Laibson Notes 2013 0

download Laibson Notes 2013 0

of 54

Transcript of Laibson Notes 2013 0

  • 7/25/2019 Laibson Notes 2013 0

    1/54

    v(x0)

    v (x0) = sup{xt+1}t=0

    t=0

    tF(xt, xt+1)

    xt+1 (x) x0

    xt t

    F(xt, xt+1) t

    F

    t

  • 7/25/2019 Laibson Notes 2013 0

    2/54

    t

    ln = dt

    dt

    t

    e =

    v(x) = supx+1(x)

    {F(x, x+1) + v(x+1)}

    F(x, x+1) v(x) v(x+1)

    x v()

    x v(x) x

  • 7/25/2019 Laibson Notes 2013 0

    3/54

    sup{ct}t=0

    t=0

    t ln(ct)

    c, k 0, k =c + k+1, k0

    v(k0) = sup{kt+1}t=0

    t=0

    t ln(kt kt+1)

    kt+1 [0, k] (k) k0

    v(k) = supk+1[0,k]

    {ln (k k+1) + v(k+1)} k

  • 7/25/2019 Laibson Notes 2013 0

    4/54

    0 =F(x, x+1)

    x+1+ v (x+1)

    v(x) =F(x, x+1)

    x

    v() x

    x

    v(x) = max {x,Ev(x+1)}

    x

    Accept if x xReject if x < x

    v

    v(x) = x if x x

    v if x < x

    v() v= x

    v(x) =

    x if x xx if x < x

  • 7/25/2019 Laibson Notes 2013 0

    5/54

    x

    v(x) = x = E v(x+1)

    x= x=x

    x=0

    xf(x)dx + x=1

    x=xxf(x)dx=

    1

    2(x)2 +

    1

    2

    x= 1

    1

    1 2

    B w (Bw) (x) sup

    x+1(x){F(x, x+1) + w(x+1)} x

    Bw w sup Bw(x)= w(x) Bw(x) = w(x)

    x x B w Bw

    B

    v Bv = v (Bv)(x) = B(x)x v B B v v

    Bnw n

    Bnw n B

    (S, d) B : S S S B

    (0, 1), d (Bf, Bg) d(f, g) f g

  • 7/25/2019 Laibson Notes 2013 0

    6/54

    B B Bf Bg f g

    (S, d) B : S S B v S v0 S lim Bnv0 = v

    Bnv0 ln

    X Rl C(X) f : X R B: C(X) C(X)

    f, g C(X) f(x) g(x)x X (Bf)(x) (Bg)(x)x X (0, 1)

    [B(f+ a)] (x) (Bf)(x) + a f C(X), a 0, x X B a f+ a f

    f, g C(X) f g+ d(f, g)

    Bf B (g+ d(f, g)) Bg + d(f, g)

    Bg B (f+ d(f, g)) Bf+ d(f, g)

    Bf Bg d(f, g)

    Bg Bf d(f, g)

    |(Bf)(x) (Bg)(x)| d(f, g) x

    supx

    |(Bf)(x) (Bg)(x)| d(f, g)

    d(Bf,Bg) d(f, g)

  • 7/25/2019 Laibson Notes 2013 0

    7/54

    (Bf)(x) = supc[0,x]

    u(c) + Ef

    R+1(x c) + y+1

    x

    f(x) g(x)x cf f

    (Bf)(x) = supc[0,x]

    u(c) + Ef

    R+1(x c) + y+1

    = u(cf) + Ef

    R+1(x cf) + y+1

    u(cf) + Eg

    R+1(x cf) + y+1

    sup

    c[0,x]

    u(c) + Eg

    R+1(x c) + y+1

    = (Bg)(x)

    cf

    ()

    [B(f+ )] (x) = supc[0,x]

    u(c) + E

    f

    R+1(x c) + y+1

    +

    = supc[0,x]

    u(c) + Ef

    R+1(x c) + y+1

    + = (Bf)(x) +

    v0(x) = 0

    B

    vn(x) = (Bnv0)(x) = B(B

    n1v0)(x) = max

    x, E(Bn1v0)(x)

    xn E(Bn1v0)(x+1) vn(x) xn vn(x) = (B

    nv0)(x)xn vn(x) = (B

    nv0)(x)

    (Bw)(x) max {x,Ew(x+1)} w v0(x) = 0

    v1(x) = (Bv0)(x) = max {x,Ev0(x+1)} = max {x, 0} =x v1(x) = x

    v2(x) =

    (B2v0)(x)

