10-3

    10-2

    10-1

    1 10 102

    1-loop eVP

    proton size

    2-loop eVP

    µSE and µVPdiscrepancy

    1-loop eVP in 2 Coul.

    recoil

    2-photon exchange

    hadronic VP

    proton SE

    3-loop eVP

    light-by-light

    meV

    Randolf Pohl Lepton Moments, July 22 2014 16

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp theory wrong?

    Discrepancy = 0.31 meVTheory uncert. = 0.0025 meV

    =⇒ 120δ (theory) deviation

    ∆E = 206.0668(25)−5.2275(10)r2p [meV]

    Some contributions to the µp Lamb shift

    double-checked by many groups

    5th largest term!

    Theory summary:A. Antognini, RP et al.

    Annals of Physics 331, 127 (2013)

    10-3

    10-2

    10-1

    1 10 102

    1-loop eVP

    proton size

    2-loop eVP

    µSE and µVPdiscrepancy

    1-loop eVP in 2 Coul.

    recoil

    2-photon exchange

    hadronic VP

    proton SE

    3-loop eVP

    light-by-light

    meV

    Randolf Pohl Lepton Moments, July 22 2014 16

  • Discussions: Proton polarizability

    proton polarizability aka. two-photon exchange

    Seems to be the only contribution which might be able to solve theproton size puzzle by changing theory in µp.

    Keep in mind:

    Discrepancy: 0.31 meV

    Polarizability: 0.015(4) meV 20 times smaller!

    Randolf Pohl Lepton Moments, July 22 2014 17

  • Discussions: Proton polarizability

    G.A. Miller et al., PRA 84, 020101(R) (2011)“Toward a resolution of the proton size puzzle”

    New off-mass-shell effect ∼ α m4

    M3solves puzzle.

    R.J. Hill, G. Paz, PRL, 107, 160402 (2011)“Model independent analysis of proton structure for hydrogenic bound states”

    forward Compton amplitude’s W1(0,Q2) is now well known

    “Crazy” functional behaviour can give any correction.No numbers given.

    C.E. Carlson, M. Vanderhaeghen, PRA 84, 020102(R) (2011)“Higher-order proton structure corrections to the Lamb shift in muonic hydrogen”

    All off-shell effects are automatically included in standard treatment.

    C.E. Carlson, M. Vanderhaeghen, arXiv 1109.3779 (atom-ph)

    “Constraining off-shell effects using low-energy Compton scattering”

    Off-shell effects are 100 times smaller than needed to explain the puzzle.

    Randolf Pohl Lepton Moments, July 22 2014 17

  • Discussions: Proton polarizability

    M.C. Birse, J.A. McGovern, Eur. Phys. J. A 48, 120 (2012)“Proton polarisability contribution to the Lamb shift in muonic hydrogen

    at fourth order in chiral perturbation theory”

    Calculate T1(0,Q2) in heavy-baryon chiral pert. theory.

    Proton polarizability is not responsible for the radius puzzle.

    Gorchtein, Llanes-Estrada, Szczepaniak, PRA 87, 052501 (2013)“µ-H Lamb shift: dispersing the nucleon-excitation uncertainty with a finite energy

    sum rule”

    Sum rule + virtual photoabsorption data.

    “We conclude that nucleon structure-dependent uncertainty by itself is un-likely to resolve the large discrepancy...”

    Karshenboim, McKeen, Pospelov, arXiv 1401.6156 [hep-ph]“Constraints on muon-specific dark forces”

    “These estimates show that if indeed large muon-proton interactions are re-

    sponsible for the rp discrepancy, one can no longer insist that theoretical

    calculations of the muon g−2 are under control. Thus, a resolution of the rpproblem is urgently needed in light of the new significant investments made

    in the continuation of the experimental g−2 program.”Randolf Pohl Lepton Moments, July 22 2014 17

  • Discussions: Proton polarizability

    Proton off-shell effects can in principle shift the µp value.

    Evil subtraction function.

    Evidence is growing, that this effect can NOT solve the puzzle.

    Clarification needed [(g−2)µ !]

    Randolf Pohl Lepton Moments, July 22 2014 17

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?µp theory wrong?

    H theory wrong?H experiments wrong? → R∞ wrong?

    AND e-p scattering exp. wrong?

    Standard Model wrong?!?

    Randolf Pohl Lepton Moments, July 22 2014 18

  • Discussions: New Physics

    Jaeckel, Roy, PRD 82, 125020 (2010)“Spectroscopy as a test of Coulomb’s law - A probe of the hidden sector”

    hidden photons, minicharged particles→ deviations from Coulomb’s law.

    µp transition can NOT be explained this. (contradicts Lamb shift in H)

    U.D. Jentschura, Ann. Phys. 326, 516 (2011)“Lamb shift in muonic hydrogen – II. Analysis of the discrepancy of theory and

    experiment”

    no millicharged particles, no unstable neutral vector boson.

    Barger, Chiang, Keung, Marfatia, PRL 106, 153001 (2011)“Proton size anomaly”

    decay of ϒ, J/ψ , π0, η , neutron scattering, muon g-2, µ24Mg, µ28Si

    ⇒ It’s NOT a new flavor-conserving spin-0, 1 or 2 particle

    Tucker-Smith, Yavin, PRD 83, 101702 (2011)“Muonic hydrogen and MeV forces”

    MeV force carrier can explain discrepancies for rp and (g-2)µIF coupling to e, n is suppressed relative to coupling to µ , p

    prediction for µHe+, µ+µ−

    Randolf Pohl Lepton Moments, July 22 2014 19

  • Discussions: New Physics

    Batell, McKeen, Pospelov, PRL 107, 011803 (2011)“New Parity-violating muonic forces and the proton charge radius”

    10...100 MeV heavy photon (“light Higgs”) can explain rp and (g-2)µ

    prediction for µHe+, enhanced PNC in muonic systems

    Barger, Chiang, Keung, Marfatia, PRL 108, 081802 (2011)

    “Constraint on Parity-violating muonic forces”

    No missing mass events observed in leptonic Kaon decay.⇒ contraints on light Higgs.

    Pospelov (private comm.)

    Lack of missing mass events in leptonic Kaon decays no problem.

    Light Higgs is short-lived (decays inside the detector).

    C.E. Carlson, B.C. Rislow, PRD 86, 035013 (2012)“New physics and the proton radius problem”

    “New physics with fine-tuned couplings may be entertained as a possible

    explanation for the Lamb shift discrepancy.”

