Kristina J. Schottler, Daniel Dolfen and Ullrich Scherf fileStille-type coupling with different...

1
Polymer M n [g/mol] M w [g/mol] PD HOMO [eV] LUMO [eV] E g opt PPhBDT 22400 51200 2,3 - 5,38 - 2,97 2,41 PPhTBDTT 32800 76200 2,3 * * 2,34 PPyDIBDT 14100 20300 1,4 - 5,57 - 3,09 2,48 PPyDITBDTT 15600 20800 1,3 * * 2,40 PTPDCPDT 14600 19400 1,3 * * 2,01 Novel D-A-Copolymers Based on Imides Kristina J. Schottler, Daniel Dolfen and Ullrich Scherf Scheme 4 - Chemical structures of the novel d-a-polymers PPhBDT, PPhTBDTT, PPyDIBDT, PPyDITBDTT, PTPDCPDT. Abstract: Scheme 1 - Synthesis of PPhBDT and PPhTBDTT: a) Br 2 , I 2 , oleum; b) 2-octyldo- decylamine, HOAc; c) Pd(PPh 3 ) 2 Cl 2, , 2-(trib- utylstannyl)thiophene , THF; d) NBS, THF; e) and f) Pd(PPh 3 ) 4 , 2,6-bis(trimethyltin)- 4,8-di(2-octyloxyl)benzo[1,2- b :4,5- b ’]dithi- ophene, toluene, DMF. In conjugated polymers the degree of extended conjugation strongly influences their optoelectronic proper- ties. To maximize the extend of conjugation twisting between the repeating units should be minimized. One strategy to realise planar arrangements is by alternately placing electron-rich donor and electron defficient ac- ceptor units along the polymer backbone. Quinoid-like forms within the d-a-polymer are stabilised and result in low band-gap materials. e imide group is a strongly electron-withdrawing group and arylene imides are oſten used as acceptor moi- eties. Different substitutions at the imide nitrogen allow manipulation of the polymer solubility, packing and morphology. 3,6-Dibromo-phthalimide, 3,6-dibromo-pyromellitdiimide and 1,3-dibromo-thieno[3,4-c]pyrrole- 4,6-dione are attractive electron-accepting comonomers due to their facile synthesis, cheap starting materials and their already partially published moderate to very good performances in OFETs and OSCs. New d-a-copolymers based on phthalimide (Ph), pyromellitdiimide (PyDI) and thieno[3,4-c]pyrrole-4,6-dione (TPD) together with BDT or CPDT as donor units are synthesised. Synthesis: Scheme 2 - Synthesis of PPyDIBDT and PPyDITBDT: g) Br 2 , I 2 , CH 2 Cl 2 ; h) KMnO 4 , NaOH, pyridine, H 2 O; i) Ac 2 O, HOAc; j) 2-octyl- dodecylamine, HOAc; k) Pd(PPh 3 ) 2 Cl 2, , 2-(trib- utylstannyl)thiophene , THF; l) NBS, DMF; m) and n) Pd(PPh 3 ) 4 , 2,6-bis(trimethyltin)- 4,8-di(2-octyloxyl)benzo[1,2- b :4,5- b ’]dithi- ophene, toluene, DMF. Table 1 - Results of the material characterisation using SEC and UPS (*to be deter- mined). Characterisation: Makromolekulare Chemie and Institut für Polymertechnologie, Bergische Universität Wuppertal, Gauss-Str. 20, D-42097 Wuppertal Optical Properties: Figure 1 - UV/Vis absorption and photo- luminescence spectra of PPhBDT (excitation @ 500 nm) and PPhTBDTT (excitation @ 480 nm) in dilute chloroform solution and in the solid state. Conclusion & Outlook: ree different acceptor monomers containing the imide group were synthesised and copolymerised via Stille-type coupling with different donor units (e.g. BDT, CPDT) under conventional and microwave con- ditions. e copolymers were characterised using SEC, UV/Vis, PL, UPS, TGA and DSC. Subsequently they will be tested in “bulk-heterojunction” photovoltaic cells of ternary blends as acceptor component. Furthermore copolymers with other various donors like CPDTz, bithiophene or carbazole are planned. at will tune the HOMO energy levels, the band-gaps and the morphology of the polymers. Scheme 3 - Synthesis of PTPDCPDT: o) Br 2 , CHCl 3 ; p) Zn, HOAc, H 2 O; q) CuCN, DMF; r) KOH, C 2 H 6 O 2 ; s) Ac 2 O; t) 2-octyldodecylamine, tolu- ene; u) SOCl 2 ; v) NBS, TFA, H 2 SO 4 ; w) Pd(PPh 3 ) 4 , 2,6-bis(tributyltin)-4,8-di(2-octyloxyl)benzo[1,2- b:4,5-b’]dithiophene, toluene, DMF. Figure 2 - UV/Vis absorption spectra of PPyDIBDT and PPyDITBDTT in dilute chloroform solution and in the solid state (photoluminescence was not detected). Figure 3 - UV/Vis absorption and photo- luminescence spectra of PTPDCPDT (excita- tion @ 600 nm) in dilute chloroform solution and in the solid state. S S H 9 C 4 C 4 H 9 C 2 H 5 H 5 C 2 S N O O C 10 H 21 C 8 H 17 PTPDCPDT O O N C 10 H 21 C 8 H 17 S S O O C 8 H 17 C 8 H 17 N O O C 10 H 21 C 8 H 17 PPyDIBDT S S O O C 8 H 17 C 8 H 17 O O N C 10 H 21 C 8 H 17 S S N O O C 10 H 21 C 8 H 17 PPyDITBDTT O O N C 10 H 21 C 8 H 17 S S O O C 8 H 17 C 8 H 17 PPhBDT S S O O C 8 H 17 C 8 H 17 O O N C 10 H 21 C 8 H 17 S S PPhTBDTT 300 400 500 600 700 800 900 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Emission Absorption λ [nm] UVPPhBDTsolution UVPPhBDTfilm PLPPhBDTsolution PLPPhBDTfilm UVPPhTBDTTsolution UVPPhTBDTTfilm PLPPhTBDTTsolution PLPPhTBDTTfilm 300 400 500 600 700 800 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Absorption λ [nm] UVPPyDIBDTsolution UVPPyDIBDTfilm UVPPyDITBDTTsolution UVPPyDITBDTTfilm O O O O O O Br Br O O Br N C 10 H 21 C 8 H 17 Br O O N C 10 H 21 C 8 H 17 S S O O N C 10 H 21 C 8 H 17 S S Br Br O O N C 10 H 21 C 8 H 17 S S O O C 8 H 17 C 8 H 17 PPhBDT S S O O C 8 H 17 C 8 H 17 O O N C 10 H 21 C 8 H 17 S S PPhTBDTT a b c d e f Br Br Br Br O O O O OH OH OH HO Br Br O O O O O O O O Br N C 10 H 21 C 8 H 17 Br N O O C 8 H 17 C 10 H 21 O O N C 10 H 21 C 8 H 17 S S N O O C 8 H 17 C 10 H 21 O O N C 10 H 21 C 8 H 17 S S N O O C 8 H 17 C 10 H 21 Br Br O O N C 10 H 21 C 8 H 17 S S O O C 8 H 17 C 8 H 17 N O O C 10 H 21 C 8 H 17 PPyDIBDT S S O O C 8 H 17 C 8 H 17 O O N C 10 H 21 C 8 H 17 S S N O O C 10 H 21 C 8 H 17 PPyDITBDTT g h i j k l m n S S Br Br Br Br S Br Br S NC CN S O O HO HO S O O O S N O O C 10 H 21 C 8 H 17 S HN O O OH C 8 H 17 C 10 H 21 S N O O C 10 H 21 C 8 H 17 Br Br S S H 9 C 4 C 4 H 9 C 2 H 5 H 5 C 2 S N O O C 10 H 21 C 8 H 17 PTPDCPDT o p q r s t u v w 300 400 500 600 700 800 900 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Emission Absorption λ [nm] UVPTPDCPDTsolution UVPTPDCPDTfilm PL PTPDCPDTsolution PL PTPDCPDTfilm

Transcript of Kristina J. Schottler, Daniel Dolfen and Ullrich Scherf fileStille-type coupling with different...