    = (Bv1)(x) = max {x,Ev1(x+1)} = max {x,Ex+1}x2 = E x+1 =

    2

  • 7/25/2019 Laibson Notes 2013 0

    8/54

    v2 =

    x2 if x x2

    x if x x2

    (Bn1v0)(x) =

    xn1 if x xn1x if x xn1

    xn = E(Bn1v0)(x) =

    x=xn1x=0

    xn1f(x)dx + x=1

    x=xn1

    xf(x)dx

    =

    2

    x2n1+ 1

    xn = xn1

    limnxn =

    1

    1

    1 2

    v(x)

    v(x0) = sup{ct}0

    E0

    t=0

    tu(ct)

    ct C(x) xt+1 X

    xt, ct, Rt+1,yt+1, . . .

    x c R y

    x

    ct C(xt) [0, xt]; xt+1 X

    xt, ct, Rt+1,yt+1, . . .

    Rt+1(xt ct) + yt+1; x0 = y0

    y u limc0 u(c) = c > 0 x > 0

  • 7/25/2019 Laibson Notes 2013 0

    9/54

    c x, xt+1 t

    v(xt) = supct[0,xt] {

    u(ct) + Etv(xt+1)}

    x

    xt+1 = Rt+1(xt ct) + yt+1

    x0 = y0

    v(xt) = supct[0,xt]

    u(ct) + Etv

    Rt+1(xt ct) + yt+1

    x

    u(ct) = EtRt+1v(xt+1) if 0< ct < xt u(ct) EtRt+1v(xt+1) if ct = xt

    F OCct : 0 = u(ct) + Etv(xt+1) (Rt+1)

    v(xt) = u(ct) xt: v(x) = u(ct) ctxt =u

    (ct)

    xt+1 = Rt+1(xt ct) + yt+1 = ctRt+1 = Rt+1xt xt+1+ yt+1 = ct= xt xt+1+yt+1Rt+1

    u(ct) = EtRt+1u(ct+1) if 0< ct < xt u(ct) EtRt+1u(ct+1) if ct = xt

  • 7/25/2019 Laibson Notes 2013 0

    10/54

    =u(ct)

    Rt+1

    =EtRt+1u(ct+1)

    u(ct)< EtRt+1u(ct+1)

    u(ct)

    ct ct+1 Rt+1

    0 EtRt+1u(ct+1)

    ct ct+1 Rt+1 u(ct)

    u(ct) EtRt+1u(ct+1)

    > 0

    =

    ct < xt

    u(ct) EtRt+1u(ct+1) ct < xt

  • 7/25/2019 Laibson Notes 2013 0

    11/54

    u(ct) = EtRt+1u(xt+1) if 0< ct < xt u(ct) EtRt+1u(xt+1) if ct= xt

    ln ct+1

    u

    u(c) = c1 1

    1

    lim1c11

    1 =ln c.

    Rt+1 t

    ct =EtRt+1ct+1

    ct

    1 = EtRt+1ct+1c

    t

    1 = Etexp

    ln

    Rt+1ct+1c

    t

    1 = Etexp [rt+1 + () ln ct+1/ct][ ln = ; ln Rt+1 = rt+1]

    1 =Etexp [rt+1 ln ct+1][ ln(ct+1/ct) = ln ct+1

    ln ct

    ln ct+1]

    ln ct+1

    1 = exp

    Etrt+1 ln ct+1+ 1

    22Vt ln ct+1

    Eea =eEa+12

    V ara a

    ln ct+1 N( ln ct+1, 2Vt ln ct+1)

  • 7/25/2019 Laibson Notes 2013 0

    12/54

    0 = Etrt+1 ln ct+1+ 12

    2Vt ln ct+1

    () l n ct+1 = 1

    (Etrt+1 ) +12

    Vt ln ct+1

    () ln ct+1 = Vt ln ct+1 =

    ln ct+1 ln ct+1

    ct+1 ctct

    ln

    1 +ct+1 ct

    ct

    = ln

    1 +

    ct+1ct

    1

    = ln

    ct+1

    ct

    ln ct+1

    x ln (1 + x)

    Rt = R

    R = 1 1

    v(x) = supcx

    {u(c) + Ev(x+1)} x

    x+1 = R(x c)

    x0 = E

    t=0

    Rtyt

  • 7/25/2019 Laibson Notes 2013 0

    13/54

    r

    r

    u(ct) = Ru(ct+1) = 1 u(ct+1) = u(ct+1) =

    t=0

    Rtct = E0

    t=0

    Rtyt

    t=0 R

    t

    c0 = E0

    t=0 R

    t

    yt

    t=0 R

    t = 11 1

    R

    c0 =

    1 1

    R

    E0

    t=0

    Rtyt t

    01 1

    R

    Rt = R

    R = 1 1

    u(c) = c 2 c2 limc0 u(c) =

    v(x) = supc

    {u(c) + Ev(x+1)} x

    x+1 = R(x c) + y+1

    x0 = y0

  • 7/25/2019 Laibson Notes 2013 0

    14/54

    ct = Etct+1 = Etct+nu(c) = c. u(ct) = EtRt+1; u(ct+1) = Etu(ct+1) R = 1= ct = Et[ ct+1] = Etct+1 = ct =Etct+1 = ct =

