La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce...

60
La “crisi” della Fisica Classica Alcune situazioni sperimentali in cui la Fisica “Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee spettrali atomiche Proprietà ondulatorie degli elettroni Energia del fotone Impulso del fotone Lunghezza d’onda di una particella Principio di indeterminazione Funzione d’onda Equazione di Schrödinger Le cure arrivano da idee intrinsicamente quantistiche:

Transcript of La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce...

Page 1: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La “crisi” della Fisica ClassicaAlcune situazioni sperimentali in cui la Fisica “Classica" fallisce

Effetto fotoelettrico Radiazione di corpo nero

Linee spettrali atomiche Proprietà ondulatorie degli elettroni

Energia del fotone Impulso del fotone

Lunghezza d’onda di una particella

Principio di indeterminazione

Funzione d’onda Equazione di Schrödinger

Le cure arrivano da idee intrinsicamente quantistiche:

Page 2: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La “Radiazione di Corpo Nero” o di "cavità” si riferisce ad un oggetto che assorbe tutta la radiazione incidente su di esso e ri-irraggia energia che è caratteristica del suo solo sistema

irraggiante, e non dipende dal tipo di radiazione incidente. L’energia irradiata può essere considerata come prodotta da onde stazionarie, o modi risonanti, della cavità che irraggia.

La radiazione di Corpo Nero

La quantità di radiazione emessa in una certa banda di frequenze

dovrebbe essere proporzionale al numero di modi in quella banda. Secondo la Fisica Classica tutti i modi hanno la stessa probabilità di essere prodotti, ed il numero di modi possibili nella cavità cresce con il quadrato della frequenza.

Tuttavia, la continua crescita di energia emessa con la frequenza (denominata

"ultraviolet catastrophe") non avviene. La Natura è più

saggia.

modi di radiazione

Page 3: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’espressione quantistica della energia media per modo si ottiene partendo dalla ipotesi di Planck: tutta la radiazione elettromagnetica è quantizzata e l’emissione avviene per “quanti di energia”, che chiamiamo fotoni. Il quanto di energia di un

fotone è dato dal prodotto della costante di Planck h per la frequenza.

La nascita della Meccanica Quantistica

Questa quantizzazione implica che un fotone di luce, di data frequenza e lunghezza d’onda, ha una energia quantistica fissata. Per esempio, un fotone di luce blu, che ha una lunghezza d’onda di 450 nm, avrà sempre una energia di

2.76 eV. Tutta la luce blu è formata da fotoni di questa energia, e trasporta energia in multipli di 2.76 eV. Non si può avere un mezzo fotone blu.

Page 4: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La frequenza disponibile è continua, senza limiti superiori o inferiori; quindi non vi alcuna restrizione circa la possibile energia di un fotone. Per quanto riguarda

le energie alte, un limite pratico è semplicemente dovuto alla difficoltà di trovare meccanismi per la creazione di fotoni ad altissima energia. I fotoni di

bassa energia invece abbondano; tuttavia, quando si scende sotto il limite delle frequenze radio, le energie dei fotoni sono così piccole, confrontate con le energie termiche a temperatura ambiente, che non si potranno mai isolare

come singole entità quantizzate. Si perdono semplicemente nella energia di fondo presente. In altre parole, nel limite di basse frequenze la trattazione della

radiazione elettromagnetica si fonde con la descrizione classica ed una trattazione quantistica non è più necessaria.

Energia massima e minima, Meccanica Quantistica e Meccanica Classica

Page 5: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Densità di energia del Corpo Nero in funzione della frequenza

Energia per unità di volume e di frequenza

k = costante di Boltzman

Page 6: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Confronto tra la legge classica di Rayleigh-Jeans e la formula della radiazione quantistica di Planck. L’ esperimento conferma la relazione di Planck.

Rayleigh-Jeans vs Planck

Page 7: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Curve di Radiazione

Page 8: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’effetto fotoelettrico

Gli aspetti incomprensibili dell’effetto fotoelettrico quando si incominciò ad osservarlo erano:

1. Gli elettroni venivano emessi immediatamente - nessun ritardo!

2. Un aumento della intensità della luce causava un aumento del numero di fotoelettroni, ma non della loro energia cinetica!

3. La luce rossa non provoca emissione di elettroni, qualunque

sia la sua intensità!

4. Una debola luce violetta causa l’emissione di pochi elettroni, ma la loro energia cinetica è maggiore di quella ottenuta con luce più intensa

di frequenza minore!

  

Le caratteristiche dell’effetto fotoelttrico erano in netta contraddizione con le predizioni della Fisica Classica. La

spiegazione dell’effetto segnò uno dei passi fondamentali verso la Teoria dei

Quanti.

