Laboratory Astrophysics on the Z Pulsed Power Facility ...

37
S a n d i a N a t i o n a l L a b o r a t o r i e s 28 July 2009 Laboratory Astrophysics on the Z Pulsed Power Facility Gregory A. Rochau Workshop on Science with High- Power Lasers and Pulsed Power Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Transcript of Laboratory Astrophysics on the Z Pulsed Power Facility ...

S a n d i a N a t i o n a l L a b o r a t o r i e s

28 July 2009

Laboratory Astrophysics on the Z Pulsed Power Facility

Gregory A. Rochau Workshop on Science with High-

Power Lasers and Pulsed Power

800 900 1000 1100 1200 1300 0.0

0.2

0.4

0.6

0.8

1.0

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

…S T Pai

& Qi

Zhang, “Introduction to High Power Pulse Technology,”World Scientific Publishing Co., Singapore, 1995.

Energy Store Pulse Forming

Pulse Transmission

Load TargetFastSwitch

SlowSwitch

Low Electrical PowerUp to 107 J –

106 WHigh Electrical PowerUp to 107 J –

1014 W

Pulsed power is the temporal compression of electrical energy to produce short bursts of high power.

Take the equivalent energy required to operate a TV for a few hours (1-2 MJ) and compress it into more electrical power than provided by all the power plants in the world combined (~15 TW).

Pulsed power has been investigated for over a century.

Tesla’s Lab (GW) ZR facility {SNL}Z-pinch (100 TW)

1900 1920 1940 1960 1980 2000Radar (MW)•Germany•US•Russia•Great Brittain

WWIIHermes -

II

{SNL}e-beam (TW)

PBFA -

II

{SNL}Ion Beams (20 TW)

Angara -

II

{Russia}Simulator (TW)

DARHT

{LANL}Radiography (10 GW)

Current

B-Field

JxB Force

StagnationImplosionInitiation

kinetic and electrical energy

internal (shock heating)

x rays

electrical energy

kinetic energy •

Z-pinch loads–

Gas puffs–

Foils–

Low density foams–

wire arrays

Ex-ray ≈

0.15 Eelectrical

Z-pinch implosions effectively convert electrical energy into radiation

The refurbished Z facility delivers world-record currents to Z-pinch loads

Load Currents

Old Z Ip

= 21.6 MA

SCREAMER* @ 24 MJIp

~ 28 MA

ZR @ 19 MJIp

= 24.2 MA(Demonstrated*)

*50% increase in Electrical Energy*Predicted 100% increase at full capacity

Z-Pinch Dynamic Hohlraum

40 mm

12 mm

The Z facility has an extensive suite of standard diagnostics

X-ray Power and EnergyFiltered X-ray Diodes (XRDs)……………….

< 4 keV

PowerPhoto-Conducting Diamonds (PCDs)..……..

> 1 keV

PowerSilicon Diodes (TEP)………………………….

Broad-band PowerBolometers…………………………................

Broad-band Energy

X-ray SpectroscopyElliptically Curved Crystals……………………

0.7-10 keV

Time-gatedConvex Curved Crystals.……………………..

0.7-10 keV

Time-integratedSpherically Curved Crystals.…………………

0.7-10 keV

Time-integratedTransmission Crystals………………………… > 10 keV

Time-integrated

X-ray ImagingFiltered Pinhole Cameras…………………….. > 0.7 keV

Time-gatedMulti-layer Mirror Pinhole Cameras………….

0.277±0.003

keV

Time-gated

X-ray BacklightingPoint-projection…………………………………two-frame @ ~1kJ ea.1 or 2-color Monochromatic Imaging.............. two-frame @ ~1kJ ea.

Fiber-Based Velocity Interferometry (VISAR)

240/120 TungstenWire Arrays

4 mm

CH2

• Ip

> 21 MA• 18 radial slots (x-ray exit holes)• 1 axial aperture• High internal temperature

ZPDH Source

Sanford et al., POP 9 (2002)Bailey et al., POP 13 (2006)Lemke et al., POP 12 (2004)Slutz

et al., POP13 (2006)Rochau et al., PPCF 49 (2007)

40 mm

190 ±

20 TW1007 ±

100 kJ(8 shots)

120 ±

17 TW823 ±

140 kJ(28 shots)

Radial Power on Z and ZR

The Z-pinch Dynamic Hohlraum (ZPDH) is an energetic and reproducible x-ray source.