    Etct+1 ct = Etct+1 = Etct+n

    ct+1 = ct+ t+1

    ct+1 t

    ct ct+1

    t=0

    Rtct

    t=0

    Rtyt

    t

    s=0

    Rsct+s = xt+

    s=1

    Rsyt+s

    Et

    s=0

    Rsct+s= xt+ Et

    s=1

    Rsyt+s

    [ct = Etct+s]

    s=0

    Rsct = xt+ Et

    s=1

    Rsyt+s

    t=0 R

    t = 11 1

    R

    ct=

    1 1

    R

    xt+ Et

    s=1

    Rsyt+s

    t

    t

    1 1

    R

    (xt+ Et

    s=1 Rsyt+s) t

  • 7/25/2019 Laibson Notes 2013 0

    15/54

    t t + 1

    ln ct+1 = 1

    (Etrt+1 ) +1

    2Vt ln ct+1+ t+1

    t+1 t

    ln ct+1 = + 1

    Etrt+1+ t+1

    1

    1

    1

    ln ct+1Etrt+1

    ln ct+1 = + 1

    Etrt+1+ t+1

    tt+1 t

    Xt

    ln ct+1 = +1

    Etrt+1+ Xt+ t+1

    t Et ln Yt+1 t+ 1

    ln ct+1 = +1

    Etrt+1+ Et ln Yt+1+ t+1

    1 [0, 0.2]

  • 7/25/2019 Laibson Notes 2013 0

    16/54

    [0.1, 0.8]

    = t t + 1

    = Vt ln ct+1

    cit = Yit

    Et ln ct+1 = 1

    (Etrt+1 ) +

    2Vt ln ct+1

    Vtct+1 = Et[ln ct+1 Et ln ct+1]2

    Vtct+1 Et ln ct+1

    u(ct) =u(Et(ct+1)) u(ct) = Etu(ct+1)

  • 7/25/2019 Laibson Notes 2013 0

    17/54

    = Et(ct+1)ct

    >1

    =

    ct xt

    > r

  • 7/25/2019 Laibson Notes 2013 0

    18/54

    W0= E0

    t=0

    Rtyt

    W+1 = R(W c)

    v(W) = supc[0,W]

    {u(c) + Ev(R(W c))} x

    v(W) =

    W

    1

    1 [0, ], = 1 + ln W = 1

    c= 1 W

    1 = 1 (R1) 1

  • 7/25/2019 Laibson Notes 2013 0

    19/54

    t= 1 t= T = 40

    vt(x) t

    vt(x) = Et Ts=t stu(cs)

    vT(x) T

    vT(x) = u(x)

    vt1(x) = sup

    c[0,x]{u(c) + Etvt(R(x c) + y)} x

    vt1(x)

    vt1(x) = (Bvt)(x) = supc[0,x]

    {u(c) + Etvt(R(x c) + y)} x

    T

    vTn(x) = (BnvT)(x)

  • 7/25/2019 Laibson Notes 2013 0

    20/54

  • 7/25/2019 Laibson Notes 2013 0

    21/54

    u(xt+1) W(ct+1)

    =REt

    u(xt+1) (1 )u(ct+1) dCt+1

    dxt+1

    =REt

    dCt+1dxt+1

    +

    1 dCt+1

    dxt+1

    u(ct+1) ()

    () dCt+1

    dxt+1

    =REt

    dCt+1dxt+1

    +

    1 dCt+1

    dxt+1

    u(ct+1)

    e

  • 7/25/2019 Laibson Notes 2013 0

    22/54

    Vet+1(x) = maxcet+1[0,x]u cet+1 + Et+1Vet+2 R(x c

    et+1) + y

    Wnt (x) = maxcet[0,x]

    u (cn) + EtV

    et+1(R(x cet ) + y)

    {cn(x)}T=t t

    u(cet+1) = REt+1u

    cet+2

    u(cnt) =REtV

    e(xt+1) = REtu cet+1

    ij =ic jc

  • 7/25/2019 Laibson Notes 2013 0

    23/54

    ij =ri rj i j

    ic = C ov(ii, ln c)

