Koomey on why ultra-low power computing will change everything

38
Copyright Jonathan Koomey 2012 SOFTWARE & SYSTEMS DESIGN Why ultralow power compu1ng will change everything Jonathan Koomey Research Fellow, SteyerTaylor Center for Energy Policy and Finance, Stanford University [email protected] hSp://www.koomey.com ARM Tech Con, San Jose, CA October 31, 2012

Transcript of Koomey on why ultra-low power computing will change everything

Page 1: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

SOFTWARE  &  SYSTEMS    DESIGN  

Why  ultra-­‐low  power  compu1ng  will  change  everything  

Jonathan  Koomey  Research  Fellow,  Steyer-­‐Taylor  Center  for  Energy  

Policy  and  Finance,  Stanford  University  [email protected]  hSp://www.koomey.com  

ARM  Tech  Con,  San  Jose,  CA  October  31,  2012  

Page 2: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

RevoluXon  

2  

Page 3: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  3  

Cheap  Smart  Small  

Connected  Low  power  +  Self  powered  

Page 4: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

CONSIDER  THE  POSSIBILITIES  

hSp://proteusdigitalhealth.com/technology/  

Page 5: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

Research  quesXon:    How  has  the  energy  efficiency  of  compuXng  changed  over  Xme?  

5  

Page 6: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

MOORE’S  LAW  

•  Not  a  “law”  but  an  empirical  observaXon  about  components/chip    – 1965:    doubling  every  year  – 1975:  doubling  every  2  years  

•  Characterizes  economics  of  chip  producXon,  not  physical  limits  

•  Ofen  imprecisely  cited,  interpretaXons  changed  over  Xme  (Mollick  2006)  

Page 7: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

MOORE’S  ORIGINAL  GRAPH  

7  

Page 8: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

TRANSISTORS/CHIP  (000S)  

The  doubling  Xme  from  1971  to  2006  is  about  1.8  years.    Data  source:  James  Larus,  Microsof  CorporaXon.  

8  

Page 9: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

How  to  measure  the  energy  efficiency  of  computaXon?  

9  

Page 10: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

METHOD  

•  ComputaXons  per  kWh  =  

Page 11: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

DATA  

•  Performance  from  Nordhaus  (2007)  or  normalized  to  that  source  using  benchmarks  for  more  recent  computers  

•  Used  measured  power  data,  either  published  (e.g.  Weik  1955,  1961,  1964)  or  from  archival  or  recent  computers  – with  computer  fully  uXlized  – with  screen  power  subtracted  for  portables  

Page 12: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

Doubling  Xme  for  performance  per  computer  =  1.5  years  in  the  PC  era  

12  

Page 13: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

PERFORMANCE  TRENDS  (2):  COMPUTATIONS/S/COMPUTER  

Source:  Nordhaus  (2007)  with  addiXonal  data  added  by  Koomey  (2009b)  

Page 14: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

REAL  POWER  MEASUREMENTS  OF  REAL  COMPUTERS  

Page 15: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

COMPUTING  EFFICIENCY  

• Doubling  about  every  year  and  a  half  since  the  1940s  

• 100x  improvement  every  decade  

• Enabled  the  existence  of  laptops  and  smart  phones  

Page 16: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

GOOD  CORRELATION,  CLEAR  RESULTS  

•  R2  for  computaXons/kWh  – 0.983  for  all  computers,  1946-­‐2009  

– 0.970  for  PCs,  1975-­‐2009  •  Doubling  Xme  for  computaXons/kWh  

– All  computers:  1.6  years  – PCs:  1.5  years  – Vacuum  tubes:  1.35  years  

•  Big  jump  from  tubes  to  transistors  

Page 17: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

IMPLICATIONS  

•  AcXons  taken  to  improve  performance  also  improve  computaXons  per  kWh  –  Transistors:  Smaller,  shorter  distance  source  to  drain,  fewer  electrons  

–  Tubes:    Smaller,  less  capacitance,  lower  currents    

•  Trends  make  mobile  and  distributed  compuXng  ever  more  feasible  (baSery  life  up  100x  per  decade  at  constant  compuXng  power)      

Page 18: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

LAPTOPS  GROWING  FAST  (WORLD  INSTALLED  BASE,  MILLIONS)  

Sources—1985:  Arstechnica  +  Koomey  calcs    1996-­‐2008:  IDC  

Page 19: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

IT’S  NOT  JUST  ABOUT  COMPUTING  EFFICIENCY    

•  Low  power  >  high  efficiency    •  RevoluXon  is  being  driven  by  the  confluence  of  trends  allowing  low-­‐power  – compuXng  – communicaXons  – sensors  – controls  

•  Energy  harvesXng  and  storage  also  criXcal  •  Idle  modes  more  important  than  acXve  

Page 20: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

REDUCE  AREA  UNDER  THE  CURVE  

Page 21: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

A  MICROCONTROLLER  “RACE”  

Source: Eduardo Montanez, Freescale Semiconductor (microcontroller is ARM  ®  Cortex™-­‐m0+  core)

Page 22: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

EFFICIENCY  OF  SIMPLE  CELL  PHONES  OVER  TIME  

Page 23: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

AN  EXAMPLE  OF  MOBILE  COMPUTING  +  COMMUNICATIONS  ENABLED  BY  EFFICIENCY  

http://www.bigbellysolar.com

• Compacts trash 5 x • Sends text message when full • PV panel generates power from sunlight • An economic and environmental home run

Page 24: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

HOW  ABOUT  REALLY  LOW  POWER  SENSORS?  