240/120 TungstenWire Arrays

4 mm

CH2

• Ip

> 21 MA• 18 radial slots (x-ray exit holes)• 1 axial aperture• High internal temperature

ZPDH Source

10.2 ± 0.13 TW

> 100 kJ

Axial Power and Energy on Z

40 mm

*Axial power not yet conclusively measured on ZR

Sanford et al., POP 9 (2002)Bailey et al., POP 13 (2006)Lemke et al., POP 12 (2004)Slutz

et al., POP13 (2006)Rochau et al., PPCF 49 (2007)

The Z-pinch Dynamic Hohlraum (ZPDH) is an energetic and reproducible x-ray source.

240/120 TungstenWire Arrays

4 mm

CH2

• Ip

> 21 MA• 18 radial slots (x-ray exit holes)• 1 axial aperture• High internal temperature

ZPDH Source

40 mm

Experimental

Clean RMHD Model

RMHD Model w/ R-Tperturbation

Internal Tr of ZPDH on Z

*Internal Tr

not yet measured on ZR

Sanford et al., POP 9 (2002)Bailey et al., POP 13 (2006)Lemke et al., POP 12 (2004)Slutz

et al., POP13 (2006)Rochau et al., PPCF 49 (2007)

The Z-pinch Dynamic Hohlraum (ZPDH) is an energetic and reproducible x-ray source.

1015

1020

1025

1030

1010

108

106

104

102

Tem

pera

ture

(K)

Density (cm-3)

The Z facility provides a wide range of energy densities – Flexibility for Lab Astro

Neutron Star Atmospheres

GiantPlanets

Hot Neutron Star Interiors

High Energy Density RegimePtotal

> 1011

N/m2

= 1 Mbar

Sun60 M(sun)

Room Air

Z Experiments

Foord

et al., PRL 93 (2004)

High resolution imaging ofradiation driven jets

Bennett et al., RSI 77 (2006)

Rad Jets Photoionized PlasmaEOSD2 EOS relevant to giant

planet interiors.Rad dominated plasmas

relevant to accretion objects

Knudson et al., PRL 87 (2001)

Z provides multiple platforms for a variety of laboratory astrophysics experiments.

B-

Driven ICE & Flyer Plates Double Ended Hohlraum

Fe absorption

~ 20 erg cm/s

Wire-Array Z-Pinch Source

FeC15

H12

O4foam

Backlit image

D e n s i t y C o m p r e s s io n

2 3 4 5 6 7

Pres

sure

(GPa

)

0

5 0

1 0 0

1 5 0T BR o s sS e s a m e 7 2L a s e rD e s ja r l a i sK e r l e y 0 3R u s s ia n ( l )R u s s ia n ( s )v a n T h i e lD i c kN e l l i sZP IM C

Reduced VISAR data

Stellar Envelope OpacityOpacity of Fe in envelope around

Cepheid Variable stars.

Springer et al., JQSRT 58 (1997)

Saturn Z-pinch Secondary Hohlraum

Solar Interior OpacityOpacity of Fe at the boundary between

the solar radiation and convection zones.

Bailey et al., PRL 99 (2007)

Z-pinch Dynamic Hohlraum

800 900 1000 1100 1200 1300 0.0

0.2

0.4

0.6

0.8

1.0

DataModel

h

sample

Z provides multiple platforms for a variety of laboratory astrophysics experiments.

T(eV) ne (cm-3) r/R0

1360 6x1025 0

182 9x1022 0.713

Solar model : J.N. Bahcall et al, Rev. Mod. Phys. 54, 767 (1982)

Transport depends on opacity, composition, ne, Te

An astrophysical issue: The ‘CZ problem’

• measured boundaryRCZ = 0.713 + 0.001

• Predicted RCZ = 0.726

• Thirteen

difference

“The CZ problem”

• 10-20% higher opacity?

Springer’s experiment

54 1x1022 1.0

• Base of solar convection zone: Te ~ 193 eV, ne ~ 1023 cm-3

• Most important elements: O, Ne, Fe• Fe is the most complex and therefore the most suspect• Fe charge states: +16, +17, +18 ( Ne-like, F-like, O-like) • Photon energy range h

~ 700-1400 eV• Atomic processes: L-shell bb transitions and bf transitions

Definition of a laboratory astrophysics experiment to address the ‘CZ problem’

The Z-pinch Dynamic Hohlraum (ZPDH) provides a platform for high temperature opacity experiments.