Page 9: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’analisi dei dati dell’effetto fotoelettrico mostrò che l’energia degli elettroni emessi era

proporzionale alla frequenza della luce incidente. Ciò mostrava che qualunque “cosa” estraesse gli

elettroni dal metallo aveva un’energia proporzionale alla frequenza della luce. Il fatto sorprendente che l’energia dei singoli elettroni

fosse indipendente dalla energia totale della luce incidente (cioè l’intensità), mostrava che

l’interazione della luce con il metallo deve essere come quella di una singola particella che cede la sua energia all’elettrone. Ciò è consistente con l’ipotesi di Planck, da lui applicata al problema

della radiazione del Corpo Nero, secondo cui la luce è formata da quanti discreti (fotoni), ciascuno

con energia:

hνE

L’effetto fotoelettrico

Page 10: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

I fenomeni luminosi più comuni possono essere spiegati e descritti mediante la natura ondulatoria della luce. Invece, l’effetto fotoelettrico suggerisce una

natura corpuscolare della luce.

Page 11: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Negli anni alla fine del 1900, si osservò che la luce emessa da gas luminosi non mostrava una distribuzione continua di lunghezze d’onda, ma formava un insieme discreto di colori, diversi per i vari gas. Queste "linee

spettrali" si disponevano in una serie regolare e si giungerà ad interpretarle come transizioni tra livelli atomici di energia. Allora, rappresentavano un grosso problema per la Fisica Classica. Si sapeva che particelle cariche

accelerate emettono onde elettromagnetiche, e ci si aspettava che orbite di elettroni intorno ai nuclei fossero

instabili, in quanto, a causa della perdita di energia elettromagnetica emessa, sarebbero stati attratti dal

nucleo. Non si poteva trovare alcun modello classico che portasse ad orbite stabili degli elettroni.

Il modello atomico di Bohr segnò il passo fondamentale verso una moderna teoria atomica. Il punto fondamentale

fu il postulato che il momento angolare è quantizzato, permettendo di ottenere solo specifici livelli di energia. In

seguito, lo sviluppo della Meccanica Quantistica e l’equazione di Schrödinger permisero di comprendere i postulati ed I risultati del modello all’interno di una teoria

completa e consistente.

Il problema degli spettri atomici

2

22

1

111

nnRH

RH, costante di Rydberg = 1.097 10–7 m–1

Helium spectrum

Hydrogen spectrum

21 , nn interi)( 21 nn

Page 12: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Nel modello di Bohr, questo risultato classico fu combinato con la quantizzazione del momento angolare, per ottenere un’espressione dei livelli quantizzati di energia.

Il modello atomico di Boh – Orbita classica dell’elettrone

Page 13: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Nel modello di Bohr la lunghezza d’onda associata all’elettrone è data dalla relazione di de Broglie (si vedano le trasparenze successive)

a cui si unisce la condizione di stazionarietà: lunghezza della circonferenza = numero intero di lunghezze d’onda

Queste due condizioni si combinano per dare l’espressione quantizzata del momento angolare per l’elettrone in orbita:

Quindi L non solo è conservato (non dipende dal tempo), ma è costretto ad assumere valori discreti, multipli di h/2π secondo il numero quantico n. Questa quantizzazione del momento angolare è un risultato fondamentale e può essere usato per determinare I raggi e le energie delle orbite di Bohr.

La quantizzazione del momento angolare

vm

h

p

h

nr 2

nnh

nr

hrhrrmL

2 2v

Page 14: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Combinando il procedimento seguito nel caso classico con la quantizzazione del momento angolare, l’approccio di Bohr fornisce le espressioni per i raggi e le energie delle orbite degli elettroni:

da queste espressioni si ricava:

energia cinetica dell’elettrone espressa in

funzione del momento angolare

uso della condizione di

quantizzazione

energia cinetica orbitale classica

vale per atomi idrogenoidi: Z protoni

e 1 elettrone

22

eV 6.13Z

n

a0 = 0.529 10–10 m = raggio di Bohr n = 1,2,3,…

Page 15: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

I livelli di energia dell’atomo di idrogeno sono in accordo con quelli del modello di Bohr. La descrizione pittorica usuale è quella di una struttura ad orbite (o gusci), con

ogni orbita associata ad uno dei valori del numero quantico principale n.

La descrizione dell’atomo tramite le orbite del modello di Bohr è una utile visualizzazione; non bisogna tuttavia dimenticare che, come risulterà dalla Meccanica Quantistica, i concetti di orbita e raggio orbitale saranno sostituiti da concetti quali la distribuzione di probabilità di posizione.

