(Krause 2004)

40
(Krause 2004) Steven Boggs UC Berkeley Department of Physics MeV Gamma Ray Nuclear Astrophysics Yesterday: Science and Observations Today: Instrumentation

description

MeV Gamma Ray Nuclear Astrophysics Yesterday: Science and Observations Today: Instrumentation. (Krause 2004). Steven Boggs UC Berkeley Department of Physics. Nuclear Gamma-Rays. Atmosphere is opaque at these energies. Gamma-ray interactions. Index of refraction ~1.0000 - PowerPoint PPT Presentation

Transcript of (Krause 2004)

Page 1: (Krause 2004)

(Krause 2004)Steven BoggsUC BerkeleyDepartment of Physics

MeV Gamma Ray Nuclear Astrophysics

Yesterday: Science and ObservationsToday: Instrumentation

Page 2: (Krause 2004)

Nuclear Gamma-Rays

Atmosphere is opaque at these energies.

Page 3: (Krause 2004)

Gamma-ray interactions

Index of refraction ~1.0000

Penetration ≥ cm into materials

Standard mirrors & lenses don’t work

Page 4: (Krause 2004)

CZT Semiconductor

Liquid Xe

Si Semiconductor

Ge Semiconductor

Gamma Ray Detectors

NaI, CsI, BGO

Scintillators• high Z• large volume• room temperature• moderate/poor resolution (3-10%)

Solid State• good/excellent resolution (<2%)• may require cooling• finer position resolution• more channels/power

Page 5: (Krause 2004)
Page 6: (Krause 2004)

The radiation environment

The Space Radiation EnvironmentThe Space Radiation Environment

Secondaries induced by cosmic-ray

interaction with upper atmosphere:

Albedo photons, neutrons, electrons,

positrons

Radiation belts:

Trapped protons (SAA) & resulting activation, electrons

Cosmic rays:• Photons• Protons (& activation)

• Alphas• Ions• Electrons• Positrons

Sun through solar flares: photons, charged particles

Page 7: (Krause 2004)

Compton Gamma-Ray Observatory(1991-2000)

COMPTEL (0.8-30 MeV)

EGRET(20 MeV – 30 GeV)

BATSE(20-600 keV)

OSSE(50 keV – 10 MeV)

Page 8: (Krause 2004)

Spectroscopy, no Imaging

“light bucket”

Galactic Center Positrons

(Purcell et al., 1993)

Page 9: (Krause 2004)

(from P. von Ballmoos)

Page 10: (Krause 2004)

Coded Aperture Imaging

pinhole camera…. with lots of pinholes

Good for: point sources photons that stop in the mask (<0.2 MeV)

Page 11: (Krause 2004)

IBIS (15 keV-10 MeV)

JEM-X(3-35 keV)

SPI(30 keV-8 MeV)

OMC(500-600 nm)

INTErnational Gamma-Ray Astrophysics Laboratory (launched October 2002)

E/E ~ 500, ~ 2º

E/E ~ 10, ~ 20’

Page 12: (Krause 2004)

IBIS/INTEGRAL

ISGRI: 128x128 CdTe array (4x4x2 mm3)PICsIT: 64x64 CsI array (8.4x8.4x30 mm3)

Page 13: (Krause 2004)

IBIS Galactic Plane Survey

(Bird & Walter 2004)

Page 14: (Krause 2004)

SPI/INTEGRAL

19 Ge detectors

Page 15: (Krause 2004)

(Weidenspointner et al., 2008)

SPI Positron Map

Page 16: (Krause 2004)

Compton Gamma-Ray Observatory (1991-2000)

COMPTEL (0.8-30 MeV)

EGRET(20 MeV – 30 GeV)

BATSE(20-600 keV)

OSSE(50 keV – 10 MeV)

Page 17: (Krause 2004)

(Schoenfelder et al., 1993, ApJS 86, 657)

COMPTEL DetectorsD1: 4188 cm2 liq. scint.D2: 8620 cm2 NaIE: 5-8% (FWHM)X ~ Y ~ 2 cm (1)Z ~ 3 cm (1)t ~ 0.25ns

COMPTEL Performance0.8-30 MeVE/E ~ 9-14 (FWHM) ~3º

Aeff < 20 cm2

FOV ~ 1str

COMPTEL - Compton Imaging cos = 1+mc2(1/E2-1/E)

