L 19: Low Power Circuit Optimization. Power Optimization Modeling and Technology Circuit Design...

19
L 19: Low Power Circuit Optimization

Transcript of L 19: Low Power Circuit Optimization. Power Optimization Modeling and Technology Circuit Design...

L 19: Low Power Circuit Optimization

Power Optimization

• Modeling and Technology• Circuit Design Level

– logic Families– low-power Flip-Flops– low-power clock distribution

• Logic and Module Design Level• Architecture and System Design Level• Some Design Examples

Choice of Logic Family• Power delay product improves as supply voltage decreases• The best logic style minimizes power-delay product

Static CMOS Full Adder

B

A

VDDC’ C

B’B’

A A’

A’ A’

BB

C C’

B

B’

A

B

A B

C

C

A Bsum

carry

NO Race dynamic CMOS logic(NORA)

• Full Adder

A

B

C

A B

phi

phi

phi carry

Phi’phi’

A B C

phi’

A

B

C

sum

Cascode Voltage Switch Logic(CVSL) Full Adder

phi phi

A

B

C’

A

B

C

A’

B’

sumsum’

A’

B

C’

phi

A

B’

C

B B’

Carry’ Carry

phi

phi phi

Differential Cascode Voltage Switch Logic

• (DCVSL)

A

B

C’

A

B

C

A’

B’

sumsum’

A’

B

C’

A

B’

C

B B’

Carry’ Carry

CMOS NonThreshold Logic(CNTL) Full Adder

A

B

C’

A

B

C

A’

B’

sumsum’

A’

B

C’

A

B’

C

B B’

Carry’ Carry

Logic Family• Full Adder Transistor Count and Area

Transistors Rank Area(m2) Rank

CMOS

NORA

CVSL

DCVS

CNTL

30

22

24

22

34

4

1

3

1

5

21,294

14,319

25,740

21,080

40,020

3

1

4

2

5

Simulated(ns) Rank Measured(ns) Rank

CMOS

NORA

CVSL

DCVS

CNTL

46.34

45.9

45.4

61.5

54.1

3

2

1

5

4

60

47.2

49.2

72.6

87.0

3

1

2

4

5

• Delays when 16-bit ripple carry adder was made

Logic Family• Peak switching current

simulated(mA) Rank Measure(mA) Rank

CMOS

NORA

CVSL

DCVS

CNTL

2.42

2.74

1.08

1.19

1.25

4

5

1

2

3

1.30

1.20

1.06

1.22

1.18

5

3

1

4

2

Current(A) Rank

CMOS

NORA

CVSL

DCVS

CNTL

98

948

925

116

1320

1

4

3

2

5

• Average measures current

A A’ Z Z’

A

A’

Z

Z’

Q’ Q

A B

B

B’

B’ A’

(AB)’ AB

Complementary Pass Transistor Logic(CPL)

A

B

B’

B’ A’

AB(AB)’

VDDVDD

VDD

VDD-VTN

High Level Degradation

B

A

B’

A’

AB

B’B

A

(AB)’

A’

Dual Path Transistor Logic(DPL)

A B

B

B’

B’ A’

(AB)’ AB

NMOS CPLNetwork

O’ O

Swing Restored Pass Transistor

• Logic(SRPL)

• Power consumption of Flip-Flop

– power consumed for the internal state change

– power consumed for the clocking

• Because the stage change is infrequent, the clocking capacitance must be reduced.

• Conventional C2MOS Flip-Flop

At each clock, the switched capacitance is 10MOS gates

Low-Power Flip-Flops

clk clkb

D

clk

clkb clkb

clk

clkb

clk clk

clkb

Q

Low-Power Flip-Flops• Gated D Flip-Flop

• SSTC(Static Single-Transistor Clocked Flip-Flop

D Q

Clk

D

CK

At each clock, the switchedcapacitance 2 MOS gates, but Slow and about 40 transistors

Db

clk

QQb

D x xbx xb

The switched capacitance is 2 MOS gates and

16 transistors

Power Optimization

• Modeling and Technology

• Circuit Design Level

• Logic and Module Design Level– logic synthesis– module design optimization

• Architecture and System Design Level

• Some Design Examples

Module Design Optimization

• Power dissipation

– layout

• 2um CMOS MOSIS

– condition

• 1,000 pseudo-random input

• averaging the result

• Result– CSA has lowest power

dissipation• power supply current

falls to zero faster

• Arithmetic component : Adder

Adder Type

Ripple CarryCarry Skip-ICarry Skip-II

Carry LookaheadCarry Select

Conditional Sum

Delay(nsec)

54.2728.3821.8417.1319.5620.05

Area(mm2)

0.25270.44920.51490.74541.05321.4784

Current(mW)

0.1170.1090.1260.1710.2160.304

•Carry Skip-I : constant block size•Carry Skip-II : variable block size

Module Design Optimization

• Power estimation– conditions

• 50,000 random distribution input • Result

– wallace multiplier• more attractive when operand size is large• irregular layout and large layout area

• array multiplier– becomes unattractive as operand size

increase– has higher average number of logic

transitions– has much higher delay

• Arithmetic component : Multiplier

8b16b32b8b16b32b

Wallace

ModifiedArray

Multiplier Type

50 98

198 35 51 63

Delay(in gate) Size(gates)

567 2,405 9,918

613 2,569

10,413

Transition

583 7,348

99,102 573

3,874 19,548