    Rft t1 Rft i= j =

    equity,f =equity,c

    equity,f equity,c

    R1t+1, R2t+1, . . . , R

    it+1, . . . , R

    It+1

    Rit+1 = e

    rit+1+

    iit+1 12 [i]2

    it+1

    it+1 = it+1 it+1 N(0, 1)x N(, 2) Ax + B N(A + B, A22)

    E[exp(Ax + B)] = exp A + B+ 12A22 x N(, 2) E( (x)) = (E(x) + 12V ar(x)) =exp( + 12

    2)

    iit+1+ rit+1 12 [i]2 N(i 0 + rit+1 12 [i]2, i2 12) = N(rit+1 12 [i]2, i2)

    E[Rti] =Eexp(rit+1+ iit+1 12 [i]2)

    = exp(mean + 12V ar) = exp(rit+1 12 [i]2 + 12i2) = exp(rit+1)

    x ln(1 + x) x = 1 + x exexp(rit) 1 + rit+1

    ij =ic jc

    u(ct) = Et

    Rit+1u(ct+1)

    u

    u(c) = c1 1

    1

  • 7/25/2019 Laibson Notes 2013 0

    24/54

    = exp( Rit+1 = e

    rit+1+

    iit+1 12 [i]2

    it+1

    u(c) = c

    c =Et

    Rit+1ct+1

    c =Et

    exp

    + rit+1+ iit+1

    1

    2

    i2

    ct+1

    1 = Et

    exp

    + rit+1+ iit+1

    1

    2

    i2ct+1

    ct

    1 = Et

    exp

    + rit+1+ iit+1

    1

    2

    i2

    exp

    ln

    ct+1

    ct

    1 = Et

    exp

    + rit+1+ iit+1

    1

    2

    i2 l n (ct+1)

    1 = Et

    exp

    + rit+1

    1

    2 i

    2

    + iit+1 l n (ct+1)

    Sx N(S,S22) E[exp(Sx)] = exp S + 12S22

    iit+1 l n (ct+1)

    E

    iit+1 l n (ct+1)

    = expEt[ ln (ct+1)] + 12V iit+1 l n (ct+1)

    1 =

    exp

    + rit+1

    1

    2

    i2 Et[ln (ct+1)] +1

    2V

    iit+1 l n (ct+1)

    0 = + rit+1 1

    2

    i2 Et[ln (ct+1)] +1

    2V

    iit+1 l n (ct+1)

    i j

    0 = rit+1 rjt+1 1

    2

    i2 j2+1

    2

    V

    iit+1 l n (ct+1) V j jt+1 l n (ct+1)

  • 7/25/2019 Laibson Notes 2013 0

    25/54

    ,Et[ ln (ct+1)]

    rit+1 rjt+1 =1

    2i2 j2 12 V iit+1 l n (ct+1) V j jt+1 l n (ct+1)

    V(A + B)

    [V(A + B) = V(A) + V(B) + 2Cov(A, B)]

    2Cov(A, B) = 2Cov(A, B) V

    iit+1 l n (ct+1)

    = V

    iit+1

    +V ( l n (ct+1))+2Cov

    iit+1, l n (ct+1)

    =

    i2

    + 2V l n (ct+1) 2ic

    ri

    t+1rj

    t+1 =

    1

    2 i2 j2 i2 + 2V l n (ct+1) 2ic + j2 + 2V l n (ct+1) 2jc ritrjt = 12

    (i)2 (i)2 + (j )2 (j )2 + 2V l n (ct+1) 2V l n (ct+1) + 2ic 2

    ij =rit+1 rjt+1 = ic jc

    equity,f =equity,c

    =equity,f

    equity,c

    equity,f .06 equity,c .0003

    = .06

    .0003= 200

  • 7/25/2019 Laibson Notes 2013 0

    26/54

    x x(t + t) x(t) =

    +h ph q= 1 p

    E[x(t) x(0)] =n ((p q)h) = tt (p q)h V [x(t) x(0)] =n 4pqh2= tt 4pqh2

    h=

    t

    p= 12

    1 +

    t

    (p q) =

    t

    E[x(t) x(0)] = tt (p q)h= tt

    t

    t

    = t

    V [x(t) x(0)] = 2t

    z =

    t N(0, 1) z N(0, t) t

    z

    dx= a(x, t)dt + b(x, t)dz dx= a(x, t)dt

    + b(x, t)dz

    dx= dt + dz 2

    dx = xdt+xdz 2

    z(t) x(t) dx= a(x, t)dt + b(x, t)dz V =V(x, t) dV = V

    tdt + V

    xdx + 12

    2Vx2

    b(x, t)2dt

    =

    Vt

    + Vx

    a(x, t) + 122Vx2

    b(x, t)2

    dt + Vx

    b(x, t)dz

    (V) (x) (z)