    Randolf Pohl Lepton Moments, July 22 2014 19

  • Discussions: New Physics

    Wang, Ni, Mod. Phys. Lett. A 28, 1350094 (2013)“Proton puzzle and large extra dimensions” (arXiv 1303.4885)

    “Extra gravitational force between the proton and the muon at very short

    range provides an energy shift which accounts for the discrepancy...”

    Li, Chen, arXiv 1303.5146“Can large extra dimensions solve the proton radius puzzle?”

    “We find that such effect could be produced by four or more large extra

    dimensions which are allowed by the current constraints from low energy

    physics.”

    R. Onofrio, Eur. Phys. Lett. 104, 20002 (2013)“Proton radius puzzle and quantum gravity at the Fermi scale” (1312.3469)

    “We show how the proton radius puzzle ... may be solved by means of ...

    an effective Yukawian gravitational potential related to charged weak inter-

    actions. [...] Muonic hydrogen plays a crucial role to test possible scenarios

    for a gravitoweak unification, with weak interactions seen as manifestations

    of quantum gravity effects at the Fermi scale.

    Randolf Pohl Lepton Moments, July 22 2014 19

  • rp and aµ

    after PospelovKarshenboim, McKeen, Pospelov, arXiv 1401.6156

    Both the rp and the aµ discrepancy could originate

    from the same new proton structure effect (two-photon-

    exchange) or “New light Physics” (m≈ MeV)

    rp aµ

    Fixing rp could give rise to

    5×10−9 < |∆(aµ)|< 10−7 (for Λhad = mπ . . .mp).

    This is much larger than the (g−2)µ discrepancy of ∼ 1×10−9.

    J. Phys. G 38, 085003 (2011).

    Randolf Pohl Lepton Moments, July 22 2014 20

  • rp and aµ

    after PospelovKarshenboim, McKeen, Pospelov, arXiv 1401.6156

    Both the rp and the aµ discrepancy could originate

    from the same new proton structure effect (two-photon-

    exchange) or “New light Physics” (m≈ MeV)

    rp aµ

    Fixing rp could give rise to

    5×10−9 < |∆(aµ)|< 10−7 (for Λhad = mπ . . .mp).

    This is much larger than the (g−2)µ discrepancy of ∼ 1×10−9.

    J. Phys. G 38, 085003 (2011).

    Maybe one can invert the argument:

    aµ “not so wrong” =⇒ rp is not due to proton TPE or this kind of BSM

    Randolf Pohl Lepton Moments, July 22 2014 20

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?µp theory wrong?

    H theory wrong?H experiments wrong? → R∞ wrong?

    AND e-p scattering exp. wrong?

    Standard Model wrong?

    Randolf Pohl Lepton Moments, July 22 2014 21

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?µp theory wrong?

    H theory wrong?H experiments wrong? → R∞ wrong?

    AND e-p scattering exp. wrong?

    Standard Model wrong?

    Randolf Pohl Lepton Moments, July 22 2014 21

  • Hydrogen spectroscopy

    Lamb shift : L1S(rp) = 8171.636(4)+1.5645〈r2p〉MHz

    LnS ≃L1S

    n3

    1S

    2S 2P

    3S 3D4S8S

    Randolf Pohl Lepton Moments, July 22 2014 22

  • Hydrogen spectroscopy

    Lamb shift : L1S(rp) = 8171.636(4)+1.5645〈r2p〉MHz

    LnS ≃L1S

    n3

    1S

    2S 2P

    3S 3D4S8S

    2S-2Pclassical Lamb shift: 2S-2P

    Lamb, Retherford 1946

    Lundeen, Pipkin 1986

    Hagley, Pipkin 1994

    Hessels et al., 201x

    2S1/2

    2P1/2

    2P3/2

    F=0

    F=0

    F=1

    F=1

    F=1

    F=2

    1058 MHz =4 µeV

    9910 MHz =40 µeV

    Randolf Pohl Lepton Moments, July 22 2014 22

  • Hydrogen spectroscopy

    Lamb shift : L1S(rp) = 8171.636(4)+1.5645〈r2p〉MHz

    LnS ≃L1S

    n3

    1S

    2S 2P

    3S 3D4S8S

    1S-2S

    2S-4P 2S-8D

    EnS ≃−R∞

    n2+

    L1S

    n3

    2 unknowns⇒ 2 transitions

    • Rydberg constant R∞

    • Lamb shift L1S← rp

    Randolf Pohl Lepton Moments, July 22 2014 22

  • Hydrogen spectroscopy

    2S1/2 - 2P1/22S1/2 - 2P1/22S1/2 - 2P3/2

    1S-2S + 2S-4S1/21S-2S + 2S-4D5/21S-2S + 2S-4P1/21S-2S + 2S-4P3/21S-2S + 2S-6S1/21S-2S + 2S-6D5/21S-2S + 2S-8S1/21S-2S + 2S-8D3/21S-2S + 2S-8D5/21S-2S + 2S-12D3/21S-2S + 2S-12D5/21S-2S +1S - 3S1/2

    proton charge radius (fm) 0.8 0.85 0.9 0.95 1

    Randolf Pohl Lepton Moments, July 22 2014 23

  • Hydrogen spectroscopy

    0.8 0.85 0.9 0.95 1

    2S1/2 - 2P1/22S1/2 - 2P1/22S1/2 - 2P3/2

    1S-2S + 2S-4S1/21S-2S + 2S-4D5/21S-2S + 2S-4P1/21S-2S + 2S-4P3/21S-2S + 2S-6S1/21S-2S + 2S-6D5/21S-2S + 2S-8S1/21S-2S + 2S-8D3/21S-2S + 2S-8D5/21S-2S + 2S-12D3/21S-2S + 2S-12D5/21S-2S +1S - 3S1/2

    µp : 0.84087 +- 0.00039 fm

    proton charge radius (fm)

    Randolf Pohl Lepton Moments, July 22 2014 23

  • Hydrogen spectroscopy

    0.8 0.85 0.9 0.95 1

    2S1/2 - 2P1/22S1/2 - 2P1/22S1/2 - 2P3/2

    1S-2S + 2S-4S1/21S-2S + 2S-4D5/21S-2S + 2S-4P1/21S-2S + 2S-4P3/21S-2S + 2S-6S1/21S-2S + 2S-6D5/21S-2S + 2S-8S1/21S-2S + 2S-8D3/21S-2S + 2S-8D5/21S-2S + 2S-12D3/21S-2S + 2S-12D5/21S-2S +1S - 3S1/2