Livelli di energia dell’atomo di idrogeno

Page 16: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Il modello di Bohr prevede che gli elettroni occupino una delle possibili orbite quantizzate, senza emissione di onde elettromagnetiche. L’emissione avviene quando l’elettrone passa da un’orbita all’altra; in questa transizione avviene l’emissione di un

fotone di energia pari alla differenza di energia tra le due orbite.

Questa relazione può essere scritta come

eV 11

6.1311

8 22

21

22

21

220

4

nnnnh

meh

320

4

8 ch

meRH

17 m 10 097.1 HR

12 EEh

con

Dall’espressione dei livelli quantizzati di energia si ha

hc

h

Page 17: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.
Page 18: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Anche se il modello di Bohr rappresentò un passo avanti fondamentale verso la costruzione della teoria quantistica degli atomi, non rappresenta in realtà la corretta descrizione teorica della natura delle orbite elettroniche.

Le sue principali manchevolezze sono: 1. Non permette di capire perché certe linee spettrali sono più luminose di

altre. Non vi è alcun meccanismo che permetta di calcolare la probabilità di transizione tra livelli atomici.

2. Il modello di Bohr considera gli elettroni come pianeti in miniatura, in rotazione intorno al nucleo con un ben preciso raggio ed impulso. Questo

viola il principio di indeterminazione, secondo cui posizione ed impulso non possono essere esattamente determinati contemporaneamente.

Il modello di Bohr ci fornisce un modello concettualmente semplice e

fondamentale delle orbite e delle energie degli elettroni atomici. I dettagli dello spettro e della distribuzione di cariche sono ottenibili solo dai calcoli

della Meccanica Quantistica e dell’equazione di Schrödinger. Molti dei risultati del modello di Bohr (compresa la sua ipotesi di quantizzazione )

saranno ritrovati all’interno di una teoria completa e consistente.

Le debolezze del modello di Bohr

Page 19: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Compton osservò la deflessione di raggi X da parte di elettroni, trovando

che i raggi X deflessi avevano una lunghezza d’onda più grande di quella dei raggi incideni. La variazione della

lunghezza d’onda aumentava con l’angolo di deflessione, secondo la

formula (di Compton):

Compton spiegò i dati assumendo una natura particellare della luce (fotoni)

ed applicando la coservazione dell’energia e dell’impulso alla

collisione tra un fotone e l’elettrone. Il fotone deflesso ha un’energia minore e quindi una maggiore lunghezza d’onda,

secondo la relazione di Planck.

La natura particellare della luce – Lo scattering Compton

Page 20: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’espressione precedente per Δλ può essere ottenuta imponendo la conservazione dell’energia e dell’impulso:

42222 cmcphcmh eefei

efi ppp

conservazione dell’energia

conservazione dell’impulso

Page 21: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Giovane studente a Parigi, Louis DeBroglie aveva appreso la relatività e l’effetto fotoelettrico. Quest’ultimo evidenziava la natura corpuscolare della luce, da sempre

considerata un fenomeno ondulatorio. Egli si chiese se gli elettroni ed altre "particelle" potessero a loro volta esibire proprietà ondulatorie. Questo condurrà ad una nuova teoria.

La conferma dell’ipotesi di DeBroglie arrivò grazie all’esperimento di Davisson- Germer. Esso mostrò

figure di interferenza – in accordo con la lunghezza d’onda di DeBroglie – per l’urto di elettroni su

cristalli di nickel.

La natura ondulatoria dell’elettrone

Page 22: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Quando i raggi X sono deflessi dal reticolo cristallino, si osservano picchi di intensità finale corrispondenti

alla condizione di Bragg, secondo cui si hanno massimi quando la differenza di cammino di due raggi è uguale ad un multiplo intero della lunghezza d’onda.

Tale formula può essere usata in più modi: conoscendo d e misurando theta, si ricava lambda,

oppure conoscendo lambda si ricava d. Simili figure di interferenza furono osservate con elettroni. L’energia degli elettroni, e quindi la loro lunghezza d’onda, può essere variata, variando il

potenziale di accelerazione.

L’esperimento di Davisson-Germer dimostrò che anche gli elettroni presentano fenomeni ondulatori, in accordo con la

lunghezza d’onda di DeBroglie:

lunghezza d’onda di un elettrone di

impulso p

Page 23: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La lunghezza d’onda di DeBroglie

Page 24: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La luce consiste di particelle o di onde? La risposta dipende dai tipi di fenomeni che si osservano:

FenomenoPuò essere spiegato in termini di onde

Può essere spiegato in termini di particelle

I più comuni fenomeni luminosi osservati possono essere spiegati come fenomeni ondulatori. Tuttavia l’effetto fotoelettrico e lo scattering Compton suggerirono una natura particellare per la

luce. Lo stesso dualismo onda-particella fu osservato anche per gli elettroni.