    dV = a(x, t)dt + b(x, t)dz = Vt + Vxa(x, t) +12 2V

    x2b(x, t)2

    a

    dt +

    V

    xb(x, t) b

    dz

    dV = V

    tdt + 12

    2Vt2

    (dt)2 + Vx

    dx + 122Vx2

    (dx)2 + 2V

    x2dxdt +

    (dx)2

    =b(x, t)2(dz)2 + = b(x, t)2dt +

  • 7/25/2019 Laibson Notes 2013 0

    27/54

    t t

    0

    t x(t)

    x x(t + t) x(t) =

    +h ph q= 1 p

    E(x) = ph + q(h) = (p q)h

    V(x) = E[x Ex]2

    V(x) = E[x Ex]2 =E(x)2 [Ex]2 = 4pqh2 E

    (x)2

    = ph2 + q(h)2 =h2

    x(t) x(0) t n= tt x(t) x(0)

    = x(t) x(0) x(t) x(0) h h

    x(t)

    x(0) = (k)(h) + (n

    k)(

    h)

    nkpkqnk

    nk

    = n!

    k!(nk)!

    E[x(t) x(0)] =n ((p q)h) = tt (p q)h

    n x n

    V [x(t) x(0)] =n 4pqh2= tt 4pqh2

    x t t n

    n= tt

    x(t) x(0)

  • 7/25/2019 Laibson Notes 2013 0

    28/54

    tt (p q)h tt 4pqh2

    h p t 0

    h=

    t

    p= 12

    1 +

    t

    q= 1 p= 12

    1

    t

    (p q) =

    t

    t h,p,q

    t

    tt 4pqh

    2

    t p q .5 4 t

    h t (pq) t E[x(t) x(0)] = tt (p q)h

    (p q) t p, q (p q)

    E[x(t) x(0)] = tt

    (p q)h= tt

    t

    t

    = t

    V [x(t) x(0)] = tt

    4pqh2 = t

    t4

    1

    4

    1

    2t

    2t

    = t2

    1

    2t

    2t

    ( t 0)

    t 0 t 0 t,

    t

    2t

    t

  • 7/25/2019 Laibson Notes 2013 0

    29/54

    t t [x(t) x(0)] D N(t,2t) Binomial D Normal nh= 1t

    t= 1

    t

    xt =

    tt =

    t

    Edxdt

    E(x)t =

    (pq)ht =

    (t)(

    t)

    t =

    E(dx) = dt

    t

    V(x)t =

    4( 14)1( )

    2t

    2t

    t 2

    V(dx) = 2dt

    t 2

    x z

    z(t) z, z t

    z =

    t N(0, 1)

  • 7/25/2019 Laibson Notes 2013 0

    30/54

    z N(0, t)

    t

    z

    t1 t2 t3 t4 E[(z(t2) z(t1)) (z(t4) z(t3))] = 0

    z(t)

    y

    z(t) N(z(0), t) z(t) t

    a x t a(x, t) t x limt0 Ext a

    z(t) x(t)

    limt0 Ext =a (x, t) E(dx) = a (x, t) dt limt0 Vxt =b (x, t)

    2

    V (dx) = b (x, t)2 dt

    dt

    dx= a(x, t)dt + b(x, t)dz

    dx= a(x, t)dt

    + b(x, t)dz

  • 7/25/2019 Laibson Notes 2013 0

    31/54

    dz

    dz z z

    x

    z

    x b

    dx= a(x, t)dt

    + b(x, t)dz

    dx= dt + dz

    2

    dx= xdt + xdz

    2

    x dx

    x =dt + dz dx

    x

    z(t) x(t) dx = a(x, t)dt+b(x, t)dz V =V(x, t)

    dV =V

    tdt +

    V

    xdx +

    1

    2

    2V

    x2b(x, t)2dt

  • 7/25/2019 Laibson Notes 2013 0

    32/54

    =

    V

    t +

    V

    xa(x, t) +

    1

    2

    2V

    x2b(x, t)2

    dt +

    V

    xb(x, t)dz

    dx= a(x, t)dt + b(x, t)dz

    x x

    V

    V 2nd x x V

    x

    dx= a(x, t)dt+b(x, t)dz x

    dx= xdt + xdz V(x, t) x

    V(x, t) x

    dV = a(V,x,t)dt+b(V,x,t)dz

    a b V

    V

    dV = a(x, t)dt + b(x, t)dz

    V (a, b)