    Havg = 0.8779 +- 0.0094 fm

    µp : 0.84087 +- 0.00039 fm

    proton charge radius (fm)

    Randolf Pohl Lepton Moments, July 22 2014 23

  • Hydrogen spectroscopy

    0.8 0.85 0.9 0.95 1

    2S1/2 - 2P1/22S1/2 - 2P1/22S1/2 - 2P3/2

    1S-2S + 2S-4S1/21S-2S + 2S-4D5/21S-2S + 2S-4P1/21S-2S + 2S-4P3/21S-2S + 2S-6S1/21S-2S + 2S-6D5/21S-2S + 2S-8S1/21S-2S + 2S-8D3/21S-2S + 2S-8D5/21S-2S + 2S-12D3/21S-2S + 2S-12D5/21S-2S +1S - 3S1/2

    Havg = 0.8779 +- 0.0094 fm

    µp : 0.84087 +- 0.00039 fm

    proton charge radius (fm)

    Randolf Pohl Lepton Moments, July 22 2014 23

  • Hydrogen spectroscopy

    0.8 0.85 0.9 0.95 1

    2S1/2 - 2P1/22S1/2 - 2P1/22S1/2 - 2P3/2

    1S-2S + 2S-4S1/21S-2S + 2S-4D5/21S-2S + 2S-4P1/21S-2S + 2S-4P3/21S-2S + 2S-6S1/21S-2S + 2S-6D5/21S-2S + 2S-8S1/21S-2S + 2S-8D3/21S-2S + 2S-8D5/21S-2S + 2S-12D3/21S-2S + 2S-12D5/21S-2S +1S - 3S1/2

    Havg = 0.8779 +- 0.0094 fm

    µp : 0.84087 +- 0.00039 fm

    proton charge radius (fm)

    New measurements of the Rydberg constant areurgently needed to resolve the puzzle µp vs. H

    • Flowers @ NPL: 2S−nS,D : n > 4[Flowers et al., IEEE Trans. Instr. Meas. 56, 331 (2007)]

    • Tan @ NIST: Ne9+

    [Tan et al., Phys. Scr. T144, 014009 (2011)]

    • Udem, RP et al. @ MPQ: 2S−4P[Beyer, RP et al., Ann.d.Phys. 525, 671 (2013)]

    • Hessels @ York: 2S−2P[Hessels et al., Bull. APS 57(5), Q1.138 (2012)]

    • Pachucki: He

    • Udem @ MPQ, Eikema @ Amsterdam: He+

    [Herrmann et al., PRA 79, 052505 (2009)]

    Randolf Pohl Lepton Moments, July 22 2014 23

  • Hydrogen spectroscopy

    0.8 0.85 0.9 0.95 1

    2S1/2 - 2P1/22S1/2 - 2P1/22S1/2 - 2P3/2

    1S-2S + 2S-4S1/21S-2S + 2S-4D5/21S-2S + 2S-4P1/21S-2S + 2S-4P3/21S-2S + 2S-6S1/21S-2S + 2S-6D5/21S-2S + 2S-8S1/21S-2S + 2S-8D3/21S-2S + 2S-8D5/21S-2S + 2S-12D3/21S-2S + 2S-12D5/21S-2S +1S - 3S1/2

    Havg = 0.8779 +- 0.0094 fm

    µp : 0.84087 +- 0.00039 fm

    proton charge radius (fm)

    Projected accuracy Garching 2S-4P

    Randolf Pohl Lepton Moments, July 22 2014 24

  • Muonic deuterium

    Randolf Pohl Lepton Moments, July 22 2014 25

  • muonic deuterium

    2S1/2

    2P1/22P3/2

    F=1/2 F=3/2

    Randolf Pohl Lepton Moments, July 22 2014 26

  • muonic deuterium

    2S1/2

    2P1/22P3/2

    F=1/2 F=3/2

    2S1/2

    2P1/2

    2P3/2

    F=1/2

    F=3/2

    F=1/2

    F=3/2

    F=5/2 F=1/2 F=3/2

    Randolf Pohl Lepton Moments, July 22 2014 26

  • Muonic DEUTERIUM

    - 50.0 THz (GHz)ν780 800 820 840 860 880

    0

    2

    4

    6

    8

    10

    ]-4

    del

    ayed

    / pr

    ompt

    eve

    nts

    [10

    - 52.0 THz (GHz)ν-40 -20 0 20 40 60 80 100 120 140 160

    0

    1

    2

    3

    4

    5

    6

    7

    8

    ]-4

    del

    ayed

    / pr

    ompt

    eve

    nts

    [10

    2S1/2

    2P1/2

    2P3/2

    F=1/2

    F=3/2

    F=1/2

    F=3/2

    F=5/2 F=1/2 F=3/2

    2.5 resonances in muonic deuterium

    • µd [ 2S1/2(F=3/2)→ 2P3/2(F=5/2) ]20 ppm (stat., online)

    • µd [ 2S1/2(F=1/2)→ 2P3/2(F=3/2) ]45 ppm (stat., online)

    • µd [ 2S1/2(F=1/2)→ 2P3/2(F=1/2) ]70 ppm (stat., online)

    only 5σ significant

    identifies F=3/2 line

    Randolf Pohl Lepton Moments, July 22 2014 27

  • Deuteron charge radius

    H/D isotope shift: r2d− r2p = 3.82007(65) fm

    2C.G. Parthey, RP et al., PRL 104, 233001 (2010)

    CODATA 2010 rd = 2.1424(21) fm

    rp= 0.84087(39) fm from µH gives rd = 2.1277( 2) fm

    Deuteron charge radius [fm]

    2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

    H + iso H/D(1S-2S)µCODATA-2010

    CODATA D + e-d

    e-d scatt.

    n-p scatt.

    Randolf Pohl Lepton Moments, July 22 2014 28

  • Deuteron charge radius

    H/D isotope shift: r2d− r2p = 3.82007(65) fm

    2C.G. Parthey, RP et al., PRL 104, 233001 (2010)

    CODATA 2010 rd = 2.1424(21) fm

    rp= 0.84087(39) fm from µH gives rd = 2.1277( 2) fm

    Lamb shift in muonic DEUTERIUM rd = 2.1282(12) fm PRELIMINARY!

    Deuteron charge radius [fm]

    2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

    PRELIMINARY

    d Borie+Pachucki+Ji+Friarµd Borie+Jiµ

    d Borie+Pachuckiµd Martynenkoµ

    H + iso H/D(1S-2S)µCODATA-2010

    CODATA D + e-d

    e-d scatt.

    n-p scatt.

