l1 Launch System

download l1 Launch System

of 30

Transcript of l1 Launch System

  • 8/18/2019 l1 Launch System

    1/30

  • 8/18/2019 l1 Launch System

    2/30

    Outline

    • Launch systems characteristics

    • Launch systems selection process

    • Spacecraft design envelope &

    environments.

  • 8/18/2019 l1 Launch System

    3/30

    Lesson Objectives• Each student will

    • Understand launch system characteristics, sizing and

    trade-offs.

    • Estimate launch system sizes, staging requirements.

    • Be able to select appropriate launch system for a given

    mission from available systems.

    • Be able to estimate spacecraft requirements driven by

    launch vehicle induced environments.

    • Determine costs of launch systems.

  • 8/18/2019 l1 Launch System

    4/30

    Rocket Basics

    Thrust

    Specific impulse

    where K depends on and the engine pressure ratio

    )(   pe peeV em

    cT  K  Isp

     g m

     F  Isp

    me

    Ve

    Pe

    Ae

     pFuel in

    Oxidizer in

    Thrust

     pc

    Throat

  • 8/18/2019 l1 Launch System

    5/30

    Rocket Equation

    Where is the mass ratio

    (Assumes zero losses due to drag and gravity)

    t mo M veh M  g 

    veh M 

     Ispm

    veh M 

    a  

    V    a d t   Isp g  d md t 

      d t 

     M 

    o

     d m

    d t 

      t t o

    t  f  

     

     

      

     

     

     

     

     

     

     

     

     

      Rn Isp g  f  

     M o M n Isp g 

     propellant  M o M 

    o M n Isp g V   

     R   o M 

     f  

  • 8/18/2019 l1 Launch System

    6/30

    Rocket Equation (Cont.)

     M  p M  f   e

     Isp g 

     

     

    1

     M o1eV / Isp g 

     

     

    M p = mass of propellant

    Mo = initial mass

    Mf  = final massV = vehicle velocity changeM

    veh

    = vehicle mass

  • 8/18/2019 l1 Launch System

    7/30

    Staging• Near burnout, rocket acceleration is diminished because

     payload mass includes entire launch systems structure.

    • Staging removes lower stage structural weight

    Moi = initial mass of rocket including all upper stages and payload.

    Mfi = final mass after stage has burned before separation.

    i = stage number 

    V = Vi

     

    V i g Isp n

     M oi M 

     f  i

     

     

  • 8/18/2019 l1 Launch System

    8/30

    Staging (Cont.)

    = payload fraction =

    or 

    M payload i = mass of payload plus all upper stages

    Structure fraction

    Msi = mass structure for stage i

    M pi = mass propellant for stage i

     payload  M o

     

    i

      payload 

    moi

    i

      i1

    n

     i

      si

      si M 

    oi

      si M 

     pi

     M  si

     M  payload i

  • 8/18/2019 l1 Launch System

    9/30

    Launch Vehicle Forces

    W

    L

    D

    V

    xz

    cp

    T

      

    Flight path angle

    Angle of attack 

    ax  g   T W 

     sin    

     

       D

    W cos    

        L

    W sin   

      

    az   g  cos     

     

     

     D

    W sin   L

    W cos   

  • 8/18/2019 l1 Launch System

    10/30

  • 8/18/2019 l1 Launch System

    11/30

    Example Launch SystemsLaunch

    System

    Upper

    Stage

    LEO

    (kg)

    GTO

    (kg)

    GEO

    (kg)

    Polar

    (kg)

    AtlasIIAS

    Centaur 2A

    8640 3606 1050 7300

    Delta II

    7920/25

    PAM-D 5089 1840 910 3890

    Pegasus

    XL

    460 345

    Shuttle -

    IUS

    24,400

    5900 2360

    Taurus Star 37 1400 450 1060

    Titan IV -

    Centaur 8620 4540

    14,110

  • 8/18/2019 l1 Launch System

    12/30

    Example Orbit

    Transfer VehiclesCharacteristics PAM-D IUS Centaur

    Length (m) 2.04 5.2 9.0

    Diameter (m) 1.25 2.9 4.3

    Mass (kg) 2180 14,865 18,800

    Thrust (N) 66,440 200,000 147,000

    Isp 292.6 292.9 442

    Structure mass 180 1255 2100

    Propellant mass 2000 9710 16,700

    Airborne support

    equipment mass

    1140 3350 4310

  • 8/18/2019 l1 Launch System

    13/30

    Launch Sites Criteria• Minimum inclination

    • Launch azimuth• Weather  Orbital

    motion

    To sun

    Earth rotation

  • 8/18/2019 l1 Launch System

    14/30

    US Launch Sites and LaunchSystems

    • Western range (Vandenberg AFB): – LMMS Titan II, IV-B, Athena

     – Boeing Delta II, III, EELV

     – OSC Taurus, Minotaur, Pegasus

    • Equatorial launch site:

     – Boeing SeaLaunch• Alaska Spaceport

     – OSC Minotaur 

  • 8/18/2019 l1 Launch System

    15/30

    US Launch Sites and LaunchSystems (continued)

    • Eastern Range (Cape Canaveral Air Station,Kennedy Space Center):

     – STS

     – LMMS Titan IV; Atlas II, IIA, IIAS; EELV – Boeing Delta II, III, EELV

     – Orbital Pegasus XL, (Taurus, Minotaur)

     – Coleman/TRW/IAI Shavit

    • Wallops Island

     – Pegasus XL, Minotaur 

  • 8/18/2019 l1 Launch System

    16/30

    Typical Launch VehicleIntegration Tasks

    • Mission Orbit Planning – Effect of launch delays, launch window definition

    • Launch vehicle and spacecraft performance analyses

     – LV performance variations vs mission impacts

    • Defining, implementing mission unique requirements – Ground processing, ground testing

     – Launch vehicle interfaces - power, command, telemetry, etc.

