L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001...

22
L2: Observations of Stars T.M. Rogers Waves, Instabilities and Turbulence in GAFD, 8-14 July 2019 Cargese

Transcript of L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001...

Page 1: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

L2: Observations of Stars

T.M. Rogers

Waves, Instabilities and Turbulence in GAFD, 8-14 July 2019 Cargese

Page 2: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Mixing in StarsSolar Neutrinos

Orbits of Binary Stars

INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

T. M. Rogers1, D. N. C. Lin2,3,4, J. N. McElwaine5,6, and H. H. B. Lau7,8

1 Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; [email protected] Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; [email protected]

3 Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China4 Institute for Advanced Studies, Tsinghua University, Beijing, China

5 Swiss Federal Institute for Snow and Avalanche Research, 11 Fluelastrasse, Davos Dorf, Switzerland; [email protected] Planetary Science Institute, Tucson, AZ 85721, USA

7 Argelander-Institut for Astronomie, Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; [email protected] Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Australia

Received 2013 February 19; accepted 2013 May 28; published 2013 July 2

Be StarsOBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

C. Aerts1,2

and T. M. Rogers3,4

1Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

2Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

3Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, UK

4Planetary Science Institute, Tucson, AZ 85721, USA

Received 2015 April 30; accepted 2015 May 23; published 2015 June 19

Macroturbulence

INTERNAL GRAVITY WAVES MODULATE THE APPARENT MISALIGNMENT OFEXOPLANETS AROUND HOT STARS

T. M. Rogers1, D. N. C. Lin2,3, and H. H. B. Lau4,5

1 Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; [email protected] Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; [email protected]

3 Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China4 Argelander-Institut for Astronomie Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; [email protected]

5 Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, AustraliaReceived 2012 August 3; accepted 2012 September 4; published 2012 September 19

Obliquities of Hot Jupiters

ANGULAR MOMENTUM REDISTRIBUTION BY WAVES IN THE SUN

PAWAN KUMAR,1,2 SUZANNE TALON,3,4 AND JEAN-PAUL ZAHN5Received 1998 June 23 ; accepted 1999 March 5

Angular momentum transport by internal wavesin the solar interiorJean-Paul Zahn1, Suzanne Talon1, and Jose Matias1,2

1 Departement d’Astrophysique Stellaire et Galactique, Observatoire de Paris, Section de Meudon, F-92195 Meudon, France2 Centro de Astrofısica, Universidade do Porto, Rua do Campo Alegre 823, 415 Porto, Portugal

([email protected], [email protected], [email protected])

Uniform Rotation of Solar Interior

Differential RotationON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

T. M. RogersDepartment of Mathematics and Statistics, Newcastle University, UK

Planetary Science Institute, Tucson, AZ 85721, USAReceived 2015 September 28; accepted 2015 November 10; published 2015 December 18

Temperature at

which Li/B burns

• Until very recently all observational

constraints about mixing/angular

momentum transport in stars came

from measuring surface abundances/

rotation

• Surface abundances of Lithium for F/

G stars (solar type) are lower than

expected (big bang values)

• Measurements used to measure/place

constraints on mixing beyond nominal

convective-radiative boundary

Page 3: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Eddington-Sweet

circulation

• Rotation causes temperature

differential between pole and

equator - causes meridional

circulation

• Timescale inversely proportional

to rotation - > fast rotation ->

shorter timescales -> more

efficient mixing

τES =

G2M3

Ω2R4L

τES ≈ 1012

τESB ≈ 108

Not Important

Probably Important

Page 4: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Chemical Mixing:

Nitrogen Abundances

• Nitrogen is produced in the core

of massive stars via burning: a

surface enhancement of Ni would

imply mixing through the (large)

radiative envelope

• Mixing in massive stars (mostly

radiative) is generally thought to

be dominated by rotational mixing

(Eddington-Sweet circulation)

• If this is the case one would

expect strong Nitrogen

enhancement at the surface of

rapid rotators and no

enhancement at surface of slow

rotators

• This is generally seen but there

are a lot of outliers : fast rotators

with no enhancement + slow

rotators which are enhanced

6.8

7

7.2

7.4

7.6

7.8

8

0 50 100 150 200 250 300 350

12

+ lo

g [

N/H

]

v sini [km/s]

M ≤ 10 Msun10 < M ≤ 12 Msun

12 < M ≤ 15 Msun15 < M ≤ 20 Msun

M > 20 Msunbinary

1

10

100

1000

Nu

mb

er

of

sim

ula

ted

sta

rs p

er

bin

Box 1(a)

(b)

Box 2 Box 4

Box 3

Box 5

Brott et al. 2011

Page 5: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

ANGULAR MOMENTUM REDISTRIBUTION BY WAVES IN THE SUN

PAWAN KUMAR,1,2 SUZANNE TALON,3,4 AND JEAN-PAUL ZAHN5Received 1998 June 23 ; accepted 1999 March 5