La dualità Onda-Particella per la luce

Refessione

Rifrazione

Interferenza

Diffrazione

Polarizzazione

Effetto fotoelettrico

Compton scattering

Page 25: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

),( tx La funzione d’onda

Ogni particella è rappresentata da una funzione d’onda Ψ (x,t) tale che Ψ* Ψ è la probabilità di trovare la particella nel punto x al tempo

t.

La funzione d’onda è soluzione dell’equazione di Schrödinger. Questa equazione gioca lo stesso ruolo della legge di Newton e della

conservazione dell’energia nella Meccanica Classica, cioè predice il comportamento futuro di un sistema dinamico. Predice analiticamente e precisamente le probabilità di eventi e risultati futuri. I dettagli dei

risultati dipendono dal caso, ma, per un grande numero di eventi, l’equazione di Schrödinger, predirrà la loro distribuzione statistica.

Page 26: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Le proprietà della funzione d’onda

contiene tutte le informazioni fisiche (misurabili) sulla particella

1 * dV se la particella esiste, la probabilità totale di trovarla è 1

è continua (insieme alla sua derivata)

permette il calcolo del valore medio (valore di aspettazione) di qualunque grandezza fisica

Per una particella libera è un’onda piana; ciò implica un preciso valore p dell’impulso e p2/2m dell’energia, ed una totale incertezza nella posizione

Page 27: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’energia cinetica e potenziale sono trasformate nell’operatore Hamiltoniano, che agisce sulla funzione d’onda per generarne l’evoluzione nello spazio e nel tempo. L’equazione di

Schrödinger dà l’energia quantizzata del sistema (i possibili valori di E) e la forma della funzione d’onda, a partire dalla quale altre proprietà fisiche possono essere calcolate.

L’equazione di Schrödinger

Page 28: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Per un potenziale generico U l’equazione di Schrödinger unidimensionale ed indipendente dal tempo è

In 3 dimensioni assume la forma

per coordinate cartesiane. Può essere scritta in modo più compatto, introducendo l’operatore Laplaciano

L’equazione di Schrodinger può quindi essere scritta come:

L’equazione di Schrödinger indipendente dal tempo

)( )()()(

2 2

22

xExxUdx

xd

m

),,( ),,(),,(2 2

2

2

2

2

22

zyxEzyxzyxUzyxm

2

2

2

2

2

22

z

f

y

f

x

ff

ˆ ),,( ),,(),,(

22

2

EHzyxEzyxzyxUm

Page 29: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’equazione di Schrödinger dipendente dal tempo, in una dimensione spaziale, ha la forma

Per una particella libera , per la quale U(x) =0, la funzione d’onda, soluzione dell’equazione, può essere scritta come un’onda piana

Per altri problemi, cioè per particelle soggette ad una forza, il potenziale non nullo rende la soluzione più difficile. La dipendenza spaziale della funzione d’onda è fissata dall’equazione di Schrödinger indipendente dal tempo mentre l’evoluzione temporale da quella dipendente dal tempo

L’equazione di Schrödinger dipendente dal tempo

EhT

πp

hk

2

22

22

),(

),()(),(

2 2

22

t

txitxxU

x

tx

m

) (),( txkiAetx

Page 30: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

I postulati della Meccanica Quantistica

Associata ad ogni particella che si muove in un campo di forze conservative vi è una funzione d’onda, la quale determina tutte le informazioni ottenibili sul sistema.

Ad ogni sistema fisico formato da una particella è associata una funzione d’onda. Questa funzione d’onda permette di ottenere tutte le informazioni possibili sul sistema. La funzione d’onda può anche essere complessa; è il prodotto con la funzione complessa coniugata che specifica la vera probabilità fisica di trovare la particella in un certo stato.

1. Il postulato della Funzione d’Onda:

),( tx ampiezza di probabilità, calcolata in x ,t

),( ),(* txtx probabilità di trovare la particella in x ,t

Page 31: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La funzione d’onda rappresenta l’ampiezza di probabilità di trovare la particella in un certo punto dello spazio, ad un certo istante. La vera probabilità di trovare la particella è data dal prodotto della funzione d’onda (che può essere un numero complesso) con il suo complesso coniugato; il risultato è sempre un numero reale (l’analogo del quadrato, per una funzione complessa).