•  Consider  the  wireless  no-­‐baSery  sensors  created  by  Joshua  R.  Smith  of  the  University  of  Washington  hSp://www.nyXmes.com/2010/07/18/business/18novel.html,  hSp://www.economist.com/node/16295708  –  sensors  use  60  microwaSs  on  

average  (60x10-­‐6  waSs)  

–  scavenge  power  from  radio  and  TV  signals  

•  Other  possible  power  sources  for  similar  devices:    light,  heat,  moXon,  blood  sugar,  digesXve  fluids  

Images courtesy of Josh Smith, U of WA

Page 25: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

UNIVERSITY  OF  MICHIGAN  MICRO-­‐MOTE  

Slide  courtesy  of  David  Blaauw  and  Dennis  Sylvester,  U  of  MI    

P=11nW  sleep,  40  μW  acXve,  ARM®  M0  core  

Page 26: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

TUMOR  PRESSURE  MONITORING  

Slide  courtesy  of  David  Blaauw  and  Dennis  Sylvester,  U  of  MI    

Page 27: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

STREETLINE  NETWORKS:  SMART  PARKING,  SMART  CITIES  

Slide  courtesy  of  Mark  Noworolski,  Streetline  Networks  

Motes  use    <400μW  on    average.    For  LA,  With  40,000  parking  spots,  that  implies  total  mote  power  of  about  15W.  Mote  technology  is  from  Dust    Networks  

Page 28: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

STREETLINE  NETWORKS:  SMART  PARKING,  SMART  CITIES  

Slide  courtesy  of  Mark  Noworolski,  Streetline  Networks  

Page 29: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

STREETLINE  NETWORKS:    VARIABLE  PARKING  SIGNS  

Slide  courtesy  of  Mark  Noworolski,  Streetline  Networks  

Page 30: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

DEEPER  IMPLICATIONS  

• Move  bits,  not  atoms  • Customized  data  collecXon  (focus  on  nanodata,  not  big  data)  • Ever  more  precise  control  of  processes  • Real-­‐Xme  analysis  • Enabling  “the  internet  of  things”  

• Bo#om  line:    beSer  matching  of  energy  services  demanded  with  those  supplied,  beSer  real-­‐Xme  control,  and  beSer  analysis.  

Page 31: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

THESE  TRENDS  STILL  HAVE  A  LONG  WAY  TO  RUN  

Psssst:    Researchers  at  Purdue  and  the  University  of  New  South  Wales  recently  created  a  reliable  one  atom  transistor…  

2041  

Page 32: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

BIG  UNANSWERED  QUESTIONS  

•  Could  we  do  beSer  than  historical  trends?  •  Might  we  do  worse?    If  so,  why?  

•  What’s  next  as  we  approach  theoreXcal  limits?  

Page 33: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

CONCLUSIONS  

•  QuanXtaXve  results  –  In  the  PC  era  (1976-­‐2009)  performance  per  computer  and  computaXons  per  kWh  doubled  every  1.5  years  

–  From  ENIAC  to  the  present,  computaXons  per  kWh  doubled  every  1.6  years  

•  Performance  and  efficiency  improvements  inextricably  linked  

•  SXll  far  from  theoreXcal  limits  •  Big  implicaXons  for  mobile  technologies  •  The  future  belongs  to  low  power  systems!  

Page 34: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

Viva  la  Revolución!  

34  

Page 35: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

THANKS!  

•  Rob  Bernard,  Microsof  (funder)  

•  Lorie  Wigle,  Intel  (funder)  •  Stephen  Berard  of  Microsof  (coauthor)  •  Marla  Sanchez  of  LBNL  and  CMU  (coauthor),  and  

•  Henry  Wong  of  Intel  (coauthor)  •  The  Computer  History  Museum  •  IEEE  Annals  of  the  History  of  Compu8ng  

Page 36: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

FURTHER  READING  

Koomey,   Jonathan  G.,   Stephen  Berard,  Marla   Sanchez,   and  Henry  Wong.   2011.  "ImplicaXons   of   Historical   Trends   in   the   Electrical   Efficiency   of   CompuXng."    IEEE  Annals  of  the  History  of  Compu8ng.    vol.  33,  no.  3.  July-­‐September.  pp.  46-­‐54.  [hSp://doi.ieeecomputersociety.org/10.1109/MAHC.2010.28]  

Koomey,    Jonathan.  2012.  "The  CompuXng  Trend  that  Will  Change  Everything."  In  Technology   Review.   April   2.   [hSp://www.technologyreview.com/news/427444/the-­‐compuXng-­‐trend-­‐that-­‐will-­‐change-­‐everything/]  

Greene,  Kate.  2011.  "A  New  and  Improved  Moore's  Law."  In  Technology  Review.  September   12.   [hSp://www.technologyreview.com/compuXng/38548/?p1=A1]  

Eisenberg,  Anne.  2010.  "Bye-­‐Bye  BaSeries:  Radio  Waves  as  a  Low-­‐Power  Source."  The   New   York   Times.     New   York,   NY.     July   18.   p.   BU3.   [hSp://www.nyXmes.com/2010/07/18/business/18novel.html]  

Page 37: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

REFERENCES  

•  Feynman,  Richard  P.  2001.  The  Pleasure  of  Finding  Things  Out:    The  Best  Short  Works  of  Richard  P.  Feynman.  London,  UK:  Penguin  Books.    

