KNX – ZigBee Gateway for Home Automation Tsai, Yu-Ming Adviser : Tsai, Lian-jou Oct. 20 2010 STU...

41
KNX – ZigBee Gateway for Home Automation Tsai , Yu-Ming Adviser Tsai, Lian-jou Oct. 20 2010 STU ESLab 1

Transcript of KNX – ZigBee Gateway for Home Automation Tsai, Yu-Ming Adviser : Tsai, Lian-jou Oct. 20 2010 STU...

KNX – ZigBee Gateway for Home Automation

Tsai , Yu-MingAdviser : Tsai, Lian-jou

Oct. 20 2010STU ESLab 1

Outline• Abstract• Introduction• Research Background• KNX–ZigBee Gateway a. Attribute translation b. Application service translation c. Address translation• Result• Conclusion

STU ESLab 2

Abstract• Among the many wireless technologies,

ZigBee is one of the most useful for home automation.

• KNX is a mature protocol for wired media that is recognized as an international standard.

STU ESLab 3

Abstract• ZigBee is not supported with conventional

home networking systems which based on wired media.

• This paper proposes a KNX–ZigBee gateway to interface between KNX and ZigBee systems for wired and wireless home automation systems.

STU ESLab 4

Introduction-KNX• KNX is an international standard communication

protocol for home automation.• KNX is based on standard protocols for the EIB

(European Installation Bus), BatiBus, and the EHS (European Home System).

• KNX supports several communication media, including twisted pair, power line, radio-frequency, and Ethernet.

STU ESLab 5

STU ESLab 6

Introduction-KNX

• In KNX addressing system , every bus is identified by both a physical and a group address.

• The same length of user data carried in a KNX telegram can be utilized in DPT (Datapoint Type) for effective use of the bandwidth of the medium.

STU ESLab 7

Introduction-KNX

• ZigBee is a low-rate, low-power, low-cost wireless networking protocol that is targeted toward automation and remote control applications and is designed to provide connectivity for equipment.

Introduction- ZigBee

STU ESLab 8

• ZigBee defines three categories of devices according to their roles in the network: coordinator, router, and end devices.

• In the current version of the HA profile, there are 31 device definitions for general devices, lighting devices, closure devices, HVAC devices, and intruder alarm system devices

Introduction- ZigBee

STU ESLab 9

Introduction- ZigBee

STU ESLab 10

Research Background• The adoption of ZigBee as a network-layer

protocol and KNX as an application-layer protocol.

• The network layer of ZigBee provides advanced technologies such as routing and security, and the application layer of KNX defines application-level functions and services for HA.

STU ESLab 11

STU ESLab 12

Research Background• The application,

transport, and network layers of KNX are implemented on top of the ZigBee protocol stack, and an interface layer enables interactions between the two protocols.

• KNX over ZigBee wireless nodes are also able to communicate with existing KNX devices. by using ZigBee as a new data-link.

STU ESLab 13

Research Background

• However, This approach is limited in that KNX over ZigBee nodes cannot communicate with pure ZigBee nodes.

• We propose the KNX–ZigBee gateway method to leverage the beneficial characteristics of both networks.

STU ESLab 14

Research Background

• KNX–ZigBee gateway as an interface between the two networks with which to translate entities from one network to the other.

KNX–ZigBee Gateway

STU ESLab 15

KNX–ZigBee Gateway• KNX–ZigBee gateway must handle entities such

as the value of user data, application-level services, and the addresses of devices of both networks, three functions are supported:

1.translation of attributes of user data 2.translation of application level services 3.translation of addresses

STU ESLab 16

Attributes Translation• The DPTs defined by the KNX system enable

the user to encode the usage of the data efficiently.

STU ESLab 17

STU ESLab 18

Attributes Translation

• The HA profile defined by the ZigBee system comprises Device, Cluster, Command, Attribute, and Attribute data.

• An ‘On/Off Switch’ device has five categories of Clusters: On/Off, Scenes, Groups, Identify, and On/Off Switch Configuration, each with its own attributes.

STU ESLab 19

Attributes Translation

Attributes Translation

STU ESLab 20

• The logical access point for device communication is the endpoint in ZigBee and the communication object in KNX. An endpoint is mapped to a Device in a HA profile, and a communication object is mapped to a DPT.