Angular momentum transport by internal wavesin the solar interiorJean-Paul Zahn1, Suzanne Talon1, and Jose Matias1,2

1 Departement d’Astrophysique Stellaire et Galactique, Observatoire de Paris, Section de Meudon, F-92195 Meudon, France2 Centro de Astrofısica, Universidade do Porto, Rua do Campo Alegre 823, 415 Porto, Portugal

([email protected], [email protected], [email protected])

Uniform Rotation of Solar Interior

Solar Neutrinos

Orbits of Binary Stars

INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

T. M. Rogers1, D. N. C. Lin2,3,4, J. N. McElwaine5,6, and H. H. B. Lau7,8

1 Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; [email protected] Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; [email protected]

3 Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China4 Institute for Advanced Studies, Tsinghua University, Beijing, China

5 Swiss Federal Institute for Snow and Avalanche Research, 11 Fluelastrasse, Davos Dorf, Switzerland; [email protected] Planetary Science Institute, Tucson, AZ 85721, USA

7 Argelander-Institut for Astronomie, Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; [email protected] Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Australia

Received 2013 February 19; accepted 2013 May 28; published 2013 July 2

Be Stars

Mixing in Stars

OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

C. Aerts1,2

and T. M. Rogers3,4

1Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

2Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

3Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, UK

4Planetary Science Institute, Tucson, AZ 85721, USA

Received 2015 April 30; accepted 2015 May 23; published 2015 June 19

Macroturbulence

INTERNAL GRAVITY WAVES MODULATE THE APPARENT MISALIGNMENT OFEXOPLANETS AROUND HOT STARS

T. M. Rogers1, D. N. C. Lin2,3, and H. H. B. Lau4,5

1 Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; [email protected] Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; [email protected]

3 Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China4 Argelander-Institut for Astronomie Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; [email protected]

5 Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, AustraliaReceived 2012 August 3; accepted 2012 September 4; published 2012 September 19

Obliquities of Hot Jupiters

Differential RotationON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

T. M. RogersDepartment of Mathematics and Statistics, Newcastle University, UK

Planetary Science Institute, Tucson, AZ 85721, USAReceived 2015 September 28; accepted 2015 November 10; published 2015 December 18

• Radiative Interior rotating uniformly

• Convective envelope rotating differentially

• Very thin layer between (tachocline)

Helioseismology- Then along came this!

Page 6: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Asteroseismology

aster starseismos oscillation

logos discourse

The analysis of stellar oscillations

enables the study of the stellar

interior because different modes

penetrate to different depths

inside the star

Page 7: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Asteroseismology 101

Fundamental First overtone Second overtone

nodesmodes

Page 8: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Asteroseismology

Gravity waves propagating in

radiative zone of a massive star, from

surface to core

Oscillations = solutions of perturbed SSE in terms of periodic eigenfunctions

Each oscillation mode described as spherical harmonic & frequency:

Dominance of restoring force?1. pressure (acoustic waves)2. buoyancy (gravity waves) 3. Coriolis (inertial waves)4. Lorentz (Alfvén waves)5. tidal (tidal waves)

Page 9: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Asteroseismology 301

(l,m)=(3,0)

axisymmetric

(l,m) = (3,2)

tesseral

(l,m)=(3,3)

sectoral

Blue: Moving towards Observer Red: Moving away from Observer

Page 10: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Asteroseismology

Inferences of properties of stellar interiors via modes

a) requires frequencies & identification of (l,m) of as many

modes as possible from data (+ n from models)

b) can only probe regions where modes propagate

time frequency (period of mode)

geometry spherical harmonic+radial order

Page 11: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Wave Equation

d2ξr

dr2=

ω2

c2

1−N2

ω2

S2

l

ω2− 1

ξr

|ω| > |N | and |ω| > |Sl|

or

|ω| < |Sl||ω| < |N | and

p-modes

g-modes

Sl =

N =

c =

ω =

Lamb Frequency

Brunt Vaisala Frequency

Sound Speed

Wave Frequency

Otherwise waves are evanescent

Page 12: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Propagation Cavity in the Sun

All helioseismology is done with

p-modes

Page 13: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Probing power in F stars (H burning in core)

Figure

courtesy

of Joey Mombarg

used in

Aerts et al. (2019)

ARAA, in press

p- and g-modes

probe different

regions throughout

evolution

p modes

g modes

Page 14: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Probing power on Red Giant Branch (H exhausted

in core, burning in shell)

p- and g-modes

probe different

regions throughout

evolution

Figure

courtesy

of Cole Johnston

used in

Aerts et al. (2019)

ARAA, in press

Main Sequence (H burning in core)

Page 15: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Probing power on Red Clump (He burning in core)

p- and g-modes

probe different

regions throughout

evolution

Figure

courtesy

of Cole Johnston

used in

Aerts et al. (2019)

ARAA, in press

Page 16: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Probing power of p- and g-modes

