L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI...

25
ECE-656: Fall 2011 Lecture 35: Introduction to Quantum Transport in Devices Mark Lundstrom Purdue University West Lafayette, IN USA 1 11/21/11 objectives 1) Provide an introduction to the most commonly-used approach for simulating quantum transport (the non- equilibrium Green’s function (NEGF) approach) and discuss the interpretation of NEGF simulations. 2) In the process, discuss how quantum effects influence the performance of nanoscale MOSFETs. 2 Lundstrom ECE-656 F11 (Thanks to Xufeng Wang for help in preparing this lecture.)

Transcript of L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI...

Page 1: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

ECE-656: Fall 2011

Lecture 35:

Introduction to Quantum Transport in Devices

Mark Lundstrom Purdue University

West Lafayette, IN USA 1 11/21/11

objectives

1) Provide an introduction to the most commonly-used approach for simulating quantum transport (the non-equilibrium Green’s function (NEGF) approach) and discuss the interpretation of NEGF simulations.

2) In the process, discuss how quantum effects influence the performance of nanoscale MOSFETs.

2 Lundstrom ECE-656 F11

(Thanks to Xufeng Wang for help in preparing this lecture.)

Page 2: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

for more information…

1) View an online short course on nanoscale MOSFETs (especially Lecture 6) at http://nanohub.org/resources/5306

2) Consult the NEGF Resource page at http://nanohub.org/topics/Negf

3 Lundstrom ECE-656 F11

Lundstrom ECE-656 F11 4

outline

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

1)   Introduction 2)  Semiclassical ballistic transport 3)  Quantum ballistic transport 4)  Carrier scattering in quantum transport 5)  Discussion 6)  Summary

(Thanks to Xufeng Wang for help in preparing this lecture.)

Page 3: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

5

model SOI device

sketch of IBM structure simulation

domain

•  LG = 40 nm and larger •  TCH = 8.6 nm Si •  TINS = 1.1 nm SiON •  VDD = 1 V

A. Majumdar et al., IEEE TED, 56, pp 2270, 2009 (The ETSOI Devices studied here were provided by IBM Research)

LG = 40 nm

(Measured at Purdue Univ. by Himadri Pal.)

Lundstrom ECE-656 F11

6

semiclassical vs. quantum

d k( )

dt= −q

E

r t( ) = r t0( ) + υ ′t( )t0

t

∫ d ′t

υ t( ) = 1

dEdk

k =k t( )

Must treat electrons as waves when the potential energy (bottom of the conduction band) varies rapidly on the scale of the electron’s wavelength.

Lundstrom ECE-656 F11

ΔpΔx ≥ Uncertainty principle

Page 4: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

7

quantum confinement

E =p2

2m*

E =p2

2m* =32kBT

λB =

3m*kBT 10 nm (Si)

p = k = 2πλ

ψ ~ e± ikx

TSi

gate

gate

S D

Lundstrom ECE-656 F11

8

quantum confinement

z

ener

gy --

>

0 TSi

EC = 0

EF

ψ = 0 ψ = 0

−2

2m*

d 2ψdx2

+ EC (x)ψ = Eψ

Hψ = Eψ

ε1

ε2Eigenvalue problem

εn =2n2π 2

2m*TSi2 n = 1,2,3...

Lundstrom ECE-656 F11

Page 5: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

9

quantum effects on MOSFETs

1) increases VT

2) decreases the gate cap

3) affects transport along the channel…

Quantum mechanics:

(D. Esseni et al. IEDM 2000 and TED 2001)

Lundstrom ECE-656 F11

10

the MOSFET: an open quantum system

channel drain source

re!ik

1x

teik2x

EC (x)! "qV (x)SOURCE

DRAIN

1eik1x

xL0

Lundstrom ECE-656 F11

Page 6: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

Lundstrom ECE-656 F11 11

outline

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

1)  Introduction 2)   Semiclassical ballistic transport 3)  Quantum ballistic transport 4)  Carrier scattering in quantum transport 5)  Discussion 6)  Summary