    Randolf Pohl Lepton Moments, July 22 2014 28

  • Deuteron charge radius

    Deuteron charge radius [fm]

    2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

    PRELIMINARY

    d Borie+Pachucki+Ji+Friarµd Borie+Jiµ

    d Borie+Pachuckiµd Martynenkoµ

    H + iso H/D(1S-2S)µCODATA-2010

    CODATA D + e-d

    e-d scatt.

    n-p scatt.

    µH and µD are consistent!WIP: deuteron polarizability (theory) complete? double-counting?

    WIP: shift from QM-interference

    Randolf Pohl Lepton Moments, July 22 2014 28

  • Proton-deuteron isotope shift

    In other words: The muonic isotope shift agrees with the electronic one!

    r2d− r2p: H/D isotope shift 3.82007±0.00065 fm2

    muonic Lamb shift 3.8221 ±0.0052 fm2 PRELIMINARY!

    scattering 3.764 ±0.045 fm2

    The muonic error is conservative (nucl. structure terms).

    ]2 [fm2p - R2dR

    3.72 3.74 3.76 3.78 3.8 3.82

    PRELIMINARY

    electronic H/D (1S-2S)

    p (2S-2P)µd/µ

    scattering

    Randolf Pohl Lepton Moments, July 22 2014 29

  • Muonic helium ions.

    Randolf Pohl Lepton Moments, July 22 2014 30

  • Lamb shift in muonic helium

    CREMA collaboration: Charge Radius Experiment with Muonic Atoms

    Experiment R10-01 at PSI

    Goal: Measure ∆E(2S-2P) in µ 4He, µ 3He

    ⇒ alpha particle and helion charge radius to 3×10−4

    (± 0.0005 fm)

    Randolf Pohl Lepton Moments, July 22 2014 31

  • Lamb shift in muonic helium

    CREMA collaboration: Charge Radius Experiment with Muonic Atoms

    Experiment R10-01 at PSI

    Goal: Measure ∆E(2S-2P) in µ 4He, µ 3He

    ⇒ alpha particle and helion charge radius to 3×10−4

    (± 0.0005 fm)

    2S1/2

    2P1/22P3/2

    F=0

    F=0

    F=1

    F=2

    F=1 F=1

    23 meV

    8.4 meV

    3.8 meVfin. size:

    206 meV50 THz6 µm

    2S1/2

    2P2P1/2

    2P3/2

    146 meV

    fin. size effect

    290 meV

    812 nm

    898 nm

    2S1/2

    2P1/2

    2P3/22P

    F=0

    F=1

    F=0 F=1

    F=2 F=1

    167 meV

    145 meV

    fin. size effect397 meV

    µp µ 4He µ 3He

    Randolf Pohl Lepton Moments, July 22 2014 31

  • Lamb shift in muonic helium

    CREMA collaboration: Charge Radius Experiment with Muonic Atoms

    Experiment R10-01 at PSI

    Goal: Measure ∆E(2S-2P) in µ 4He, µ 3He

    ⇒ alpha particle and helion charge radius to 3×10−4

    (± 0.0005 fm)

    aims:

    help to solve the proton size puzzle

    absolute charge radii of helion, alpha

    low-energy effective nuclear models: 1H, 2D, 3He, 4He

    QED test with He+(1S-2S) [Udem @ MPQ, Eikema @ Amsterdam]

    Randolf Pohl Lepton Moments, July 22 2014 31

  • Lamb shift in muonic helium

    CREMA collaboration: Charge Radius Experiment with Muonic Atoms

    Experiment R10-01 at PSI

    Goal: Measure ∆E(2S-2P) in µ 4He, µ 3He

    ⇒ alpha particle and helion charge radius to 3×10−4

    (± 0.0005 fm)

    aims:

    help to solve the proton size puzzle

    absolute charge radii of helion, alpha

    low-energy effective nuclear models: 1H, 2D, 3He, 4He

    QED test with He+(1S-2S) [Udem @ MPQ, Eikema @ Amsterdam]

    4He beam time: Oct.-Dec. 2013

    3He beam time: May-Aug. 2014

    Randolf Pohl Lepton Moments, July 22 2014 31

  • 1st resonance in muonic He-4

    µ4He(2S1/2→ 2P3/2) at ∼ 813 nm wavelength

    Frequency [THz]›3 ›2 ›1 0 1 2 3 4

    Eve

    nts

    / Pro

    mpt

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    ›310´

    Prelim

    inary

    Randolf Pohl Lepton Moments, July 22 2014 32

  • 1st resonance in muonic He-4

    µ4He(2S1/2→ 2P3/2) at ∼ 813 nm wavelength

    Frequency [THz]›3 ›2 ›1 0 1 2 3 4

    Eve

    nts

    / Pro

    mpt

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    ›310´

    Theory + Sick

    Prelim

    inary

    Sick, PRD 77, 040302(R) (2008) Borie, Ann. Phys. 327, 733 (2012)

    Randolf Pohl Lepton Moments, July 22 2014 32

  • 1st resonance in muonic He-4

    µ4He(2S1/2→ 2P3/2) at ∼ 813 nm wavelength

    Frequency [THz]›3 ›2 ›1 0 1 2 3 4

    Eve

    nts

    / Pro

    mpt

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    ›310´

    Zavattini

    Prelim

    inary

    Carboni et al, Nucl. Phys. A273, 381 (1977)

    Randolf Pohl Lepton Moments, July 22 2014 32

  • 1st resonance in muonic He-4

    µ4He(2S1/2→ 2P3/2) at ∼ 813 nm wavelength

    Frequency [THz]›3 ›2 ›1 0 1 2 3 4

    Eve

    nts

    / Pro

    mpt

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    ›310´

    Pospelov

    Prelim

    inary

    Batell, McKeen, Pospelov, PRL 107, 011803 (2011)

    Randolf Pohl Lepton Moments, July 22 2014 32

  • 2nd resonance in muonic He-4

    µ4He(2S1/2→ 2P1/2) at ∼ 899 nm wavelength

    ›0.6 ›0.4 ›0.2 0 0.2 0.4 0.60

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6›310´

    PRELIMINARY

    Randolf Pohl Lepton Moments, July 22 2014 33

  • 1st resonance in muonic He-3

    µ3He(2SF=11/2 → 2PF=23/2 ) at ∼ 864 nm wavelength

    ›0.8 ›0.6 ›0.4 ›0.2 0 0.2 0.4 0.6 0.8 1 1.20

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6›310´

    PRELIMINARY

    Randolf Pohl Lepton Moments, July 22 2014 34

  • SummaryMuonic hydrogen gives:

    Proton charge radius: rp= 0.84087 (39) fm

    Proton Zemach radius: RZ = 1.082 (37) fm

    Rydberg constant:

    R∞ = 3.2898419602495 (10)radius (25)QED ×1015 Hz/c

    Deuteron charge radius: rd = 2.12771 (22) fm from µH + H/D(1S-2S)

    The “Proton radius puzzle”

    muonic deuterium: rd = 2.1289(12) fm from µD (PRELIMINARY!)