Poiché la probabilità totale di trovare la particella da qualche parte deve essere = 1, la funzione d’onda deve essere normalizzata. Cioè la somma delle probabilità, estesa a tutto lo spazio, deve essere 1. Ciò si esprime tramite l’integrale:

La richiesta di avere funzioni d’onda normalizzabili svolge un ruolo molto importante nella ricerca delle soluzioni dell’equazione di Schrödinger. Ad esempio, si può trovare che solo certi valori dell’energia permettono di ottenere soluzioni normalizzabili.

Probabilità in Meccanica Quantistica

dzdydx dV Volume infinitesimo 1dV *

àprobabilit di ampiezza),,,( tzyx

àprobabilit*

Page 32: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Per ogni osservabile fisica q esiste un operatore associato Q, il quale, quando opera su una funzione d’onda associata ad un valore definito di quella osservabile, dà come risultato la stessa funzione d’onda moltiplicata per quel valore dell’osservabile.

2. Il postulato degli operatori associati a grandezze fisiche

Per ogni osservabile fisica si introduce un operatore matematico associato che agisce sulla funzione d’onda, dando come risultato, in generale, un’altra funzione. Supponiamo che la funzione d’onda Ψn (autofunzione) sia associata ad un particolare

valore qn (autovalore) della osservabile e che l’operatore sia indicato con Q. L’azione dell’operatore è data da:

L’operatore matematico Q estrae il valore qn dell’osservabile, operando sulla funzione d’onda che rappresenta quel particolare stato del sistema. Questo processo è collegato alla teoria della misura in Meccanica Quantistica. Ogni funzione d’onda di un sistema quantistico può essere rappresentata come una combinazione lineare delle autofunzioni Ψn (si veda il postulato del sistema completo). Quindi l’operatore Q può essere usato per estrarre una combinazione lineare di autovalori, ciascuno moltiplicato per un coefficiente; questo è legato alla probabilità di ottenere come risultato della misura proprio l’autovalore corrispondente (si veda il postulato del valore di aspettazione).

Page 33: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Associato ad ogni grandezza misurabile di un sistema fisico vi è un operatore quantistico. In Meccanica Quantistica si descrivono i sistemi fisici mediante onde (la funzione d’onda), piuttosto che tramite particelle il cui moto e la cui dinamica possono essere descritti con precisione dalle equazioni deterministiche della Fisica di Newton. Questi operatori possono essere rappresentati in vari modi. Alcuni sono elencati qui di sotto:.

In questa rappresentazione (detta di Schrödinger) degli operatori, le posizioni e le loro funzioni non cambiano, mente gli impulsi diventano derivate rispetto alla posizione.

L’operatore dell’energia (Hamiltoniano) contiene derivate rispetto allo spazio ed al tempo.

Operatori in Meccanica Quantistica

Page 34: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Ogni operatore Q associato ad una grandezza fisica osservabile è Hermitiano

3. Il postulato e le proprietà dell’operatore Hermitiano

Ogni operatore quantistico Q, associato ad una grandezza fisica reale e misurabile, deve essere Hermitiano, cioè soddisfare la seguente proprietà:

dV ) (dV ) ( **baba QQ

dove Ψa e Ψb sono funzioni arbitrarie normalizzabili, e l’integrazione è su tutto lo spazio. La richiesta è fisicamente necessaria, in quanto assicura che i valori misurati (cioè gli autovalori) siano numeri reali.

Teorema: se Q è Hermitiano, allora tutti i qi sono numeri reali

Inoltre, se Q è hermitiano, per ogni i ≠ j si ha: 0dV * ji

Page 35: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’insieme delle autofunzioni di un operatore Hermitiano Q forma un insieme completo (una base) di funzioni linearmente indipendenti

4. Il teorema dell’insieme completo

L’insieme delle funzioni Ψj, che sono autofunzioni dell’equazione agli autovalori

forma un insieme completo di funzioni linearmente indipendenti. Esse formano una base: vale a dire che qualunque funzione d’onda che rappresenti il sistema può essere scritta come combinazione lineare delle funzioni della base:

Ciò implica che qualunque funzione d’onda Ψ che descrive il sistema fisico può essere scritta come combinazione lineare delle autofunzioni di qualunque osservabile fisica del sistema.

Page 36: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Per un sistema descritto da una data funzione d’onda Ψ, si può calcolare il valore di aspettazione di qualunque grandezza fisica q, alla quale è associato l’operatore Q.