(Thanks to Xufeng Wang for help in preparing this lecture.)

the BTE

12

∂f∂t

+∇r f •υ − q

E •∇ p f =

dfdt coll

f r ,k ,t( ) a number between zero and 1

Lundstrom ECE-656 F11

∇r f •

υ − q

E •∇ p f = 0 equilibrium or ballistic

Boundary conditions: Deep source and drain are assumed to be in thermodynamic equilibrium with well-defined but separate Fermi levels (EF1 and EF2).

f r ,k( ) = 1

1+ e(E−EF )/kBT= 11+ e(EC

r( )+Ek( )−EF )/kBT

?

Page 7: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

semiclassical transport

13

EF2

EF1

x

Ener

gy

x0

EC (x)

k

E(k) unchanged from bulk Si with a constant potential.

E

Bottom of E(k) moves up and down with the spatially varying EC(x)

Lundstrom ECE-656 F11

filling states in ballistic transport

14

E

k EF2

EF1

x

Ener

gy

x0

EC (x)

ETOP

Lundstrom ECE-656 F11

Page 8: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

15

solving the ballistic BTE

E

k EF2

EF1

x

Ener

gy

x0

n(x0 ) = ∫ LDOS1(E, x0 ) f0 EF1( ) + LDOS2 (E,x0 ) f0 EF 2( )⎡⎣ ⎤⎦dE

ε(x)

ETOP

VGS=VDS = 0.6 V

J-H Rhew, Z. Ren, and M.S. Lundstrom, Solid-State Electron. 46, 1800, 2002

16

LDOS(E, x)

Page 9: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

17

n(E, x) Electrons injected from source Electrons injected from drain

All injected electrons

18

I(E, x)

Lundstrom ECE-656 F11

Page 10: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

Lundstrom ECE-656 F11 19

outline

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

1)  Introduction 2)  Semiclassical ballistic transport 3)   Quantum ballistic transport 4)  Carrier scattering in quantum transport 5)  Discussion 6)  Summary

(Thanks to Xufeng Wang for help in preparing this lecture.)

objectives

20

To: Illustrate the NEGF approach to quantum transport in nanoscale MOSFETs

Not To:

• Derive the NEGF equations

• Discuss implementation and numerical issues

• Discuss nanoscale MOSFET device physics

Lundstrom ECE-656 F11

Page 11: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

21

solving the Schrödinger equation

−2

2m*

d 2ψdx2

+ EC (x)ψ = EψE

nerg

y

EC (x)

x1 3 2 4 a

finite differences �

ψ1

ψ2

ψ3

ψN

N (N-1)

H[ ]ψ = Eψ

ε1

ε2

ε3 Schred nanoHUB.org

ψ 1 = 0 ψ N = 0

22

Schred results: wide Q well

Wide quantum well dense energy levels and surface inversion

EF

Lundstrom ECE-656 F11

Page 12: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

23

open quantum systems: source injection

device contact 2 contact 1

SOURCE

DRAIN

xL0

teik2 xre−k1x1eik1x

no E(k) well-defined

E(k) well-defined

E(k)

EC x( )∝−qV x( )

ψ 1 ≠ 0

ψ N ≠ 0

Lundstrom ECE-656 F11

24

solving the wave equation

{ψ} = G[ ]{S}formal solution:

G(E)[ ] = E I[ ]− H[ ]− Σ1[ ]− Σ2[ ]( )−1

(N x N retarded Green’s function)

E[I ]− [H ]− [Σ1]− [Σ2 ]( ){ψ} = {S}(not an eigenvalue problem - energy is continuous)

[H ]{ψ} = E[I ]{ψ}→ E[I ]− [H ]( ){ψ} = 0

Σ1 , Σ2 “self energies”

Page 13: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

25

finding n(x) from ψ(x) the device is attached to a bulk contact …..