     – Critical s/c commands: self-generated, booster provided, backup

    timers?• Flight safety systems - range destruct protocols: installation and test of

    range destruct packages

    • Developing multi-agency day-of-launch launch ops procedures

     – Example: Go/No-Go limits

  • 8/18/2019 l1 Launch System

    17/30

    Launch Services - Scheduling

    • LMMS Atlas Commercial template – @ 36 months, select a 3 month window

     – @ 12 months, select a 30 day slot

     – @ 6 months, select a launch day

    • STS templates:

     – 36+ months for a Primary payload – 24 months minimum for secondary payloads

  • 8/18/2019 l1 Launch System

    18/30

    Payload Integration

    • Fairing size and shape

    • Maximum accelerations

    • Vibration frequencies and magnitudes

    • Acoustic frequencies and magnitudes

    • Temperature extremes

    • Air cleanliness

    • Orbital insertion accuracy

    • Interfaces to launch site and vehicleGround handling, ground and airborne

    transportation, and launch environment may be

    more severe than space operating environment

  • 8/18/2019 l1 Launch System

    19/30

    Fairings

    • Protection from aerodynamic loading

    • Diameter and length constraint

    • Acoustic environment

    • Jettison Altitude

  • 8/18/2019 l1 Launch System

    20/30

    Structural & Electrical Interface

    • Physical support adaptors

    • Separation/deployment system

    • Kick motor/Spin tables

    • Electrical interface• Access

     – Physical

     – Electrical

     – Optical

     – Radio frequency

  • 8/18/2019 l1 Launch System

    21/30

    Payload Environments

    • Thermal

     – Pre-launch

     – Ascent fairing radiant – Aero-heating (Free molecular heating)

    • Electromagnetic

    • Contamination

    • Venting

    • Acceleration

    • Vibration

    • Acoustics

    • Shock  

  • 8/18/2019 l1 Launch System

    22/30

    Acceleration Load FactorsLift off Max

    Airloads

    Stage 1

    shutdown

    Stage 2

    shutdown

    Vehicle Axial Later  al Axial Lateral Axial Later  al Axial Later  al

    Titan 34D/IUS steady

    Dynamic

    +1.5

    +1.5 + 5.0

    +2.0

    + 1.0 + 2.5

    0 - +4.5

    + 4.0 + 2.0

    0 – +2.5

    + 4.0 + 2.0

    Atlas II steadydynamic

    +1.3+1.5 +1.0

    +2.2+ 0.3

    +0.4+ 1.2

    +5.5+ 0.5 + 0.5

    +4.0+ 2.0 0.5

    Delta steady

    dynamic

    +2.4

    1.0 2 to 3 +6.0

    Shuttle IUS steadyDynamic

    +3.2+3.5

    +2.5+3.4

    +1.1

    to 3.2

    +0.25 to

     –0.59 +3.2 +0.59

  • 8/18/2019 l1 Launch System

    23/30

    Vibration Environments

    • Caused by

     – Launch system propulsive dynamic acceleration

     – Unsteady aerodynamic effects

     – Acoustic pressure from engines

     – Amplified mechanical response of vehicle structure• Includes ground and airborne transportation

    • Yields structural stiffness requirement on

     payload and adaptor/interface.

  • 8/18/2019 l1 Launch System

    24/30

    Shock Loads

    Caused by pyrotechnic devices used to separatefrom launch.

    Staging, engine starts and shut down.

  • 8/18/2019 l1 Launch System

    25/30

    Acoustic Environments

    • Caused by

     – Reflected sound energy from launch pad structures

    and facilities. – Maximum dynamic pressure (max q) aerodynamics.

    • Affected by fairing design

  • 8/18/2019 l1 Launch System

    26/30

    Injection Accuracy• Final stage guidance and propulsion

     performance determines injection accuracy. – Apogee, perigee, inclination

     – Payload’s Attitude Determination and Control

    System must capture and correct linear androtational tip-off rates, and injection errors.

  • 8/18/2019 l1 Launch System

    27/30

    Payload Integration Procedures

    • Mating spacecraft to launch vehicle.

    • Spin tests.

    • Propellant loading.

    • Pre-launch test of all subsystems.

  • 8/18/2019 l1 Launch System

    28/30

    Payload Processing• Receiving inspection

    • Payload & ground support equipment

    • Installing hardware (batteries, guidance

    systems)

    • Pressure checks

    • Communication and payload functional test

  • 8/18/2019 l1 Launch System

    29/30

    Launch System

    Cost Estimate

    • Determined from supplier.

    • Should include integration and check out costs,

    launch support systems and launch integration

    costs.• Small payloads may ride as a secondary

     payload.

    • Example launch system costs.

  • 8/18/2019 l1 Launch System

    30/30

    References – Launch system user handbooks.

     – Lockheed Martin, Boeing, Orbital, etc. (or www)

     – AIAA Launch Vehicle Summary (in Library)

     – International Space Industry Report

     – Reducing Space Mission Costs. Wertz and Larson