    Lamb shift in muD⇒ deuteron charge radius, isotope shift.2S-HFS is missing a large (polarizability) term!

    muonic helium-4: charge radius 10x more accurate.muonic helium-3: to come

    Proton radius puzzle deepened! New data needed:

    Muonic T, He, Li, Be, ..

    Hydrogen/Deuterium/Tritium

    Positronium

    ...

    Randolf Pohl Lepton Moments, July 22 2014 35

  • Randolf Pohl Lepton Moments, July 22 2014 36

  • CREMA collaboration

    Charge Radius Experiment with Muonic Atoms

    M. Diepold, B. Franke, J. Götzfried, T.W. Hänsch, J. Krauth, F. Mul-

    hauser, T. Nebel, R. Pohl

    MPQ, Garching, Germany

    A. Antognini, K. Kirch, F. Kottmann, B. Naar, K. Schuhmann,

    D. Taqqu

    ETH Zürich, Switzerland

    M. Hildebrandt, A. Knecht, A. Dax PSI, Switzerland

    F. Biraben, P. Indelicato, E.-O. Le Bigot, S. Galtier, L. Julien, F. Nez,

    C. Szabo-Foster

    Labor. Kastler Brossel, Paris, France

    F.D. Amaro, J.M.R. Cardoso, L.M.P. Fernandes, A.L. Gouvea,

    J.A.M. Lopez, C.M.B. Monteiro, J.M.F. dos Santos

    Uni Coimbra, Portugal

    D.S. Covita, J.F.C.A. Veloso Uni Aveiro, Portugal

    M. Abdou Ahmed, T. Graf, A. Voss, B. Weichelt IFSW, Uni Stuttgart, Germany

    T.-L. Chen, C.-Y. Kao, Y.-W. Liu Nat. Tsing Hua Uni, Hsinchu, Taiwan

    P. Amaro, J.P. Santos Uni Lisbon, Portugal

    L. Ludhova, P.E. Knowles, L.A. Schaller Uni Fribourg, Switzerland

    A. Giesen Dausinger & Giesen GmbH, Stuttgart, Germany

    P. Rabinowitz Uni Princeton, USA

    Randolf Pohl Lepton Moments, July 22 2014 37

  • Backup slides.

    Randolf Pohl Lepton Moments, July 22 2014 38

  • The proton radius puzzle

    [fm]ch

    Proton charge radius R0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

    H spectroscopy

    scatt. Mainz

    scatt. JLab

    dispersion 2007

    dispersion 2012

    p 2010µ

    p 2013µ electron avg.

    σ7.9

    The proton rms charge radius measured with

    electrons: 0.8770 ± 0.0045 fm

    muons: 0.8409 ± 0.0004 fm

    Belushkin, Hammer, Meissner PRC 75, 035202 (2007).

    Lorenz, Hammer, Meissner EPJ A 48, 151 (2012).

    Randolf Pohl Lepton Moments, July 22 2014 39

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    That is > 100 δ (µp) ! σtot = 650 MHz, [ 570 MHzstat, 300 MHzsyst ]

    4 line widths ! Γ = 19 GHz

    2 resonances in µp give the same rp

    laser frequency [THz]49.75 49.8 49.85 49.9 49.95

    ]-4

    dela

    yed

    / pro

    mpt

    eve

    nts

    [10

    0

    1

    2

    3

    4

    5

    6

    7

    e-p scattering

    CODATA-06 our value

    O2Hcalib.

    Randolf Pohl Lepton Moments, July 22 2014 40

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    Wrong transition?

    FS, HFS huge.

    Next transition:∼ 1 THz away.

    frequency [THz]46 47 48 49 50 51 52 53 54

    sign

    al [a

    .u.]

    Randolf Pohl Lepton Moments, July 22 2014 40

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    Wrong transition?

    Systematic error?

    Laser frequency (H20 calibration) 300 MHz

    intrinsic H2O uncertainty 2 MHz

    AC and DC stark shift < 1 MHz

    Zeeman shift (5 Tesla) < 30 MHz

    Doppler shift < 1 MHz

    Collisional shift 2 MHz————–300 MHz

    µp atom is small and not easily perturbed by external fields.

    Randolf Pohl Lepton Moments, July 22 2014 40

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    Wrong transition?

    Systematic error?

    Molecular effects?

    p µ e molecular ion? U.D. Jentschura, Annals of Physics 326, 516 (2011).

    Does not exist! J.-P. Karr, L. Hilico, PRL 109, 103401 (2012).

    Experimentally:

    - only 1 line observed (> 80% population)

    - expected width

    - ppµ ion short-lived R. Pohl et al., PRL 97, 193402 (2006).

    Randolf Pohl Lepton Moments, July 22 2014 40

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    Wrong transition?

    Systematic error?

    Molecular effects?

    Gas imputities? M. Diepold, RP et al., PRA 88, 042520 (2013).

    Target gas contained 0.55(5) % air (leak).

    Back-of-the-envelope calculation:

    collision rate λ ≈ 6 ·103s−1

    2S lifetime τ(2S) = 1 µs

    ⇒ Less than 1% of all µp(2S) atoms see any N2

    Randolf Pohl Lepton Moments, July 22 2014 40

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp experiment wrong?

    Frequency mistake by 75 GHz (⇔ 0.15%)?

    Wrong transition?

    Systematic error?

    Molecular effects?

    Gas imputities?

    µp experiment probably not wrong by 100 σ

    Randolf Pohl Lepton Moments, July 22 2014 40

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp theory wrong?

    Discrepancy = 0.31 meVTheory uncert. = 0.0025 meV

    =⇒ 120δ (theory) deviation

    ∆E = 206.0668(25)−5.2275(10)r2p [meV]

    Some contributions to the µp Lamb shift

    double-checked by many groups

    5th largest term!

    Theory summary:A. Antognini, RP et al.