    (a, b)

    dV = Vt

    dt+ Vx

    dx+ 12

    2Vx2

    b(x, t)2dt=V

    t + V

    xa(x, t) +1

    22Vx2

    b(x, t)2

    dt+ Vx

    b(x, t)dz

    dV =

    V

    t +

    V

    xa(x, t) +

    1

    2

    2V

    x2b(x, t)2

    a

    dt + V

    xb(x, t)

    b

    dz

  • 7/25/2019 Laibson Notes 2013 0

    33/54

    dV =

    V

    t dt +

    1

    2

    2V

    t2 (dt)2

    +

    V

    xdx +

    1

    2

    2V

    x2(dx)2

    +

    2V

    x2dxdt +

    (dt) 32 dt

    (t)2 (t)32

    (t)

    (dz)2 = dt. z t z h

    (dt)2 =

    dxdt= a(x, t)(dt)2 + b(x, t)dzdt= (dx)2 =b(x, t)2(dz)2 + = b(x, t)2dt +

    V

    tdt +

    V

    xdx +

    1

    2

    2V

    x2b(x, t)2dt

    dz t dx

    x

    t

    V(x, t) dx t

    V V

    a(x, t) = 0 Vt

    = 0 x V t

    E(dV) = 12 2V

    x2b(x, t)2dt = 0

    V V x V(x) = ln x V= 1

    x V = 1

    x2

    dx= xdt + xdz dV =

    Vt

    + Vx

    a(x, t) + 122Vx2

    b(x, t)2

    dt + Vx

    b(x, t)dz

    = 0 + 1x x

    12x2(x)

    2 dt + 1x xdz = 122 dt + dz = V V

    (dx)2 b(x, t)2dt dt V

    x

  • 7/25/2019 Laibson Notes 2013 0

    34/54

    V

    V(x, t)dt= maxu

    {w(u,x,t)dt + E [dV]}

    V(x, t)dt= maxu

    w(u,x,t)dt +

    V

    t +

    V

    xa +

    1

    2

    2V

    x2b(x, t)2

    dt

    V

    V(x, t)dt

    = maxu

    w(u,x,t)dt

    + E [dV]

    w(x,u,t) = x u t

    x = x + x t = t + t t 0

  • 7/25/2019 Laibson Notes 2013 0

    35/54

    V(x, t) = maxu

    w(x,u,t)t + (1 + t)

    1 EV(x, t)

    V(x, t) = maxu w(x,u,t)t

    + (1 + t)1

    EV (x, t)

    (1 + t)

    (1 + t) V(x, t) = maxu

    {(1 + t) w(x,u,t)t + EV (x, t)}

    tV(x, t) = maxu

    {(1 + t) w(x,u,t)t + EV(x, t) V(x, t)}

    tV(x, t) = maxu

    w(x,u,t)t + w(x,u,t) (t)

    2+ EV(x, t) V(x, t)

    t 0 (dt)2 = 0

    V(x, t)dt= maxu

    {w(x,u,t)dt + E [dV]}

    E [dV]

    dV =

    V

    t +

    V

    xa(x,u,t) +

    1

    2

    2V

    x2b(x,u,t)2

    dt +

    V

    xb(x,u,t)dz

    E

    V

    xbdz

    = 0

    E [dV] = Vt + Vxa +12 2

    Vx2b2 dt

    V(x, t)dt= maxu

    w(u,x,t)dt +

    V

    t +

    V

    xa +

    1

    2

    2V

    x2b(x, t)2

    dt

    x t

    t et

    w (x(t), u(t), t) dt

    V(x, t)dt

    = maxu

    w(x,u,t)

    + E [dV]