Page 1: Kristina J. Schottler, Daniel Dolfen and Ullrich Scherf fileStille-type coupling with different donor units (e.g. BDT, CPDT) under conventional and microwave con- ditions. • The

Polymer Mn[g/mol]

Mw[g/mol] PD HOMO

[eV]LUMO

[eV] Egopt

PPhBDT 22400 51200 2,3 - 5,38 - 2,97 2,41

PPhTBDTT 32800 76200 2,3 * * 2,34

PPyDIBDT 14100 20300 1,4 - 5,57 - 3,09 2,48

PPyDITBDTT 15600 20800 1,3 * * 2,40

PTPDCPDT 14600 19400 1,3 * * 2,01

Novel D-A-Copolymers Based on Imides

Kristina J. Schottler, Daniel Dolfen and Ullrich Scherf

•Scheme 4 - Chemical structures of the novel d-a-polymers PPhBDT, PPhTBDTT, PPyDIBDT, PPyDITBDTT, PTPDCPDT.

Abstract:

•Scheme 1 - Synthesis of PPhBDT and PPhTBDTT: a) Br2, I2, oleum; b) 2-octyldo-decylamine, HOAc; c) Pd(PPh3)2Cl2,, 2-(trib-utylstannyl)thiophene , THF; d) NBS, THF; e) and f) Pd(PPh3)4, 2,6-bis(trimethyltin)-4,8-di(2-octyloxyl)benzo[1,2-b:4,5-b’]dithi-ophene, toluene, DMF.

In conjugated polymers the degree of extended conjugation strongly influences their optoelectronic proper-ties. To maximize the extend of conjugation twisting between the repeating units should be minimized. One strategy to realise planar arrangements is by alternately placing electron-rich donor and electron defficient ac-ceptor units along the polymer backbone. Quinoid-like forms within the d-a-polymer are stabilised and result in low band-gap materials.The imide group is a strongly electron-withdrawing group and arylene imides are often used as acceptor moi-eties. Different substitutions at the imide nitrogen allow manipulation of the polymer solubility, packing and morphology. 3,6-Dibromo-phthalimide, 3,6-dibromo-pyromellitdiimide and 1,3-dibromo-thieno[3,4-c]pyrrole-4,6-dione are attractive electron-accepting comonomers due to their facile synthesis, cheap starting materials and their already partially published moderate to very good performances in OFETs and OSCs. New d-a-copolymers based on phthalimide (Ph), pyromellitdiimide (PyDI) and thieno[3,4-c]pyrrole-4,6-dione (TPD) together with BDT or CPDT as donor units are synthesised.

Synthesis:

•Scheme 2 - Synthesis of PPyDIBDT and PPyDITBDT: g) Br2, I2, CH2Cl2; h) KMnO4, NaOH, pyridine, H2O; i) Ac2O, HOAc; j) 2-octyl-dodecylamine, HOAc; k) Pd(PPh3)2Cl2,, 2-(trib-utylstannyl)thiophene , THF; l) NBS, DMF; m) and n) Pd(PPh3)4, 2,6-bis(trimethyltin)-4,8-di(2-octyloxyl)benzo[1,2-b:4,5-b’]dithi-ophene, toluene, DMF.

•Table 1 - Results of the material characterisation using SEC and UPS (*to be deter-mined).

Characterisation:

Makromolekulare Chemie and Institut für Polymertechnologie, Bergische Universität Wuppertal, Gauss-Str. 20, D-42097 Wuppertal

Optical Properties:

•Figure 1 - UV/Vis absorption and photo-luminescence spectra of PPhBDT (excitation @ 500 nm) and PPhTBDTT (excitation @ 480 nm) in dilute chloroform solution and in the solid state.

Conclusion & Outlook:•Three different acceptor monomers containing the imide group were synthesised and copolymerised via

Stille-type coupling with different donor units (e.g. BDT, CPDT) under conventional and microwave con-ditions.

