@kul 1 SHM

download @kul 1 SHM

of 35

Transcript of @kul 1 SHM

  • 8/12/2019 @kul 1 SHM

    1/35

    GETARAN

    AP Physics Chttp://www.jca.umbc.edu/~george/html/courses/phys224/2006spg/lectures/

    FENOMENA ALAM,

    PEMODELAN & DESKRIPSI FISIS

  • 8/12/2019 @kul 1 SHM

    2/35

    GETARAN: definisi

    Gerak tidak menjalartetapi memiliki pola ke-

    berulang-andisekitar titik setimbang

    yang ditinjau

    Obyek Besaran Fisis

    Gerak

    benda masif(berukuranbesar/kasatmata) yangmengalamigerak bolak-

    balikdisekitar titiksetimbang

    posisi (x) (?)

    Persamaangerak bolak-balik

    kecepatan (v)

    percepatan (a)

    energi (E)

    Pola ke-berulang-an

    frekuensi (f) periode (T)

    periodik: sinus/cosinus

    tidak periodik (tidak dibahas)

  • 8/12/2019 @kul 1 SHM

    3/35

    Oscillatory Motion is repetitive back and forth motionabout an equilibrium position

    Oscillatory Motion isperiodic.

    Swinging motion and vibrations are forms ofOscillatory Motion.

    Objects that undergo Oscillatory Motion are called

    Oscillators.

    GETARAN: terminologi (per-istilah-an)

  • 8/12/2019 @kul 1 SHM

    4/35

    FENOMENA ALAM: getaran teratur & acak

    Contoh fenomena alam

    dengan sifat gerak berulangyang teratur dan memenuhi

    definisi gerak selaras

    sederhana

    Bila berlangsung pelan, fenomena

    gerak ini dapat memenuhi kriteria

    selaras sederhana, namun

    kenyataannya tidaklah selalu

    sederhana

    Ilustrasi manakah (kiri / kanan) yang sesuai dengan definisi

    gerak bolak-balik (getaran) sesuasi dengan definisi?

  • 8/12/2019 @kul 1 SHM

    5/35

    EFEK (TERLIHAT) FENOMENA ALAM GETARAN: Gempa Vulkanik

    Proses erupsi yang didahuluidengan gempa vulkanik

    merupakan hasil dari getaran

    hebat dapur magma yang dapat

    dirasakan di sekitar area gunung

    getaran hebat dapur magma yangdapat dirasakan hingga permukaan

    ditangkap dengan seismograp.

    Berakibat munculnya rekahan di

    permukaan dan/atau di bawah

    permukaan

  • 8/12/2019 @kul 1 SHM

    6/35

    We use natural oscillations to measure time

    1.pendulum

    2.quartz crystals

    Currently, we define 1 second based on

    oscillations inside a Cesium atom:

    1 second = 9,192,631,770 oscillations

    (303) 499-7111: http://tf.nist.gov/

    CC:BY-SAtacoekkel(flickr)http:/

    /creativecommons.org/licenses/by-s

    a/2.0/deed.en

    GETARAN ALAMI

    http://tf.nist.gov/http://tf.nist.gov/http://tf.nist.gov/http://tf.nist.gov/
  • 8/12/2019 @kul 1 SHM

    7/35

    Pola Gerak Harmonik

    Ilustrasi pola gerak getaran selaras(harmonik) sederhana.

    Karena alasan penjabaran

    (deksripsi) matematis, dua ilustrasi

    bagian atas tidak dibahas.

    Hanya gerak dengan pola sinusoidal(sin atau cos) saja yang dibahas

    apa perbedaan pola gerak sinus

    dan cosinus?

  • 8/12/2019 @kul 1 SHM

    8/35

  • 8/12/2019 @kul 1 SHM

    9/35

    Deskripsi Fisis Umum GHS: Frekuensi (f )Periode (T )

    The FREQUENCYof a wave is the inverse of the PERIOD.That means that the frequency is the #cycles per sec.

    The commonly used unit is HERTZ(HZ).