  • 7/25/2019 Laibson Notes 2013 0

    36/54

    =

    V

    t +

    V

    xa +

    1

    2

    2V

    x2b(x, t)2

    r r+ 2

    x

    dx= [rx + x c] dt + xdz

    rxdt x xdt cdt

    xdz

    a= [rx + x c] b= x

    x

    c

    c 0

    0 x

    V(x, t)dt= maxc,

    w(u,x,t)dt +

    V

    x [rx + x c] +1

    2

    2V

    x2(x)2

    dt

    c

  • 7/25/2019 Laibson Notes 2013 0

    37/54

    c

    V

    t

    t dt

    u(c) = c1

    1

    V(x) = x

    1

    1

    u(c) = c11 V(x) = x1

    1

    V(x) = x11

    V(x) = x11

    c

    V(x) = x1

    1

    V(x) = x11 u(c) = c1

    1 Vx

    2Vx2

    x1

    1 dt= maxc,

    u(c)dt +

    x[(r+ )x c] 2

    x1(x)2

    dt

    x1

    1 = maxc,

    c1

    1 +

    x[(r+ )x c] 2

    x1(x)2

    c: F OC : xx 2

    2

    x1(x)2 = 0

    F OCc : u(c) = c =x

    c= 1

    x=

    2

    2

  • 7/25/2019 Laibson Notes 2013 0

    38/54

    1 =

    +

    1 1

    r+

    2

    22

    = 1 c= x

    MP C .05

    = 2

    = 0.061(0.16)2 = 2.34

    5 = 5 = 0.065(0.16)2 = 0.47

    8%

    u(c) = ln(c)

    V(x) = ln(x) +

    V(x, t)dt= maxc,

    w(u,x,t)dt +

    Vx

    [rx + x c] + 12 2V

    x2(x)2

    dt

    V(x) u(c)

    [ + ln(x)] = maxc,

    ln(c) + [(r+ )x c] x1 1

    2(x)2x2

    F OCc : c= 1

    x

    F OC : = 2

    + ln(x) = r ln() 1 + 222 + ln(x)

    ln(x) ln(x) = r ln() 1 +2

    22 = 1

    x

    = 1 0 = r ln() 1 + 222 x

    = 1 = r ln() 1 + 222

  • 7/25/2019 Laibson Notes 2013 0

    39/54

    = 1

    = 1

    r

    + ln() 1 + 222

    c= x = 2

    dx= a(x,u,t)dt + b(x,u,t)dz

    dx

    u

    V(x, t) = w(x, u, t) + Vt

    + Vx

    a(x, u, t) + 122Vx2

    b(x, u, t)2

    u = u(x, t) =

    V x t

    = =

    T

  • 7/25/2019 Laibson Notes 2013 0

    40/54

    T

    V(x, T) = (x, T)x T (x, t)

    t = ODE

    V(x) = w(x, u) + a(x, u)V+1

    2b(x, u)2V

    V V

    V(x, t) = max

    w(x, t)t + (1 + t)1EV(x, t), (x, t)

    (x, t)

    x > x(t) ; x x(t)

    dx= a(x, t)dt + b(x, t)dz

    V(x, t)dt= w(x, t)dt +

    Vt

    + Vx

    a(x, t) + 122Vx2

    b(x, t)2

    dt

    V(x, t) = (x, t)

    x, t x(t) x(t)

  • 7/25/2019 Laibson Notes 2013 0

    41/54

    V

    V

    V x

    x

    Vx(x(t), t) = x(x(t), t)

    V

    x(t) x(t)

    t t

  • 7/25/2019 Laibson Notes 2013 0

    42/54

    V x

    x(t)

    dx= adt + bdz

    x

    w(x) = x

    w(x) = x c

    = 0

    x > x

    x x = 0

  • 7/25/2019 Laibson Notes 2013 0

    43/54

    V(x) = max

    xt + (1 + t)1EV(x), 0

    x= x(t + t)

    V(x) = 0

    V(x)dt= xdt + E(dV)

    V(x) = xt + (1 + t)1EV(x)= (1 + t)V(x) = (1 + t)xt + EV(x)= tV(x) = (1 + t)xt + EV(x) V(x)

    t 0 (dt)2 = 0 E(dV)

    V =x + aV+b2

    2V

    V

    x

    V

    = x

    +

    aV +

    b2

    2V

    V

    b22V

    x V(x) = = 0 x x

  • 7/25/2019 Laibson Notes 2013 0

    44/54

    x

    V(x) = 0

    V(x) = 0 x

    x

    x

    V

    limx

    V(x)

    1

    x + a

    = 1

    limx V(x) = 1

    x + a

    limx

    V(x) =1

    x x

    etx(t)dt

    et(x)(t)dt

    =

    0

    et 1 dt= 1

    1

    F x

  • 7/25/2019 Laibson Notes 2013 0

    45/54

    F(x) + A(x)F(x) + B(x)F(x) = C(x)

    C(x)

    0

    F(x) + A(x)F(x) + B(x)F(x) = 0

    F(x) F1 F2

    F(x) = C1F1(x) + C2F2(x) F1, F2

    A1 A2

    A1F1(x) + A2F2(x) = 0 x

    V =x + aV+

    b2

    2V

    0 = V + aV+ b2

    2V

  • 7/25/2019 Laibson Notes 2013 0

    46/54

    erx

    0 = erx + arerx + b2

    2r2erx

    erx

    0 = + ar+ b2

    2r2

    r=a a2 + 2b2b2

    r+ r

    C+er+

    + Cer

    V =x + aV+ b2

    2V

    E

    0

    etx(t)dt

    E[x(t)]