An experiment platform• Source characterization

• Diagnostic methods-instrumentation-analysis methods

• Peer ReviewSampleTe

up to 190 eVBailey et al. , PRL 99 (2007)

SampleTe

up to 50 eVRochau et al., PRE 72 (2005)Bailey et al., JQSRT 81 (2003)

Electron Temp.

Radiation Temp.

shockfront

TungstenZ pinch

Radius (cm)0.0 0.2 0.4 0.6

Current Flow

2-D RMHD Simulation

The Dynamic Hohlraum is formed by an imploding Z pinch, and heated by a strong radiating shock.

1.2 cm

CH2 Foam

A reproducible radiating shock is the source of x-ray energy for the Z-pinch dynamic hohlraum.

Tungsten

ShockedFoam

UnshockedFoam

Framing Pinhole Camera Images

skm 25326su

< 8% shot-to-shot standard deviation

Rochau et al., PRL 100 (2008)

Radiating Shock Image SNR 1987a

3

1

shock

therm

rad

MPP

Foil is heated during the ZPDH implosion

Foil is backlit at shock stagnation

OpacityFoil

The ZPDH shock is used to drive and backlight opacity experiments at Te > 150 eV.

Bailey et al., POP 16 (2009)

Opacity measurements require reproducibility in source power (heating) and spectrum (backlighting).

Mg Fe

Wavelength (Å)

Unattenuatedspectrum

Absorption spectrafrom 2 separate shots

Time-integratedConvex CrystalSpectrometer

Fe+Mg

foil

7.847.80 7.86(Å)

He-

line profile

He

Ly Ly He

He He

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

tran

smis

sion

tran

smis

sion

tran

smis

sion

OPAL

OPAS

PrismSPECT

(Å)7.0 7.5 8.0 8.5

Mg K-shell spectra indicate Te = 156 eV and ne = 7*1021 cm-3.

Voigt

-

2

= 5.5Mancini

-

2

= 1.2

800 900 1000 1100 1200 1300 0.0

0.2

0.4

0.6

0.8

1.0

800 900 1000 1100 1200 1300 0.0

0.2

0.4

0.6

0.8

1.0

800 900 1000 1100 1200 1300 0.0

0.2

0.4

0.6

0.8

1.0

800 900 1000 1100 1200 1300 0.0

0.2

0.4

0.6

0.8

1.0

800 900 11001000 1200

MUTAJ. Abdallah, LANL

OPALC. Iglesias, LLNL

PRISMSPECTJ. MacFarlane, PRISM

OPASOPAS team, CEA

0.4

0.8

0.4

0.8

0.4

0.8

0

0.4

0.8

The measured Fe transmission compares well with models from LANL, LLNL, CEA, and PRISM.

Bailey et al., PRL 99 (2007)h

(eV)

Tran

smis

sion

Z experiments reproduce the iron charge states at the Solar CZ boundary

Fe charge state

frac

tion

+14(Mg)

+15(Na)

+16(Ne)

+17(F)

+18(O)

+19(N)

0.0

0.1

0.2

0.3

0.4

Z conditions156 eV, 7 x 1021 cm-3

Solar CZ boundary193 eV, 1 x 1023 cm-3

800 900 1000 1100 1200 1300 0.0

0.2

0.4

0.6

0.8

1.0

1000 1100 1200 13000.2

0.4

0.6

0.8

h

(eV)

Z dataOP2 = 16

Z dataOPAS2 = 3.7

Tran

smis

sion 0.4

0.6

0.8

• OP Rosseland mean is ~ 1.5x lower than OPAS at Z conditions.

• If this difference persisted at the exact CZ conditions, it would solve the CZ problem

The OP model used in solar research predicts Fe L-shell opacity that is too low at Z conditions

T = 156 eV, ne = 7 x 1021 cm-3

At the base of the convection zone (T=193 eV, ne =1023cm-3):• Iron frequency-dependent opacities possess some differences.

• Rosseland mean opacities are not significantly different, even though they disagree at Z conditions.

h(eV)

(c

m2 /g

)

OP -

R

=2606 cm2/g

OPAS -

R

=2646 cm2/g

OPAL -

R

=2731 cm2/g

Discrepancies at Z conditions raise a caution flag for solar opacities

T = 193 eV, ne = 1023cm-3

The higher power ZPDH on ZR heats opacity foils to ~20% higher temperatures than achieved on Z.