Attributes Translation

STU ESLab 21

• The DPT information is managed by a commissioning tool called ETS. Given both the incoming telegram and the DPT information, the KNX–ZigBee gateway can discern the intended use of the telegram.

Attributes Translation

STU ESLab 22

• The information from the KNX network has to be translated appropriately to the ZigBee

application layer and APS sub-layer data structures.

Attributes Translation

STU ESLab 23

Attributes Translation

STU ESLab 24

• The Profile Identifier, Cluster Identifier, Attribute ID, Data Type, and Attribute data fields will be filled when we translate the example telegram from the KNX network.

Attributes Translation

STU ESLab 25

Application Services Translation

• KNX system has three kinds of representative services that are provided during normal operations. These are A_GroupValue_Read, A_Group Value_Response, and A_GroupValue_Write.

• The information regarding which service is being used is kept on the telegram as APCI (Application Protocol Control Information).

STU ESLab 26

Application Services Translation

STU ESLab 27

Addresses Translation • KNX uses 16-bit physical addresses and 16-bit

group addresses. • ZigBee uses three kinds of addresses: 64-bit IEEE extended addresses 16-bit network addresses 16-bit group addresses

STU ESLab 28

• Destination endpoints are maintained separately in a group table associating groups with endpoints.

• Group-addressed frames can be delivered selectively to those endpoints.

Addresses Translation

STU ESLab 29

• By using group addresses, one message can control several devices, just as in a KNX system.

Addresses Translation

STU ESLab 30

Result

STU ESLab 31

Result

STU ESLab 32

Result • The ZigBee frame format for the APS sub-

layer given is filled out to correspond with the example incoming KNX telegram.

• Translation from a ZigBee frame to a KNX telegram can be performed by the reverse of the given procedure.

STU ESLab 33

• In this paper, we proposed a KNX–ZigBee gateway to interface between KNX and ZigBee systems and enable integration of wireless and wired home automation systems.

• For the broadcast communications mode is used. The ZigBee standard use applying schemes, such as multicast communications, to achieve energy efficiency.

Conclusion

STU ESLab 34

Conclusion • Some attributes and application-level

services cannot be translated. the definitions may not be interchangeable between the systems.

• The structure of the KNX-ZigBee gateway makes it appear complex to implement. Some systematic ideas or schemes that make its structure as simple as possible.

STU ESLab 35

• we plan to implement the KNX–ZigBee gateway and use it to establish a home lighting control system. This model will include direct lighting, indirect lighting, and artificial lighting devices, as well as ZigBee sensor and actuator nodes.

Future Work

STU ESLab 36

References[1] Christian Reinisch, “Wireles communication in home and building automation,” Master’s thesis, Vienna University of Technology February 2007.[2] Christian Reinisch, Wolfgang Kastner, Georg Neugschwandtner, Wolfgang Granzer, “Wireless technologies in home and building automation,” INDIN 2007, Volume 1, PP. 93–98, 23–27 June 2007.[3] ZigBee Alliance home page, http://www.zigbee.org/en/about/

STU ESLab 37

References[4] KNX Specification, “03_07_02 Datapoint Types v1.4 AS v20071214a. doc v1.4,” December 14, 2007.[5] Sinem Coleri Ergen, “ZigBee/IEEE 802.15.4 summary,”U.C. Berkeley, September 10, 2004.[6] ZigBee Specification, “ZigBee home automation public application profile,” v1.0 revision 25, ZigBee document 053520r25, ZigBee Standard Organization, October 25, 2007.

STU ESLab 38

References[7] ZigBee Specification, “ZigBee cluster library specification,” ZigBee document 075123r01ZB, ZigBee Standard Organization, October 19, 2007.[8] ZigBee Specification, “ZigBee specification,” ZigBee document 053474r17, ZigBee Standard Organization,January 17, 2008.[9] KNX Specification, “03_03_07 layer application v1.0 AS,” December 19, 2001.[10] KNX Specification, “07_20 (S12) lighting v1.7 AS,”March 25, 2002

STU ESLab 39

Origin4th IEEE Conference on Automation

Science and EngineeringKey Bridge Marriott, Washington DC, USA

August 23-26, 2008

ppt Author : Tsai, Yu-Ming

STU ESLab 40

Thank You Very Much &

Welcome to advise

STU ESLab