5. Il postulato del valore di aspettazione

Per un sistema fisico descritto da una funzione d’onda Ψ, il valore di aspettazione di una qualunque osservabile fisica q può essere espresso in termini del corrispondente operatore hermitiano Q e della funzione d’onda, nel modo seguente:

dV * Qq

La funzione d’onda deve essere normalizzata e l’integrale è esteso a tutto lo spazio. Questo postulato diviene intuitivo se si considera il postulato dell’operatore Hermitiano e il teorema dell’insieme completo. La funzione d’onda può essere rappresentata come una combinazione lineare delle autofunzioni di Q, ed il risultato dell’integrale dà la somma di tutti i possibili valori fisici (gli autovalori di Q), ciascuno moltiplicato per un coefficiente (una probabilità). L’integrale dà quindi la media pesata di tutti i possibili valori dell’osservabile.

Page 37: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Un sistema fisico è descritto dalla funzione d’onda Ψ, la quale può sempre essere scritta come una combinazione lineare delle autofunzioni dell’operatore Hermitiano Q:

nnnnn

n qQc

con la seguente interpretazione: una misura di Q per lo stato Ψ darà come risultato uno qualunque dei suoi autovalori qn, ciascuno con una probabilità |cn|2.

nn

n qcq ||2

La condizione di normalizzazione della funzione d’onda implica:

1|| 2 n

nc

Una misura di Q forza il sistema a diventare uno dei possibili autostati (autofunzioni) di Q, Ψn: ogni eventuale misura successiva di Q darà sempre

come risultato qn

Se uno inserisce questa espressione nell’integrale del valore di aspettazione, trova

Page 38: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’evoluzione temporale della funzione d’onda è data dalla equazione di Schrödinger dipendente dal tempo.

6. L’ evoluzione temporale

Se Ψ(x,y,z; t) è la funzione d’onda di un sistema fisico ad un tempo t ed il sistema è libero da interazioni esterne al sistema, allora l’evoluzione nel tempo della funzione d’onda è data

dove H è l’operatore Hamiltoniano formato a partire dall’espressione dell’Hamiltoniana classica e sostituendo le osservabili classiche con i corrispondenti operatori quantistici. Il ruolo dell’Hamiltoniano nella dipendenza spaziale e temporale della funzione d’onda è espresso dalle equazioni di Schrödinger.

Page 39: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

1. Associata ad ogni particella che si muove in un campo di forze conservative esiste una funzione d’onda, la quale contiene tutte le

informazioni che si possono ottenere sul sistema.

2. Ad ogni osservabile fisica q corrisponde un operatore associato Q, il quale, quando opera sulla funzione d’onda associata ad un particolare

valore di quella osservabile, dà come risultato la stessa funzione d’onda moltiplicata per quel valore dell’osservabile.

3. Ogni operatore Q associato ad una proprietà fisica misurabile, è un operatore Hermitiano

4. L’insieme di autofunzioni di ogni operatore Hermitiano Q forma un insieme completo (o base) di funzioni linearmente independenti.

5. Per un sistema fisico descritto da una data funzione d’onda, il valore di aspettazione (o valor medio) di qualunque grandezza fisica

q si trova calcolando l’integrale del valore di aspettazione rispetto a quella funzione d’onda.

6. L’evoluzione temporale della funzione d’onda è dato dalla equazione di Schrödinger dipendente dal tempo.

Page 40: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

L’equazione di Schrödinger non può essere dedotta; la sua validità viene dal confronto con i dati sperimentali. La naura ondulatoria di un elettrone è chiaramente

confermata da esperimenti come quello di Davisson-Germer. Ciò fa sorgere la domanda: “Cosa è questa natura ondulatoria?". La risposta, a posteriori, è che

questa natura ondulatoria si manifesta attraverso la funzione d’onda dell’elettrone. La soluzione dell’equazione di Schrödinger per una particella libera è un’onda piana, la

quale contiene la relazione di deBroglie per l’impulso e di Planck per l’energia.

Una particella libera e l’equazione di Schrödinger

2h

Page 41: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

E’ più facile mostrare la relazione con l’equazione di Schrödinger scrivendo l’onda piana in forma esponenziale usando la relazione di Eulero. Questa è l’espressione usuale per la funzione d’onda di una particella libera.

)sincos( iei Si può verificare che Ψ è autofunzione degli operatori impulso ed energia

Il collegamento con l’equazione di Schrödinger si può fare esaminando l’espressione per l’energia per particelle e per onde (fotoni)

Assumendo l’equivalenza di queste due espressioni and inserendo I loro corrispondenti operatori quantistici, ci porta all’equazione di Shrödinger

Page 42: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La posizione e l’impulso di una particella non possono essere misurati simultaneamente con precisione arbitraria. Il prodotto delle incertezze delle due misure ha un minimo. Lo stesso principio vale per la misura contemporanea di

energia e tempo.