    E[x(t)] =E

    x(0) +

    t0

    dx(t)

    =E

    x(0) +

    t0

    [adt + bdz(t)]

    = E

    x(0) + at +

    t0

    bdz(t)

    t0

    bdz(t) = 0

    E[x(t)] =x(0) + at

    V(x) =

  • 7/25/2019 Laibson Notes 2013 0

    47/54

    udv= uv

    vdu

    E0 e

    tx(t)dt

    E

    0

    etx(t)dt= E0

    et [x(0) + at] dt

    =E

    0

    et [x(0)] dt +0

    et [at] dt=x(0)

    + E

    0

    et [at] dt

    dv= et u= at v= 1

    et du= adt

    udv=

    0

    et(at)dt uv vdu = [at1

    et]0 0 1 etadt

    1

    et]0 = 1

    = [at 1 et]0 [ 12 eta]0 = 0 + a 12

    =1

    x(0) +

    a

    V(x) = 1

    x +

    a

    V =x + aV+ b22V

    1 x + a= x + a =x + a1 + b2

    2 0

    C+er+x + Cer

    x

    r+, r=a

    a2 + 2b2

    b2

    1

    x +a

    V(x) = 1

    x +

    a

    + C+er

    +x + Cerx

  • 7/25/2019 Laibson Notes 2013 0

    48/54

    V(x) = 0

    V(x) = 0

    limx V(x) = 1

    C+ = 0 limx V(x) = 1

    V(x) = 1

    x+ a

    + Cer

    x = 0

    V(x) = 1

    + rCerx = 0

    Cerx = 1

    x+ a

    1 r 1

    x+ a

    = 0

    1 = r

    x+ a

    = 1

    r =x+ a

    x = 1r

    a

    r = aa2+2b2b2

    x

    x = b2

    a +

    a2 + 2b2 a

  • 7/25/2019 Laibson Notes 2013 0

    49/54

    i i

    118

    14

    CU+ cuI

    CU cU CD+ cD(I)

    CD+ cD |I| cD > 0 I

  • 7/25/2019 Laibson Notes 2013 0

    50/54

    X

    dX= dt + dz

    dz

    V (X) = maxE

    =t

    e(t)

    b2

    X2

    d

    n=1

    e((n)t)A (n)

    A (n) =

    CU+ cUIn In > 0CD+ cD |In| In < 0

    (n) = n A (n) = n In = n

    x X=U X= u x X=D X=d

    V (X) = b2

    X2 + V(X) +1

    22V(X)

    E [dV] = Vt

    + Vx

    a + 122Vx2

    b2

    dt

    X U

    V (X) = V (u) [CU+ cU(u X)]

    V(X) = cU X U

    X D

    V (X) = V (d) [CD+ cD(X d)]

    V(X) = cD X D

  • 7/25/2019 Laibson Notes 2013 0

    51/54

    limXU V(X) = V (u) [CU+ cU(u U)] =V (U) = limXU V (X)

    limXD

    V(X) = V(d) [CD+ cD(D d)] = V (D) = limXD

    V (X)

    limXU

    V(X) = cU =V(U) = limXU

    V(X)

    limXD

    V(X) = cD = V(D) = limXD

    V(X)

    =

    V(u) = cU

    V(d) = cD

  • 7/25/2019 Laibson Notes 2013 0

    52/54

    V(X)

    V(X) = b2X2

    + +2X

    2 + 2

    2

    3

    V (X) = b2X2 + V(X) + 122V(X)

    V(X) = b2

    X2

    +

    + 2X

    2 +

    22

    3

    V(X) V(X)

    V(X) = b2

    2X

    +22

    2

    , V(X) = b

    V(X) = 1

    b2

    X2 + V(X) + 122V(X)

    V(X) =1

    b2

    X2 b2

    2X

    +

    22

    2

    1

    22

    b

    = b

    2

    X2 +

    2X

    +

    2

    +

    2

    2

    2

  • 7/25/2019 Laibson Notes 2013 0

    53/54

    = b2

    X2

    +

    2 + 2X

    2 +

    2

    3

    u= d= X R

    |x|

  • 7/25/2019 Laibson Notes 2013 0

    54/54

    E[Rti] =E[exp(rti+

    iit 12 [i]2)] =exp(mean + 12V ar) = exp(r

    ti 12 [i]2 + 12i2)

    =exp(rti )

    V(A + B) = V(A) + V(B) + 2Cov(A, B)

    xln(1 + x) x1 + x ex