L

n1(x) = ψ k1(x)

k1 >0∑ 2

f1 E( )

absorbing contact

device contact

k of injected electron

computed wave function within device

Fermi function

of contact

E k1( )

x

ψk1 = 1Leik1x

f1 E( )

26

finding n(x) from ψ(x)

n1(xi ) =

1L

ψ k1(xi )

k1 >0∑ 2

f1 E( )

n1(xi ) =1πdk1dE

ψ k1(xi )

2⎡⎣⎢

⎤⎦⎥f1 E( )dE

0

∫ = LDOS1 xi ,E( ) f1 E( )dE0

g1D E( ) = 2πdk1dE

Repeat for contact 2 and add the results…..

n(xi ) = LDOS1 xi ,E( ) f1 E( )dE0

∫ + LDOS2 xi ,E( ) f2 E( )dE0

just like the semi-classical ballistic case!

Lundstrom ECE-656 F11

Page 14: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

EC (x)

position

ener

gy

1)  Guess EC (x)

2)  For each energy:

3)  Determine n (x):

4)  solve Poisson for EC (x)

E[I ]− [H ]− [Σ]( ){ψ} = {S}

n(xi) = n1(xi) + n2(xi)

independent energy channels (ballistic)

5) Determine ID I E( ) = 2q

hT (E) f1 − f2( )

ID = I E( )∫ dE 27

recap

28

LDOS (x, E) LDOS from source LDOS from drain

Total LDOS

Page 15: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

29

n(x, E) Electrons injected from drain Electrons injected from source

All injected electrons

30

I(x, E)

Lundstrom ECE-656 F11

Page 16: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

Lundstrom ECE-656 F11 31

outline

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

1)  Introduction 2)  Semiclassical ballistic transport 3)  Quantum ballistic transport 4)   Carrier scattering in quantum transport 5)  Discussion 6)  Summary

(Thanks to Xufeng Wang for help in preparing this lecture.)

32

filling states in ballistic transport

Σ1

Σ2

state at energy, E position, x

n(xi ) = LDOS1 xi ,E( ) f1 E( )dE0

∫ + LDOS2 xi ,E( ) f2 E( )dE0

Lundstrom ECE-656 F11

Page 17: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

33

filling states in ballistic transport

[Gn (E)] = GΣinG† Σin (E) = Γ1(E) f1(E)+ Γ2 (E) f2 (E)

“in-scattering” function connection to source

population of source

Lundstrom ECE-656 F11

34

scattering

Σ1

Σ2

state at energy, E position, x in- scattering

out- scattering

G(E)[ ] = E[I ]− [H ]− [Σ1]− [Σ2 ]− [ΣS ][ ]−1

[Gn (x,E)] = G Σ1in + Σ2

in + ΣSin( )G+

Lundstrom ECE-656 F11

Page 18: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

35

in-scattering function

EGn x,E( )⎡⎣ ⎤⎦ = G[ ] Σ1

in⎡⎣ ⎤⎦ G+⎡⎣ ⎤⎦

“in-scattering” from contact 1

Σ1in⎡⎣ ⎤⎦ = Γ1[ ] f1

strength of connection to source

population of source

Lundstrom ECE-656 F11

36

in-scattering function (phonons)

EGn x,E( )⎡⎣ ⎤⎦ = G[ ] ΣS

in⎡⎣ ⎤⎦ G+⎡⎣ ⎤⎦

in-scattering from another state

ΣSin⎡⎣ ⎤⎦ ~ D[ ] Gn[ ]

strength of connection to phonons

population of source

Lundstrom ECE-656 F11

Page 19: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

phonon in-scattering

37

E

E + ω

E − ω

ΣSin E( ) ≈ D0 Nω +1( )Gn E + ω( ) + D0NωG

n E − ω( )(absorption) (emission)

phonon emission

phonon absorption

Note: ΣSin⎡⎣ ⎤⎦ Gn⎡⎣ ⎤⎦depends on

solution procedure

38

1) Solve:

G(E, x)[ ] = E[I ]− [H ]− [Σ1]− [Σ2 ]− [ΣS ][ ]−1

[Gn (x,E)] = G[ ] Σ1in⎡⎣ ⎤⎦ G[ ]+ + G[ ] Σ2

in⎡⎣ ⎤⎦ G[ ]+

+ G[ ] ΣSin⎡⎣ ⎤⎦ G[ ]+

2) Compute:

depends on [Gn] solve by iteration!