•The copolymers were characterised using SEC, UV/Vis, PL, UPS, TGA and DSC.

•Subsequently they will be tested in “bulk-heterojunction” photovoltaic cells of ternary blends as acceptor component.

•Furthermore copolymers with other various donors like CPDTz, bithiophene or carbazole are planned. That will tune the HOMO energy levels, the band-gaps and the morphology of the polymers.

•Scheme 3 - Synthesis of PTPDCPDT: o) Br2, CHCl3; p) Zn, HOAc, H2O; q) CuCN, DMF; r) KOH, C2H6O2; s) Ac2O; t) 2-octyldodecylamine, tolu-ene; u) SOCl2; v) NBS, TFA, H2SO4; w) Pd(PPh3)4, 2,6-bis(tributyltin)-4,8-di(2-octyloxyl)benzo[1,2-b:4,5-b’]dithiophene, toluene, DMF.

•Figure 2 - UV/Vis absorption spectra of PPyDIBDT and PPyDITBDTT in dilute chloroform solution and in the solid state (photoluminescence was not detected).

•Figure 3 - UV/Vis absorption and photo-luminescence spectra of PTPDCPDT (excita-tion @ 600 nm) in dilute chloroform solution and in the solid state.

SS

H9C4 C4H9

C2H5H5C2

S

N OO

C10H21

C8H17

PTPDCPDT

O ON

C10H21

C8H17

S

S

O

OC8H17

C8H17NO O

C10H21

C8H17

PPyDIBDT

S

S

O

O

C8H17

C8H17

O

O

N

C10H21C8H17

S

S

N

O

O

C10H21C8H17

PPyDITBDTT

O ON

C10H21

C8H17

S

S

O

OC8H17

C8H17PPhBDT

S

S

O

O

C8H17

C8H17

O

O

N

C10H21C8H17

S

S

PPhTBDTT

300 400 500 600 700 800 9000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Emiss

ion

Abso

rptio

n

λ [nm]

UV PPhBDT solution UV PPhBDT film PL PPhBDT solution PL PPhBDT film UV PPhTBDTT solution UV PPhTBDTT film PL PPhTBDTT solution PL PPhTBDTT film

300 400 500 600 700 8000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Abso

rptio

n

λ [nm]

UV PPyDIBDT solution UV PPyDIBDT film UV PPyDITBDTT solution UV PPyDITBDTT film

O

O

O

O

O

O

Br

Br

O

O

Br

N

C10H21C8H17

Br

OO N

C10H21

C8H17

S

S

OO N

C10H21

C8H17

S

S Br

Br

O ON

C10H21

C8H17

S

S

O

OC8H17

C8H17PPhBDT

S

S

O

O

C8H17

C8H17

O

O

N

C10H21C8H17

S

S

PPhTBDTT

a b

c

d

e

f

Br

Br

Br

Br

O O

OO

OH OH

OHHO

Br

Br

O O

OO

O O

O O

Br

N

C10H21

C8H17

Br

NO O

C8H17

C10H21

O ON

C10H21

C8H17

S

S

NO O

C8H17

C10H21

O ON

C10H21

C8H17

S

S

NO O

C8H17

C10H21

Br

BrO ON

C10H21

C8H17

S

S

O

OC8H17

C8H17NO O

C10H21

C8H17

PPyDIBDT

S

S

O

O

C8H17

C8H17

O

O

N

C10H21C8H17

S

S

N

O

O

C10H21C8H17

PPyDITBDTT

g h i j

k

l

m

n

SSBr

Br Br

Br S

Br Br

S

NC CN

S

O

O

HOHO

S

O OO

S

NO O

C10H21

C8H17

S

HN O

O

OH

C8H17

C10H21

S

NO O

C10H21

C8H17

BrBr

SS

H9C4 C4H9

C2H5H5C2

S

N OO

C10H21

C8H17

PTPDCPDT

o p q r

s

tuv

w

300 400 500 600 700 800 9000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Emiss

ion

Abso

rptio

n

λ [nm]

UV PTPDCPDT solution UV PTPDCPDT film PL PTPDCPDT solution PL PTPDCPDT film