    Annals of Physics 331, 127 (2013)0.5 1 1.5 2 2.5 3 3.5 4

    1-loop eVP

    proton size

    2-loop eVP

    µSE and µVPdiscrepancy

    1-loop eVP in 2 Coul.

    recoil

    2-photon exchange

    hadronic VP

    proton SE

    3-loop eVP

    light-by-lightmeV

    205 meV

    Randolf Pohl Lepton Moments, July 22 2014 41

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp theory wrong?

    Discrepancy = 0.31 meVTheory uncert. = 0.0025 meV

    =⇒ 120δ (theory) deviation

    ∆E = 206.0668(25)−5.2275(10)r2p [meV]

    Some contributions to the µp Lamb shift

    double-checked by many groups

    5th largest term!

    Theory summary:A. Antognini, RP et al.

    Annals of Physics 331, 127 (2013)

    10-3

    10-2

    10-1

    1 10 102

    1-loop eVP

    proton size

    2-loop eVP

    µSE and µVPdiscrepancy

    1-loop eVP in 2 Coul.

    recoil

    2-photon exchange

    hadronic VP

    proton SE

    3-loop eVP

    light-by-light

    meV

    Randolf Pohl Lepton Moments, July 22 2014 41

  • What may be wrong?

    L̃theo.µ p (rCODATAp ) − L̃

    exp.µ p =

    75 GHz

    0.31 meV

    0.15 %

    µp theory wrong?

    Discrepancy = 0.31 meVTheory uncert. = 0.0025 meV

    =⇒ 120δ (theory) deviation

    ∆E = 206.0668(25)−5.2275(10)r2p [meV]

    µp theory probably not wrong by 100 σ

    Randolf Pohl Lepton Moments, July 22 2014 41

  • Discussions: 3rd Zemach moment

    PLB 693, 555 De Rujula: “QED is not endangered by the proton’s size” (1008.3861)

    A large third Zemach moment 〈r3p〉(2) =∫

    d3r1 d3r2 ρ(r1)ρ(r2) |r1− r2|

    3

    of the proton can explain all three measurements: µp, H, e-p

    ρ(r) is not a simple Dipole, but has “core” and “tail”

    PRC 83, 012201 Cloet, Miller: “Third Zemach moment of the proton” (1008.4345)

    Such a large third Zemach moment is impossible.

    〈r3p〉(2) (De Rujula) = 36.6 ± 6.9 fm3

    〈r3p〉(2) (Sick) = 2.71± 0.13 fm3

    PLB 696, 343 Distler et al: “The RMS radius of the proton and Zemach moments”(1011.1861)

    〈r3p〉(2) (Mainz 2010) = 2.85± 0.08 fm3

    Randolf Pohl Lepton Moments, July 22 2014 42

  • Contributions to the µ4He+ Lamb shift

    Contributions ∆E (meV)

    One-photon VP contribution, α(Zα)2 1665.782

    Two-loop VP contributions in first and second order PT, α2(Zα)2 15.188

    Wichmann-Kroll correction 0.135

    Three-loop VP in first and second order PT α3(Zα)2 0.138

    Relativistic VP effects −0.203

    Hadronic VP 0.223

    µ self-energy, µ VP, µ form factor corrections (F ′1(0), F2(0)) −11.243

    Recoil corrections (Zα)4, (Zα)5, (Zα)6 −0.355

    Radiative-recoil corrections −0.040

    Nuclear structure contribution of order (Zα)4: -105.322 rHe2 −297.615 (1.420)

    Nuclear structure contribution of order (Zα)5: 1.529 rHe3 7.261 (0.035)

    Nuclear structure and one- two-loop VP+ higher order nucl. structure −2.357

    Nuclear polarizability contribution: Borie, Rinker, PRA 14, 18 (1978) 3.100 (0.600)

    Total splitting 1380.014 meV

    Randolf Pohl Lepton Moments, July 22 2014 43

  • Contributions to the µ4He+ Lamb shift

    Contributions ∆E (meV)

    One-photon VP contribution, α(Zα)2 1665.782

    Two-loop VP contributions in first and second order PT, α2(Zα)2 15.188

    Wichmann-Kroll correction 0.135

    Three-loop VP in first and second order PT α3(Zα)2 0.138

    Relativistic VP effects −0.203

    Hadronic VP 0.223

    µ self-energy, µ VP, µ form factor corrections (F ′1(0), F2(0)) −11.243

    Recoil corrections (Zα)4, (Zα)5, (Zα)6 −0.355

    Radiative-recoil corrections −0.040

    Nuclear structure contribution of order (Zα)4: -105.322 rHe2 −297.615 (1.420)

    Nuclear structure contribution of order (Zα)5: 1.529 rHe3 7.261 (0.035)

    Nuclear structure and one- two-loop VP+ higher order nucl. structure −2.357

    Nuclear polarizability contribution: Borie, Rinker, PRA 14, 18 (1978) 3.100 (0.600)−−−−−−−−

    Ji, Nevo Dinur, Bacca, Barnea, PRL 111, 143402 (2013) 2.470 (0.148)

    Total splitting 1379.384 meV

    Randolf Pohl Lepton Moments, July 22 2014 43

  • µHe+ Lamb shift, He nuclear radius

    ∆E(2P1/2−2S1/2) = 1669.740(10)(150)−105.322rHe2 +1.529rHe

    3 meV

    = 1379.390(10)th(150)pol(1370)fin. size meV

    for rHe = 1.681(4) fm [Sick, PRC 77, 041302 (2008)]

    He nuclear polarizability has recetly been calculated with ur = 6%

    Ji, Nevo Dinur, Bacca, Barnea, PRL 111, 143402 (2013)

    We have measured the 1st transition frequency to (better than) 50 ppm

    (⇔ Γ/20⇔ 20 GHz)

    −→ Determine rHe with ur = 3×10−4 accuracy (∼ 10 times better than before)

    Randolf Pohl Lepton Moments, July 22 2014 44

  • Old µHe+ resonances

    2S→2P3/2

    Carboni et al, Nucl. Phys. A273, 381 (1977)

    2S→2P1/2

    Carboni et al, Phys. Lett. 73B, 229 (1978)

    Randolf Pohl Lepton Moments, July 22 2014 45

  • µHe+(2S) lifetime

    Hauser et al., PRA 46, 2363 (1992)

    laser exp.: Dittus, PhD thesis ETH Zurich (1985)

    von Arb et al., PLB 136, 232 (1984)

    Randolf Pohl Lepton Moments, July 22 2014 46

  • APD WFD trace

    x-ray

    decay electron

    WFD bins (4ns)

    Randolf Pohl Lepton Moments, July 22 2014 47

  • APD energy spectrum

    Kα (∆E/E = 17% FWHM)

    decay electrons

    PRELIMINARYRandolf Pohl Lepton Moments, July 22 2014 48

  • µHe Kα x-ray time spectrum

    PRELIMINARYRandolf Pohl Lepton Moments, July 22 2014 49

  • µHe Kα x-ray time spectrum

    PRELIMINARYRandolf Pohl Lepton Moments, July 22 2014 49

  • 2S – 4P setupCEM collimator

    cryostat

    nozzle

    CEMHR

    �✁metal shields

    2S-4P

    interaction point

    atomic beam

    axis

    486 nm

    A. Beyer, RP et al., Ann. d. Phys. 525, 671 (2013)

    Randolf Pohl Lepton Moments, July 22 2014 50

  • Retroreflector for 2S – 4P

    Two exactly counter-propagating wave fronts of same intensity

    cancel 1st order Doppler shift.