3) Solve Poisson’s equation

Lundstrom ECE-656 F11

Page 20: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

current

39

I(E) ≠ T E( ) f1 − f2( )

I(E) = Trace Σin[ ] A[ ]( )− Trace ΓS[ ] Gn⎡⎣ ⎤⎦( )

Lundstrom ECE-656 F11

0 0.2 0.4 0.6 0.8 10

1000

2000

3000

4000

I ds (u

A/um

)

Vds (V)

Ids vs. Vds, Vg = 0.55V, Vback = 0V

40

IV comparison

ETSOI (measured)

ETSOI (semiclassical - ballistic)

ETSOI (quantum ballistic) ETSOI (quantum with phonon / SR scattering)

Lundstrom ECE-656 F11

Page 21: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

41

internal quantities

−30 −20 −10 0 10 20 300

5

10 x 107

Elec

tron

velo

city

(cm

/s)

Transport direction (nm)

Electron velocity

−20 0 20

−1

0

Firs

t con

duct

ion

band

(eV)

ETSOI (semiclassical - ballistic) ETSOI (quantum ballistic) ETSOI (quantum with SRS and phonon scattering)

Lundstrom ECE-656 F11

42

LDOS (x, E) LDOS from source LDOS from drain

Total LDOS

Page 22: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

43

n(x, E) Electrons injected from drain

All injected electrons

Electrons injected from source

44

I(x, E)

LEFT going current RIGHT going current

Page 23: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

Lundstrom ECE-656 F11 45

outline

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

1)  Introduction 2)  Semiclassical ballistic transport 3)  Quantum ballistic transport 4)  Carrier scattering in quantum transport 5)   Discussion 6)  Summary

(Thanks to Xufeng Wang for help in preparing this lecture.)

46

quantum vs. semi-classical transport

1) Boltzmann Transport Equation

f r,k( ) In equilibrium, this is the Fermi function. 6D, 3 in position and 3 in momentum space

2) Non-equilibrium Green’s function formalism

G r, ′r ,E( )⎡⎣ ⎤⎦ 7D because E is an independent variable.

Energy channels are coupled for dissipative scattering.

Lundstrom ECE-656 F11

Page 24: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

47

why is quantum transport important?

from M. Luisier, ETH Zurich / Purdue

4) 3)

2) 1)

Lundstrom ECE-656 F11 48

outline

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

1)  Introduction 2)  Semiclassical ballistic transport 3)  Quantum ballistic transport 4)  Carrier scattering in quantum transport 5)  Discussion 6)   Summary

(Thanks to Xufeng Wang for help in preparing this lecture.)

Page 25: L35 Intro to Quantum Transport - nanoHUB.orgL35_Intro_to_Quantum_Transport.pdf · 5 model SOI device sketch of IBM structure simulation domain • L G = 40 nm and larger • T CH

summary

49

1)  For ballistic transport, the NEGF approach is identical to solving the Schrödinger equation with open boundary conditions.

2)  The local density of states divides into parts fillable by each contact.

3)  Conceptually, scattering processes are like contacts.

4)  NEGF provides a “rigorous” prescription for including scattering.

5)  NEGF is limited by a single particle, mean-field assumption.

6) A basic familiarity with quantum transport should be part of every device engineer’s training.

Lundstrom ECE-656 F11

Lundstrom ECE-656 F11 50

questions

1)  Introduction 2)  Semiclassical ballistic transport 3)  Quantum ballistic transport 4)  Carrier scattering in quantum transport 5)  Discussion 6)  Summary