Questo principio non riguarda il limite proprio degli strumenti di misura, o limiti derivanti dalla accuratezza dei metodi sperimentali. Deriva dalle

proprietà ondulatorie intrinseche alla descrizione quantistica della natura. Anche con strumenti e tecniche perfetti, questa incertezza rimane, intrinseca

alla natura delle cose.

Il principio di indeterminazione

Page 43: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Il principio di indeterminazione

La dualità onda-particella e la relazione di DeBroglie aiutano a comprendere tale principio. Man mano che si scende verso dimensioni atomiche, non è più valido

considerare una particella come una sfera rigida, perché più piccole sono le dimensioni e più “ondosa” essa diviene. Non ha più senso dire che si conoscono precisamente la

posizione e l’impulso di tale particella.

Page 44: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La definizione esatta di Δx e Δp è

2222 pppxxx

2

px

Page 45: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Il confinamento di particelle

Page 46: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Calcolo della energia di confinamento

Page 47: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La soluzione dell’equazione di Schrödinger per l’atomo di

idrogeno si ottiene più facilmente usando coordinate polari sferiche e separando le variabili, così che la funzione d’onda è rappresentata

dal prodotto:

La separazione conduce a tre equazioni separate per le tre variabili spaziali, e le loro soluzioni portano ai

tre numeri quantici associati con i livelli di energia dell’atomo di idrogeno.

L’atomo di idrogeno

Page 48: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La soluzione dell’equazione di Schrödinger per l’atomo di idrogeno richiede di imporre la condizione che le funzioni d’onda siano normalizzabili. Queste soluzioni, per le tre funzioni separate delle tre variabili, possono esistere soltanto se certe costanti che appaiono nelle equazioni assumono valori interi. Ciò porta ai numeri quantici dell’atomo di idrogeno:

nlmnnlm E H eV 6.13

2nEn

I numeri quantici per l’atomo di idrogeno

n = principal quantum number

nlmnlm llL )1( 22 l = orbital quantum number

nlmlnlmz mL ml = magnetic quantum number

Page 49: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

  

Il modello vettoriale per il momento angolare orbitale

Il momento angolare orbitale per un elettrone atomico può essere visualizzato mediante un modello

vettoriale, nel quale il vettore momento angolare effettua un moto di precessione intorno ad una

direzione fissa nello spazio. Mentre la lunghezza del vettore ha il valore indicato, solamente un massimo di

l unità of ħ può essere misurato lungo una certa direzione, dove l è il numero quantico orbitale.

Anche se lo si definisce "vettore", il momento angolare orbitale in Meccanica Quantistica è un tipo speciale di vettore; infatti la sua proiezione

lungo una direzione nello spazio è quantizzata, con valori che differiscono di una unità ħ. Il diagramma mostra che i possibili valori del “numero quantico

magnetico" ml (for l =2), sono

2 ,1 ,0 ,1 ,2 lm

Page 50: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Lo spin di un elettrone, s = 1/2, è una proprietà intrinseca degli elettroni. In aggiunta al momento

angolare orbitale gli elettroni posseggono un momento angolare intrinseco, caratterizzato dal numero quantico

1/2. In analogia al momento angolare orbitale, si ha:

spinspinS

1

2

1

2

1 22

spinspinsspinz mS 2

1

Lo spin dell’elettrone

ms= ½ “spin su” ms= – ½ “spin giù”

I due stati di spin, “su" e “giù“, permettono di avere due elettroni per ogni insieme degli altri numeri quantici

sl mnlm

lmln , ,

Page 51: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Due elettroni in un atomo non possono avere gli stessi numeri quantici. Questo è un esempio di un principio generale che si applica non solo agli elettroni, ma anche a tutte le altre particelle di spin semi-intero (fermioni). Non si applica alle

particelle di spin intero (bosoni).

Il Principio di Esclusione di Pauli

La natura del principio di esclusione di Pauli può essere illustrata supponendo che gli elettroni 1 e 2 siano negli stati a e b rispettivamente. La funzione d’onda per il sistema dei due elettroni sarebbe

Ma questa funzione d’onda è inaccettabile perché gli elettroni sono identici e non

distinguibili. Ogni stato può essere occupato da uno qualunque dei due elettroni, e, per

tener conto di ciò, dobbiamo usare una combinazione lineare delle due possibilità..

Page 52: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La funzione d’onda per il sistema in cui entrambi gli stati "a" e "b" sono occupati dagli elettroni può essere scritta come:

Il principio di esclusione di Pauli è parte di una delle nostre più fondamentali osservazioni della natura: particelle identiche di spin semi-intero debbono avere una funzione d’onda antisimmetrica, mentre particelle identiche di spin intero debbono avere una funzione d’onda simmetrica. Il segno meno relativo tra i due termini costringe la funzione d’onda dei fermioni ad annullarsi identicamente se i due stati "a" e "b“ sono identici; ciò implica che è impossibile che entrambi gli elettroni occupino lo stesso stato.