    HR

    H(2S)

    SMfiber1

    SMfiber2AOM

    BS

    PBS

    EOM

    AFR in vacuum

    2D tiltstabilization

    intensitystabilization

    486 nmlaser system

    BD

    frequency scan

    ISO

    PZTspow

    ermon

    itor

    PD1 PD2

    2S – 4P resonance at

    88±0.5 ◦ and 90±0.08 ◦

    A. Beyer, RP et al., Ann. d. Phys. 525, 671 (2013)

    Randolf Pohl Lepton Moments, July 22 2014 51

  • The laser system

    cw TiSa laserYb:YAG thin−disk laser

    9 mJ 9 mJ

    Oscillator200 W

    500 W43 mJ

    Wavemeter

    Raman cell

    7 mJ

    µ

    Verdi

    Amplifier

    5 W

    FP

    1030 nmOscillator

    Amplifier

    1030 nm 200 W

    500 W

    I / Cs2SHG

    23 mJ515 nm23 mJ 1.5 mJ

    µ6 m cavity

    cw TiSa708 nm400 mW

    43 mJ

    SHG

    SHG

    H O20.25 mJ

    6 m6 m

    TiSa Amp.TiSa Osc.

    708 nm, 15 mJ

    20 m

    µµ

    Ge−filter

    monitoring

    Main components:

    • Thin-disk laser

    fast response to detected µ−

    • Frequency doubling

    • TiSa laser:

    frequency stabilized cw laser

    injection seeded oscillator

    multipass amplifier

    • Raman cell

    3 Stokes: 708 nm→ 6 µm

    λ calibration @ 6 µm

    • Target cavity

    A. Antognini, RP et. al., Opt. Comm. 253, 362 (2005).

    Randolf Pohl Lepton Moments, July 22 2014 52

  • The laser system

    cw TiSa laserYb:YAG thin−disk laser

    9 mJ 9 mJ

    Oscillator200 W

    500 W43 mJ

    Wavemeter

    Raman cell

    7 mJ

    µ

    Verdi

    Amplifier

    5 W

    FP

    1030 nmOscillator

    Amplifier

    1030 nm 200 W

    500 W

    I / Cs2SHG

    23 mJ515 nm23 mJ 1.5 mJ

    µ6 m cavity

    cw TiSa708 nm400 mW

    43 mJ

    SHG

    SHG

    H O20.25 mJ

    6 m6 m

    TiSa Amp.TiSa Osc.

    708 nm, 15 mJ

    20 m

    µµ

    Ge−filter

    monitoring

    Thin-disk laser

    • Large pulse energy: 85 (160) mJ

    • Short trigger-to-pulse delay: . 400 ns

    • Random trigger

    • Pulse-to-pulse delays down to 2 ms

    (rep. rate & 500 Hz)

    • Each single µ− triggers the laser system

    • 2S lifetime ≈ 1 µs→ short laser delay

    A. Antognini, RP et. al.,

    IEEE J. Quant. Electr. 45, 993 (2009).

    Randolf Pohl Lepton Moments, July 22 2014 52

  • The laser system

    cw TiSa laserYb:YAG thin−disk laser

    9 mJ 9 mJ

    Oscillator200 W

    500 W43 mJ

    Wavemeter

    Raman cell

    7 mJ

    µ

    Verdi

    Amplifier

    5 W

    FP

    1030 nmOscillator

    Amplifier

    1030 nm 200 W

    500 W

    I / Cs2SHG

    23 mJ515 nm23 mJ 1.5 mJ

    µ6 m cavity

    cw TiSa708 nm400 mW

    43 mJ

    SHG

    SHG

    H O20.25 mJ

    6 m6 m

    TiSa Amp.TiSa Osc.

    708 nm, 15 mJ

    20 m

    µµ

    Ge−filter

    monitoring

    MOPA TiSa laser:

    cw laser, frequency stabilized

    - referenced to a stable FP cavity

    - FP cavity calibrated with I2, Rb, Cs lines

    νFP = N ·FSR

    FSR = 1497.344(6) MHz

    νcwTiSa absolutely known to 30 MHz

    Γ2P−2S = 18.6 GHz

    Seeded oscillator

    → νpulsedTiSa = ν

    cwTiSa

    (frequency chirp ≤ 200 MHz)

    Multipass amplifier (2f- configuration)

    gain=10

    Randolf Pohl Lepton Moments, July 22 2014 52

  • The laser system

    cw TiSa laserYb:YAG thin−disk laser

    9 mJ 9 mJ

    Oscillator200 W

    500 W43 mJ

    Wavemeter

    Raman cell

    7 mJ

    µ

    Verdi

    Amplifier

    5 W

    FP

    1030 nmOscillator

    Amplifier

    1030 nm 200 W

    500 W

    I / Cs2SHG

    23 mJ515 nm23 mJ 1.5 mJ

    µ6 m cavity

    cw TiSa708 nm400 mW

    43 mJ

    SHG

    SHG

    H O20.25 mJ

    6 m6 m

    TiSa Amp.TiSa Osc.

