Laboratory data and modeling of Pluto’s spectra

25
Laboratory data and modeling of Pluto’s spectra Laboratoire de Planétologie de Grenoble, CNRS - Université J. Fourier [email protected]. fr Bernard Schmitt Eric Quirico, Sylvain Douté et Olivier Brissaud

description

Laboratory data and modeling of Pluto’s spectra. Bernard Schmitt Eric Quirico, Sylvain Douté et Olivier Brissaud. Laboratoire de Planétologie de Grenoble, CNRS - Université J. Fourier [email protected]. Schmitt et al., 1998, Solar System Ices, p.199. - PowerPoint PPT Presentation

Transcript of Laboratory data and modeling of Pluto’s spectra

Page 1: Laboratory data and modeling of Pluto’s spectra

Laboratory data and modeling of Pluto’s spectra

Laboratoire de Planétologie de Grenoble,

CNRS - Université J. Fourier

[email protected]

Bernard Schmitt

Eric Quirico, Sylvain Douté et Olivier Brissaud

Page 2: Laboratory data and modeling of Pluto’s spectra

Optical properties of ices

Schmitt et al., 1998, Solar System Ices, p.199

Page 3: Laboratory data and modeling of Pluto’s spectra

Mesurement of spectral properties (0,4 – 200 µm) of molecular solids

Study effects of:- Temperature- Phases- Composition- Compounds - UV irradiations

Infrared Spectrometer with an optical cryogenic system (10 - 300 K)

Solids : - Ices - Clathrates, Hydrates, - Organics, - Minerals, …

Page 4: Laboratory data and modeling of Pluto’s spectra

Ices, organics, …Near and mid-infrared

Page 5: Laboratory data and modeling of Pluto’s spectra

Nitrogen

2 phases

Transition : 35.6K

- 2 very weak bands

- Very sensitive to phase

- Sensitive to temperature

- Fundamental band sensitive to CO2, H2O

- Spectral shape

surface thermometer Grundy et al., 1993, Icarus, 105, 254

Schmitt et al., 1998, Solar System Ices, 199

Page 6: Laboratory data and modeling of Pluto’s spectra

Methane

Grundy et al., 2002, Icarus, 155, 486

-Very large number of bands of various intensities, down to the visible range

- Band shape sensitive to temperature

Vis Near-IR Mid-IR

Page 7: Laboratory data and modeling of Pluto’s spectra

Methane

Page 8: Laboratory data and modeling of Pluto’s spectra

CH4 – N2 mixtures

Schmitt et al., 1998, Solar System Ices, 199

- Spectra very sensitive on the way the molecular mixture is formed

- Crystal growth from the liquid under thermodynamic equilibrium best represent the surface of Pluton and Triton !

Page 9: Laboratory data and modeling of Pluto’s spectra

Diluted CH4 – N2 mixturesCH4 spectrum sensitive to :

- Pure vs diluted

- N2 phase and temperature

- CH4 abundance (> 2%)

Quirico & Schmitt 1997a Icarus, 127, 354

Page 10: Laboratory data and modeling of Pluto’s spectra

Schmitt et al., 1998, Solar System Ices, 199

Spectrum = combination of the spectra of the saturated N2:CH4 solutions

Rich CH4 – N2 mixtures

Quirico et al; 1996 PSS, 44, 973

Page 11: Laboratory data and modeling of Pluto’s spectra

Water ice

Schmitt et al., 1998, Solar System Ices, 199

Amorphous phase :

Spectrum slightly depend on temperature

- Similar to high temperature crystalline

Crystalline phase :

Strong dependence with temperature, especially @ 1.65 µm band

H2O ice thermometer

Page 12: Laboratory data and modeling of Pluto’s spectra

Water ice : Phase and temperature

Grundy et al., 1998, JGR E, 103, 25809

Page 13: Laboratory data and modeling of Pluto’s spectra

Ammonia

Schmitt et al., 1998, Solar System Ices, 199

Pure ammonia :

- Several phases

Ammonia hydrates:

- 3 hydrate types + several phases

Complex spectra and not yet well studied (in course …)

Page 14: Laboratory data and modeling of Pluto’s spectra

Simple hydrocarbons

Quirico & Schmitt 1997a Icarus, 127, 354

Page 15: Laboratory data and modeling of Pluto’s spectra

Carbon monoxyde

Quirico & Schmitt 1997a Icarus, 127, 354

Quirico & Schmitt 1997a Icarus, 128, 181

Page 16: Laboratory data and modeling of Pluto’s spectra

Carbon dioxyde

Quirico & Schmitt 1997a Icarus, 127, 354

- Weakly sensitive to temperature

Page 17: Laboratory data and modeling of Pluto’s spectra

Methanol, nitriles, oxydes, …Many molecules measured or under study :

CH3OH, HC3N, C3H4, C2H5CN, C6H6, C3N3H3, …

Page 18: Laboratory data and modeling of Pluto’s spectra

Mesure de la réflectance spectrale (0,3 – 4,8 µm) bidirectionnelle des surfaces granulaires

Etude effets de la :

- Composition,

- Taille et forme des grains,

- Rugosité de surface,

- Indices optiques, …

Mesure spectres et fonctions de diffusion :

- Glaces, minéraux,

- Organiques,

- Matériaux géophysiques,

Applications :

Spectro-imagerie spatiale

Page 19: Laboratory data and modeling of Pluto’s spectra

• Visible slope and near-IR band strength sensitive to composition and structure of the macromolecular solid

yellow tholins

poly-HCN

black tholins

samples from LISA

C-H-N compounds

Wavelength (nm)

Ref

lect

ance

Bernard et al. 2006, Icarus 185, 301

Page 20: Laboratory data and modeling of Pluto’s spectra

surfaces par spectro-imagerie

• Composition– Identification de molécules– Etat physique– Modes de coexistence– Abondances – Distribution spatiale– Variations temporelles

• Origine - Evolutions– Origine chimique des molécules

– Complexité de la matière organique– Microphysique échanges surface/atmosphère – Transports (cycles jour, saison, climat, …)– Liens avec géologie, topographie, …

Page 21: Laboratory data and modeling of Pluto’s spectra

Molecules identification

Quirico et al. 1999 Icarus, 139, 159

Page 22: Laboratory data and modeling of Pluto’s spectra

Physical state

Quirico et al. 1999 Icarus, 139, 159

Page 23: Laboratory data and modeling of Pluto’s spectra

Distribution, abundance, grain size

Different ways of mixing :

- Molecular

- Compounds

- Granular

- Spatial

- Stratigraphy

(tholins)

Douté et al. 1999 Icarus, 142, 421

Page 24: Laboratory data and modeling of Pluto’s spectra

Complete modeling

• Comparison between objects

Page 25: Laboratory data and modeling of Pluto’s spectra

New-Horizon : spatial distribution

Quirico et al. 1999 Icarus, 139, 159