Page 53: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Applicazioni del principio di esclusione di Pauli

Page 54: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

I numeri quantici associati agli elettroni atomici, insieme al principio di esclusione di Pauli, forniscono le proprietà fondamentali per la costruzione delle strutture atomiche e la comprensione della Tabella Periodica degli Elementi.

L’ordine di occupazione dei livelli di energia atomici da parte degli elettroni avviene a partire da quelli di energia pù bassa, e prosegue consistentemente con il principio di Pauli. L’indicazione dei livelli segue lo schema della notazione spettroscopica.

La Tabella Periodica degli Elementi

Per un dato numero quantico principale n, vi sono 2n2 diversi stati possibili (con la stessa energia).

Page 55: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Prima che la natura degli stati atomici degli elettroni fosse chiarificata dalla Meccanica Quantistica, lo studio degli spettri di radiazione emessi dagli atomi (spettroscopia) fece osservare l’esistenza di serie tipiche, alle quali furono assegnate lettere. In funzione dei numeri quantici degli stati elettronici, la notazione è la seguente:

La notazione spettroscopica

Page 56: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Man mano che la tabella periodica degli elementi è costruita, aggiungendo elettroni fino a raggiungere il numero

atomico, sono occupati gli stati di energia più bassa, permessi dal principio di esclusione di Pauli. La massima occupazione di ciascun livello è determinata dai numeri

quantici, ed il diagramma a sinistra illustra l’ordine di riempimento dei livelli energetici.

Per un singolo elettrone l’energia è determinata dal numero quantico principale n, e quel numero quantico è usato per indicare la "shell (guscio)" in cui si sistemano gli elettroni.

Per una data shell in atomi multi-elettronici, gli elettroni con un numero quantico orbitale l inferiore avranno energia più

bassa, se si tiene conto della loro energia di interazione con gli altri elettroni. Questi livelli di energia sono specificati dai

numeri quantici principali ed orbitali, usando le notazioni spettroscopiche. Quando si raggiunge il livello 4s, la

dipendenza dal numero quantico orbitale è così forte che l’energia del livello 4s è inferiore a quella del livello 3d. A parte qualche piccola eccezione, l’ordine di riempimento

segue lo schema indicato nel diagramma, con la freccia che indica i punti nei quali si procede verso shell successiva,

piuttosto che verso il livello con un maggiore numero quantico orbitale nella stessa shell.

L’ordine di riempimento degli stati elettronici

Page 57: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.
Page 58: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La divisione in “gusci” (shells) può suggerire l’idea di un "modello planetario" per gli elettroni; anche se non è del tutto accurata, questa descrizione ha un valore mnemonico

ed intuitivo per aiutare a comprendere la struttura degli elementi più pesanti.

Page 59: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

La configurazione orbitale degli elettroni fornisce una schema utile per capire le reazioni chimiche, che sono guidate dal principio di trovare le configurazioni degli

elettroni con energia più bassa (le più stabili). Si dice che il sodio ha una valenza di +1 poiché tende a perdere un elettrone, e il cloro ha una valenza di -1 poiché ha la

tendenza ad acquistare un elettrone. Entrambi questi atomi sono molto attivi chimicamente, e la loro combinazione (cloruro di sodio) è il classico caso di un

legame ionico.

Page 60: La crisi della Fisica Classica Alcune situazioni sperimentali in cui la Fisica Classica" fallisce Effetto fotoelettrico Radiazione di corpo nero Linee.

Nel1924 Einstein notò che i bosoni possono "condensare" in numero illimitato in un singolo stato fondamentale, in quanto obbediscono alla statistica di

Bose-Einstein e non hanno le restrizioni derivanti dal principio di esclusione di Pauli. Ciò fu poco notato, fino a quando il comportamento anomalo dell’elio

liquido a basse temperature fu studiato attentamente. Quando l’elio è raffreddato alla temperatura critica di 2.17 K, avviene una

impressionante cambio nel valore della capacità termica, la densità del liquido precipita e una parte di esso diventa "superfluido”, a zero viscosità. La

superfluidità è originata dalla frazione di atomi di elio che sono condensati alla più bassa energia possibile.

Un effetto di condensazione è anche ritenuto responsabile per il fenomeno della superconduttività. Nella teoria BCS, coppie di elettroni si uniscono per

formare le cosiddette coppie di Cooper, le quali si comportano come bosoni e possono condensare in uno stato di resistenza elettrica nulla.

La condensazione di Bose-Einstein