Mg K-shell absorption from a Mg/Fe foil

He-

Ly-He-

He-

Z

ZR

He-

He-

Line Widths

• Higher Ly/He ratios indicate ~20% increase in Te

• Broader high-n lines indicate ~300% increase in ne

Preliminary comparisons indicate Te

~ 190 eV, ne

~ 3x1022

cm-3

Pulsed power sources are gaining recognition as effective drivers for laboratory astrophysics

2010 Joint OFES-NNSA HEDLP grants for laboratory astrophysics related to Z:

-Mancini et al., UNR, Photo-ionized plasmas (Accretion disks)

-Pradhan

et al., OSU, Laboratory Tests of Stellar Interior Opacity Models

-Bailey et al., SNL, Laboratory Tests of Stellar Interior Opacity

Models

-Frank et al., IC, Astrophysical Jets

Extra Slides

J.E. Bailey, M. Cuneo, G. Bennett, D. Ampleford, S.B. Hansen, P.W. Lake, T.J. Nash, D.S. Nielsen, J. Porter, M. HerrmannSandia National Laboratories

C.A. Iglesias, P. Springer, R. HeeterLawrence Livermore National Laboratory

J. Abdallah Jr., M.E. Sherrill, B. WildeLos Alamos National Laboratory

J.J. MacFarlane, I. Golovkin, P. WangPrism Computational Sciences

R.C. Mancini, I. Hall, T. DurmazUniversity of Nevada, Reno, NV

C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, J.C. PainCEA, France

D. Cohen, M. RosenbergSwarthmore College

A.K. Pradhan, S.N. Nahar, M. PinsonneaultOhio State University

Y. Maron, E. Stambulchik, D. Fisher, V. FisherWeizmann Institute, Israel

Many People and Institutions Contribute

The anatomy of a Z-pinch source

1015

1020

1025

1030

1010

108

106

104

102

Tem

pera

ture

(K)

Density (cm-3)

ICF capsulesRadiating ShocksFe OpacityMaron

B-field

107

N/m2

equivalent from Bailey Stark-

shift

The Z facility provides a wide range of energy densities – Flexibility for Lab Astro

Neutron Star Atmospheres

GiantPlanets

Neutron StarInteriors

High Energy Density RegimePtotal

> 1011

N/m2

= 1 Mbar

Sun60 M(sun)

Z Experiments

Mg foils at three azimuths show a consistent radial x-ray energy.

LOS 13/14LOS 21/22LOS 1/2 2

max ~ 1.1

x = 0.25mg/cm2

Rochau, Ph.D. Thesis (2003)

The shock stagnation makes a bright, featureless, continuum backlighter.

Bailey et al., POP 16 (2009)

Sample electron temperatures are reproducible to < 4%.

Foil temperatures from 10 shots over 3 yrs

Over all shots:T

= 3.8%, P

~ 15%

TdT

PdP 4 Mg Ly

Mg He

Mg He

Mg He

DataCalc

Mg Absorption Spectrum

156 ± 6 eV

Photo-ionized plasma research is a success story for external user experiments on Z

• Initial work by M. Foord

and R. Heeter:Fe at

~ 20 erg cm/sFoord et al., PRL 93 (2004)

• Stockpile Stewardship Academic Alliances Grant:R. Mancini, 2007-2009Ne at

~ 4-10 erg cm/sHall et al., Astro. Space Sci. 322 (2009)

• High Energy Density Laboratory Physics Grant:R. Mancini, 2010-2012

Z-pinch Source

Neon Gas Cell

Photo-ionized Ne Spectrum

Measurements of Fe at Te ~ 20 eV benchmarked opacity calculations for stellar envelopes.

20 eV

secondary hohlraum

Springer et al., JQSRT 58 (1997)

Fe sample at ~10-4

g/cc

Detailed line-by-line treatment is required to match even the bulk transmission.

Critical temperature and density regime for Stellar envelopes.

-

Rogers and Iglesias, Science 263 (1994)

Z pinch

STA

OPAL-DTA

OPAL-UTA

Tran

smis

sion

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.065

70

75

80

85

65

70

75

80

85

Energy (eV)

DATA