    Tf

    fT

    Hzs

    ccycfFrequency

    scycsTPeriod

    11

    5.05.0sec5.3

    75.1

    seconds

    cycles

    275.1

    5.3cycles

    seconds

  • 8/12/2019 @kul 1 SHM

    10/35

    Model Getaran dengan pola GHS: sistem pegas berbeban

    An objects maximum

    displacement from its

    equilibrium position is called the

    Amplitude (A) of the motion.

  • 8/12/2019 @kul 1 SHM

    11/35

    2cos

    tx t A

    T

    We need a position function to

    describe the motion above.

    Model Getaran GHS: penjabaran fisis pola ke-berulang-an

  • 8/12/2019 @kul 1 SHM

    12/35

    2cos tx t AT

    cos 2x t A ft

    cosx t A t

    1T

    f

    2

    T

    x(t) to symbolize positionas a function of time

    A =xmax =xmin

    when t = T,

    cos(2) = cos(0)

    x(t) =A

    Model Getaran GHS: besaran simpangan (x)

  • 8/12/2019 @kul 1 SHM

    13/35

    sinv t A t

    cosx t A t d x tv t

    dt

    In this context we will call

    omega Angular Frequency

    What is the physical

    meaning of the product

    (A)?

    maxv A

    The maximum speed

    of an oscillation!

    Model Getaran GHS: besaran kecepatan (v) ~ percepatan (a)

  • 8/12/2019 @kul 1 SHM

    14/35

    When collecting and modeling data of SHM your

    mathematical model had a value as shown below:

    x(t) Acost

    x(t) Acos tC What if your clock didnt start at x=A or x=-A?

    This value represents our initial conditions.

    We call it the phase angle:

    x(t) Acos t

  • 8/12/2019 @kul 1 SHM

    15/35

    The velocity is 90o

    out of phase withthe displacement

    The acceleration is

    180oout of phasewith thedisplacement

  • 8/12/2019 @kul 1 SHM

    16/35

    (sin )cos

    (cos )sin

    axa ax

    x

    axa ax

    x

    Review: FUNGSI SINUS

  • 8/12/2019 @kul 1 SHM

    17/35

    A

    TEquil. point

    f=1/T

    Review: FUNGSI SINUS(tidak semua gerak bolak-balik merupakan fungsi sinus yang mulus)

  • 8/12/2019 @kul 1 SHM

    18/35

    It is aperiodic motion.

    AND

    It has arestoringforce thatacts to

    restore the oscillator to equilibrium.

    The restoring force is given by:

    Hookes Law F=-kx

    x is the displacement fromequilibrium and kis the force

    constant (spring constant).

    The period of SHM oscillator does

    not depend on the amplitude.

    Persamaan GHS: sistem pegas berbeban

  • 8/12/2019 @kul 1 SHM

    19/35

    Here is what we want to do: DERIVE AN

    EXPRESSION THAT DEFINES THE

    DISPLACEMENT FROM EQUILIBRIUM OF THESPRING IN TERMS OF TIME.

    0)(

    2

    2

    2

    xm

    k

    dt

    xd

    dt

    xdmkx

    dt

    xd

    amakx

    maFkxF Netspring

    WHAT DOES THIS MEAN? THE SECOND DERIVATIVE OF A FUNCTION

    THAT IS ADDED TO A CONSTANT TIMES ITSELF IS EQUAL TO ZERO.

    What kind of function will ALWAYS do this?

    Persamaan GHS: sistem pegas berbeban: hukum HOOKE

  • 8/12/2019 @kul 1 SHM

    20/35

    Since all springs exhibit properties

    of circle motion we can use theseexpressions to derive the formula

    for the period of a spring.

    Besaran Fisis: sistem pegas berbeban

  • 8/12/2019 @kul 1 SHM

    21/35

    apa dimensi dari T?

    Besaran Fisis: sistem pegas berbeban: periode ~ frekuensi

    PERHATIKAN

    - Tatau ftidak bergantung pada nilai g- besaran (nilai) kmenggambarkan keras/lemahnya

    lenturan pegas

    - periode mengecil untuk pegas yang keras (tidak

    mudah lentur) nilai kyang besar

  • 8/12/2019 @kul 1 SHM

    22/35

    For springs in series:

    1/keff= 1/k1+ 1/k2

    For springs in

    parallel:

    keff= k1+ k2

  • 8/12/2019 @kul 1 SHM

    23/35

    kis the slope of a

    F versusx-graph

    Besaran Fisis: sistem pegas berbeban: menentukan nilai k

  • 8/12/2019 @kul 1 SHM

    24/35

    Persamaan GHS:Ayunan Matematis (Pendulum)

    What length pendulum will have a period of exactly 1s?