Green: l=0 Red: l=1, n=3

Blue: l=1, n= -20

Schmid & Aerts (2016)

p-modes: dominantly radial 𝛏

g-modes: dominantly tangential 𝛏

p-modes: probe envelope physics

g-modes: probe near-core region

Page 17: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Starquakes and Asteroseismology

Page 18: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Rotation (and differential rotation) across the HR

diagram

1.4 M⊙< M < 5 M⊙ Aerts et al. (2017)

log g is a proxy

for age

B stars

A,F stars

RGB stars

2nd clump

red clump

As stars age

their cores

spin up…

but much less

than expected

Must transfer

angular

momentum

stars on the main

sequence mostly rotate

uniformly (in radius)*

Page 19: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Evolution of stellar rotation

Aerts et al. (2019), ARAA, Vol. 57, in press

RiA via https://www.annualreviews.org/doi/pdf/10.1146/annurev-astro-091918-104359

Core rotation

much slower than

expected (by

10-100)

&

Differential

rotation

decreases

Page 20: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Post Main Sequence Evolution (happens for both low and high mass stars)

Energy source runs out in core;

lose pressure support; core

collapses

H starts burning in shell, causes

outer layers to expand

To conserve AM core would spin up

envelope would spin down

if no coupling

1 10 100R/Rsun

10−3

100

103

106

Tcore

(days)

No Coupling Post−MS

No Coupling MS

Maximal Coupling

END MS

FIRST DREDGE UP RGB BUMP

8 10 12 14R/Rsun

240

120

60

30

Tc

ore

(d

ay

s)

1 10 100R/Rsun

10−3

100

103

106

Tcore

(days)

No Coupling Post−MS

No Coupling

Maximal Coupling

END MS TIP

CLUMP

Tayar & Pinsonneault 2013

low mass observation

high mass observation

Important from

IGW perspective

Page 21: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Summary of Observations

• Observations of surface abundances indicates unknown

mixing in a variety of stars (low and high mass)

• Helioseismology indicates coupling between convective and

radiative regions in Sun and an efficient AM transporter in

radiative region to cause uniform rotation

• Asteroseismology indicates efficient AM transporter between

convective and radiative regions across all ages and masses,

though possibly more efficient in intermediate/high mass stars

• All of this indicates we need better descriptions of

(magneto-)hydrodynamic processes in stellar interiors

Page 22: L2: Observations of Stars file1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Department of Astrophysics/IMAPP, Radboud University Nijmegen,

Solar Neutrinos

Orbits of Binary Stars

INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

T. M. Rogers1, D. N. C. Lin2,3,4, J. N. McElwaine5,6, and H. H. B. Lau7,8

1 Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; [email protected] Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; [email protected]

3 Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China4 Institute for Advanced Studies, Tsinghua University, Beijing, China

5 Swiss Federal Institute for Snow and Avalanche Research, 11 Fluelastrasse, Davos Dorf, Switzerland; [email protected] Planetary Science Institute, Tucson, AZ 85721, USA

7 Argelander-Institut for Astronomie, Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; [email protected] Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Australia

Received 2013 February 19; accepted 2013 May 28; published 2013 July 2

Be Stars

Mixing in Stars

OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

C. Aerts1,2

and T. M. Rogers3,4

1Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

2Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands

3Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, UK

4Planetary Science Institute, Tucson, AZ 85721, USA

Received 2015 April 30; accepted 2015 May 23; published 2015 June 19

Macroturbulence

INTERNAL GRAVITY WAVES MODULATE THE APPARENT MISALIGNMENT OFEXOPLANETS AROUND HOT STARS

T. M. Rogers1, D. N. C. Lin2,3, and H. H. B. Lau4,5

1 Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719, USA; [email protected] Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA; [email protected]

3 Kavli Institute for Astronomy and Astrophysics and School of Physics, Peking University, China4 Argelander-Institut for Astronomie Universit Bonn Auf dem Huegel 71, D-53121 Bonn, Germany; [email protected]

5 Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, AustraliaReceived 2012 August 3; accepted 2012 September 4; published 2012 September 19

Obliquities of Hot Jupiters

ANGULAR MOMENTUM REDISTRIBUTION BY WAVES IN THE SUN

PAWAN KUMAR,1,2 SUZANNE TALON,3,4 AND JEAN-PAUL ZAHN5Received 1998 June 23 ; accepted 1999 March 5

Angular momentum transport by internal wavesin the solar interiorJean-Paul Zahn1, Suzanne Talon1, and Jose Matias1,2

1 Departement d’Astrophysique Stellaire et Galactique, Observatoire de Paris, Section de Meudon, F-92195 Meudon, France2 Centro de Astrofısica, Universidade do Porto, Rua do Campo Alegre 823, 415 Porto, Portugal

([email protected], [email protected], [email protected])

Uniform Rotation of Solar Interior

Differential RotationON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

T. M. RogersDepartment of Mathematics and Statistics, Newcastle University, UK

Planetary Science Institute, Tucson, AZ 85721, USAReceived 2015 September 28; accepted 2015 November 10; published 2015 December 18