•  Hilbert,  MarXn,  and  Priscila  López.  2011.  "The  World's  Technological  Capacity  to  Store,  Communicate,  and  Compute  InformaXon."    Science.    vol.  332,  no.  6025.  April  1.  pp.  60-­‐65.    

•  Koomey,  Jonathan.  2008.  "Worldwide  electricity  used  in  data  centers."    Environmental  Research  Le#ers.  vol.  3,  no.  034008.  September  23.  <h#p://stacks.iop.org/1748-­‐9326/3/034008>.  

•  Koomey,  Jonathan  G.,  ChrisXan  Belady,  Michael  PaSerson,  Anthony  Santos,  and  Klaus-­‐Dieter  Lange.  2009a.  Assessing  trends  over  8me  in  performance,  costs,  and  energy  use  for  servers.  Oakland,  CA:  AnalyXcs  Press.    August  17.  <hSp://www.intel.com/pressroom/kits/ecotech>.      

•  Koomey,  Jonathan  G.,  Stephen  Berard,  Marla  Sanchez,  and  Henry  Wong.  2011.  "ImplicaXons  of  Historical  Trends  in  The  Electrical  Efficiency  of  CompuXng."    IEEE  Annals  of  the  History  of  Compu8ng.    vol.  33,  no.  3.  July-­‐September.  pp.  2-­‐10.    <hSps://files.me.com/jgkoomey/u0zi7l>  

•  Koomey,  Jonathan.  2011.  Growth  in  data  center  electricity  use  2005  to  2010.  Oakland,  CA:  AnalyXcs  Press.    August  1.  <hSp://www.analyXcspress.com/datacenters.html>  

•  Mollick,  Ethan.  2006.  "Establishing  Moore’s  Law."    IEEE  Annals  of  the  History  of  Compu8ng  (Published  by  the  IEEE  Computer  Society).    July-­‐September.  pp.  62-­‐75.    

Page 38: Koomey on why ultra-low power computing will change everything

Copyright  Jonathan  Koomey  2012  

REFERENCES  (2)  

•  Yoonmyung,  Lee,  Kim  Gyouho,  Bang  Suyoung,  Kim  Yejoong,  Lee  Inhee,  P.  DuSa,  D.  Sylvester,  and  D.  Blaauw.  2012.  A  modular  1mm3  die-­‐stacked  sensing  pla]orm  with  op8cal  communica8on  and  mul8-­‐modal  energy  harves8ng.  Proceedings  of  the  Solid-­‐State  Circuits  Conference  Digest  of  Technical  Papers  (ISSCC),  2012  IEEE  InternaXonal.    19-­‐23  Feb.  2012.    [hSp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6171933]    

•  Moore,  Gordon  E.  1965.  "Cramming  more  components  onto  integrated  circuits."  In  Electronics.  April  19.    

•  Moore,  Gordon  E.  1975.  "Progress  in  Digital  Integrated  Electronics."    IEEE,  IEDM  Tech  Digest.    pp.  11-­‐13.  <hSp://www.ieee.org/>  

•  Nordhaus,  William  D.  2007.  "Two  Centuries  of  ProducXvity  Growth  in  CompuXng."    The  Journal  of  Economic  History.    vol.  67,  no.  1.  March.  pp.  128-­‐159.  <hSp://nordhaus.econ.yale.edu/recent_stuff.html>  

•  Weik,  MarXn  H.  1955.  A  Survey  of  Domes8c  Electronic  Digital  Compu8ng  Systems.  Aberdeen  Proving  Ground,  Maryland:  BallisXc  Research  Laboratories.  Report  No.  971.    December.  <hSp://ed-­‐thelen.org/comp-­‐hist/BRL.html>  

•  Weik,  MarXn  H.  1961.  A  Third  Survey  of  Domes8c  Electronic  Digital  Compu8ng  Systems.  Aberdeen  Proving  Ground,  Maryland:  BallisXc  Research  Laboratories.  Report  No.  1115.    March.  <hSp://ed-­‐thelen.org/comp-­‐hist/BRL61.html>  

•  Weik,  MarXn  H.  1964.  A  Fourth  Survey  of  Domes8c  Electronic  Digital  Compu8ng  Systems  (Supplement  to  the  Third  Survey).  Aberdeen  Proving  Ground,  Maryland:  BallisXc  Research  Laboratories.  Report  No.  1227.    January.  <hSp://ed-­‐thelen.org/comp-­‐hist/BRL64.html>