  • 8/12/2019 @kul 1 SHM

    25/35

    What length pendulum will have a period of exactly 1s?

    g

    L

    T 2 L

    g

    g T

    2

    2

    L

    L9.8m/s2 1s

    2

    2

    0.248m

  • 8/12/2019 @kul 1 SHM

    26/35

    A physical pendulum is an oscillating body

    that rotates according to the location of itscenter of mass rather than a simple

    pendulum where all the mass is located at

    the end of a light string.

    oscillates about a fixed axis that doesnot pass through its center of mass,

    and

    the object cannot be approximated as

    a point mass,

    Persamaan GHS: Pendulum Fisis

  • 8/12/2019 @kul 1 SHM

    27/35

    mgd

    IT

    TI

    mgd

    Imgd

    ifImgd

    LdIdmg

    IFr

    pendulumphysical

    2

    2,

    0)(

    sin,

    2,sin

    sin

    It is im por tant to u nders tand

    that d is the lever arm

    distance or the distance from

    the COM posi t ion to the point of

    rotat ion.It is also the same d in

    the Parallel Axes theorem.

  • 8/12/2019 @kul 1 SHM

    28/35

    ExampleA spring is hanging from the ceiling. You know that if you

    elongate the spring by 3.0 meters, it will take 330 N of

    force to hold it at that position: The spring is then hungand a 5.0-kg mass is attached. The system is allowed toreach equilibrium; then displaced an additional 1.5 metersand released. Calculate the:

    kkkxFs )3)((330Spring Constant

    Angular frequency 5

    1102mk

    mk

    110 N/m

    4.7 rad/s

  • 8/12/2019 @kul 1 SHM

    29/35

    29

    A uniform rod of mass M and length

    L is pivoted about one end andoscillates in a vertical plane.

    Find the period of oscillation if the

    amplitude of the motion is small.

  • 8/12/2019 @kul 1 SHM

    30/35

    Example

    Position of mass at maximum velocity

    Maximum acceleration of the mass

    Position of mass at maximum acceleration

    At the equilibrium position

    )5.1()7.4( 22Aa 33.135 m/s/s

    At maximum amplitude, 1.5 m

    A spring is hanging from the ceiling. You know that if you

    elongate the spring by 3.0 meters, it will take 330 N of

    force to hold it at that position: The spring is then hung

    and a 5.0-kg mass is attached. The system is allowed to

    reach equilibrium; then displaced an additional 1.5

    meters and released. Calculate the:

  • 8/12/2019 @kul 1 SHM

    31/35

    b is a constant called

    the damping coefficient

    Persamaan Gerak Harmonis tidak Sederhana:Ayunan Teredam (damped oscillations)

  • 8/12/2019 @kul 1 SHM

    32/35

    is called the natural frequency

    CC: BY murdoch666 (flickr) http://creativecommons.org/licenses/by/2.0/deed.en

    A slowly changing

    line that provides a

    border to a rapid

    oscillation is calledthe envelopeof the

    oscillations.

  • 8/12/2019 @kul 1 SHM

    33/35

    Damped Oscillation (oscillation with friction)

    The friction reduces the mechanical energy of the system as time

    passes, and the motion is said to be damped.

  • 8/12/2019 @kul 1 SHM

    34/35

    DampedOscillations

  • 8/12/2019 @kul 1 SHM

    35/35

    Exercises

    Each:M/2, R

    k

    stretched by x

    and then released

    cylinders

    rolls w/o

    slipping

    Ra

    MRIIfRfrictionfkxfMa

    cmcm

    2)2/1(,

    ):(

    .)2/3(/

    2

    2 xx

    M

    k

    RIM

    kxa

    cm

    .2

    32

    2

    k

    MT

    f

    kx