Page 18: (Krause 2004)

26Al (1.809 MeV), ~1Myr

(Oberlack et al., 1996; Pluschke et al., 2001)

Page 19: (Krause 2004)

Compton Telescopes: Then & Now

CGRO/COMPTEL• ~40 cm3 resolution• E/E ~ 10%• 0.1% efficiency

ACT Enabling Detectors• 1 mm3 resolution• E/E ~ 0.2-1%• 10-20% efficiency• background rejection• polarization

3 decades…

Page 20: (Krause 2004)

Overview of the Overview of the Nuclear Compton TelescopeNuclear Compton Telescope

A balloon-borne A balloon-borne -ray spectrometer, polarimeter & imager-ray spectrometer, polarimeter & imager

Steven Boggs, UCBNCT Collaboration: Berkeley, NTHU, NCU, NSPO, NUU, LBNL, CESR

Page 21: (Krause 2004)

Heart of NCT:Cross Strip 3-D GeDs • 37x37 strips• 2-mm pitch• 15-mm thickness• 81000 mm3 volume• 1.6 mm3 localization• ~2.1-keV noise resolution

Nuclear Compton Telescopeballoon payload

Page 22: (Krause 2004)

3D GeD Design

(Luke et al. 1992, 1994)

Page 23: (Krause 2004)

Single-Pixel Spectra (56Co)• excellent GeD Spectroscopy• plus full 3-D positioning

Page 24: (Krause 2004)
Page 25: (Krause 2004)

60Co Laboratory Tests1.173, 1.333 MeV

1.173 MeV processed image

Page 26: (Krause 2004)

Source Decay Energy Goal SNe Ia (?) e+e- 0.511 36 map SNe II/Ib 26Al 1.809 MeV 36 map 60Fe 1.173, 1.333 5 detect SNe 44Ti 1.157 resolved line BHs e+e- ≤0.511 discovery

Next flight, May 2009• northern hemisphere• primarily compact objects

Page 27: (Krause 2004)

The 2005 balloon flight from Fort The 2005 balloon flight from Fort SumnerSumnerImpressions from the NCT 2009 Balloon flightImpressions from the NCT 2009 Balloon flight

Page 28: (Krause 2004)
Page 29: (Krause 2004)

BGO shieldBGO shield

lNlN22 dewar dewar

Pre-AmpsPre-Amps

Page 30: (Krause 2004)
Page 31: (Krause 2004)

Differential Differential GPSGPS

RotorRotor

DetectorDetector

Electronics BayElectronics Bay

CSBF SIPCSBF SIP

Solar PanelsSolar Panels

Page 32: (Krause 2004)

QuickTime™ and a decompressor

are needed to see this picture.

Page 33: (Krause 2004)

QuickTime™ and a decompressor

are needed to see this picture.

Page 34: (Krause 2004)

QuickTime™ and a decompressor

are needed to see this picture.

4D sin = n

Alternate layers of high/low Z materialsex. W/Si

D ~ 25 Å (technological limit) < 1 Å (0.18 Å @ 68 keV)~ 30’f ~ 10 m

Page 35: (Krause 2004)

QuickTime™ and a decompressor

are needed to see this picture.

Page 36: (Krause 2004)

QuickTime™ and a decompressor

are needed to see this picture.

Page 37: (Krause 2004)

QuickTime™ and a decompressor

are needed to see this picture.

Page 38: (Krause 2004)

SN 1987A in the LMC

(Suntzeff et al.1992; Diehl & Timmes 1998)

QuickTime™ and a decompressor

are needed to see this picture.

Blue supergiant (~20 M, 6 M He core) (Arnett et al., 1989)

Spherical models predict 44Ti < 1000 km/s

56Ni mixed out to ~3000 km/s (0.7 keV at 68 keV)

(Motizuki & Kumagai 2004)

~110-4 M

Page 39: (Krause 2004)

2D sin = n

Use a crystal to bend (“focus”) the -rays

D ~ 1 Å (crystal spacing) < 1 Å (0.014 Å @ 0.847 MeV) ~ 10’f ~ 60 m

Bragg Scattering

Page 40: (Krause 2004)

von Ballmoos et al., CESR, Toulouse

Laue Lens: Focusing -rays