    708 nm, 15 mJ

    20 m

    µµ

    Ge−filter

    monitoring

    Raman cell:

    µ6.02 m

    µ6.02 mH2

    4155

    cm−

    1

    v=0

    v=1

    H 2

    708 nm

    2 Stokes 3 Stokesrdnd

    1 Stokes st

    µ1.00 m1.72 m µ

    708 nm

    ν6µm = ν708nm−3 · h̄ωvib

    ωvib(p,T ) = consttunable

    P. Rabinowitz et. al., IEEE J. QE 22, 797 (1986)

    Randolf Pohl Lepton Moments, July 22 2014 52

  • The laser system

    cw TiSa laserYb:YAG thin−disk laser

    9 mJ 9 mJ

    Oscillator200 W

    500 W43 mJ

    Wavemeter

    Raman cell

    7 mJ

    µ

    Verdi

    Amplifier

    5 W

    FP

    1030 nmOscillator

    Amplifier

    1030 nm 200 W

    500 W

    I / Cs2SHG

    23 mJ515 nm23 mJ 1.5 mJ

    µ6 m cavity

    cw TiSa708 nm400 mW

    43 mJ

    SHG

    SHG

    H O20.25 mJ

    6 m6 m

    TiSa Amp.TiSa Osc.

    708 nm, 15 mJ

    20 m

    µµ

    Ge−filter

    monitoring

    α

    190 mm

    2 mm

    25 µ

    3 mm

    12

    Horiz. plane Vert. plane

    Laser pulseb

    Design: insensitive to misalignment

    Transverse illumination

    Large volume

    Dielectric coating with R≥ 99.9% (at 6 µm )

    → Light makes 1000 reflections

    → Light is confined for τ=50 ns

    → 0.15 mJ saturates the 2S−2P transition

    J. Vogelsang, RP et. al., Opt. Expr. 22, 13050 (2014)

    Randolf Pohl Lepton Moments, July 22 2014 52

  • The laser system

    cw TiSa laserYb:YAG thin−disk laser

    9 mJ 9 mJ

    Oscillator200 W

    500 W43 mJ

    Wavemeter

    Raman cell

    7 mJ

    µ

    Verdi

    Amplifier

    5 W

    FP

    1030 nmOscillator

    Amplifier

    1030 nm 200 W

    500 W

    I / Cs2SHG

    23 mJ515 nm23 mJ 1.5 mJ

    µ6 m cavity

    cw TiSa708 nm400 mW

    43 mJ

    SHG

    SHG

    H O20.25 mJ

    6 m6 m

    TiSa Amp.TiSa Osc.

    708 nm, 15 mJ

    20 m

    µµ

    Ge−filter

    monitoring

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

    wavenumber (cm-1)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    1630 1640 1650 1660 1670 1680 1690 1700

    scan region

    wavenumber (cm-1)

    Water absorption

    • Vacuum tube for 6 µm beam transport.

    • Direct frequency calibration at 6 µm.

    Randolf Pohl Lepton Moments, July 22 2014 52

  • Muon beam line

    Randolf Pohl Lepton Moments, July 22 2014 53

  • Muon beam line

    Randolf Pohl Lepton Moments, July 22 2014 54

  • Muon beam: inside 5 T solenoid

    PM PM

    PM

    −2

    H Target

    µ-3

    2

    Laser pulse

    e

    10 cm

    2

    1

    1

    ExBe

    SS Multipass cavity

    S1,S2 Stacks of Carbon foils (4 µg/cm2) ⇒ detection and cooling of keV muons

    S1: 5 foils, ∆U=2 kV

    S2: 2 foils: e− go upstream or downstream

    e− are detected in plastic scintillators + PMTs

    ~E×~B drift region separates e− from µ−

    muon TOF

    Randolf Pohl Lepton Moments, July 22 2014 55

  • Target, cavity and detectors

    Muons

    Laser pulse

    Randolf Pohl Lepton Moments, July 22 2014 56

    Two muon puzzlesTwo muon puzzlesTwo muon puzzlesTwo muon puzzles

    OutlineProton radius vs. timeProton radius vs. timeProton radius vs. timeProton radius vs. time

    untilSlide *{2}{ Atomic physics} �romSlide *{3}{Atomic and nuclear physics} untilSlide *{2}{ Atomic physics} �romSlide *{3}{Atomic and nuclear physics} untilSlide *{2}{ Atomic physics} �romSlide *{3}{Atomic and nuclear physics} untilSlide *{2}{ Atomic physics} �romSlide *{3}{Atomic and nuclear physics} untilSlide *{2}{ Atomic physics} �romSlide *{3}{Atomic and nuclear physics} untilSlide *{2}{ Atomic physics} �romSlide *{3}{Atomic and nuclear physics}

    Muonic hydrogenMuonic hydrogenMuonic hydrogen

    mbox {}hspace {-5mm}Proton charge radius and muonic hydrogenSetupThe resonance: discrepancy, sys., stat. The proton radius puzzleThe proton radius puzzle

    What may be wrong?What may be wrong?What may be wrong?

    What may be wrong?What may be wrong?What may be wrong?

    Discussions: Proton polarizabilityDiscussions: Proton polarizabilityDiscussions: Proton polarizabilityDiscussions: Proton polarizability

    What may be wrong?Discussions: New PhysicsDiscussions: New PhysicsDiscussions: New Physics

    p and $a_mu $p and $a_mu $

    What may be wrong?What may be wrong?

    Hydrogen spectroscopyHydrogen spectroscopyHydrogen spectroscopy

    Hydrogen spectroscopyHydrogen spectroscopyHydrogen spectroscopyHydrogen spectroscopyHydrogen spectroscopy

    Hydrogen spectroscopyMuonic DEUTERIUMDeuteron charge radiusDeuteron charge radiusDeuteron charge radius

    Proton-deuteron isotope shiftLamb shift in muonic {color {BurntOrange} helium}Lamb shift in muonic {color {BurntOrange} helium}Lamb shift in muonic {color {BurntOrange} helium}Lamb shift in muonic {color {BurntOrange} helium}

    1st resonance in muonic He-41st resonance in muonic He-41st resonance in muonic He-41st resonance in muonic He-4

    2nd resonance in muonic He-41st resonance in muonic He-3SummaryCREMA collaborationThe proton radius puzzleWhat may be wrong?What may be wrong?What may be wrong?What may be wrong?What may be wrong?What may be wrong?

    What may be wrong?What may be wrong?What may be wrong?

    Discussions: 3rd Zemach momentContributions to the �oldmuHef {} Lamb shiftContributions to the �oldmuHef {} Lamb shift

    �oldmuHe {} Lamb shift, He nuclear radiusOld �oldmuHe {} resonances�oldmuHe {}(2S)lifetimeAPD WFD traceAPD energy spectrum$mu $He K$_alpha $ x-ray time spectrum$mu $He K$_alpha $ x-ray time spectrum

    2S -- 4P setupRetroreflector for 2S -- 4PThe laser system The laser system The laser system The laser system The laser system The laser system

    Muon beam lineMuon beam lineMuon beam: inside 5,T solenoidTarget, cavity and detectors