Kinematic Equations Notes - Mrs....

6
Kinematic Equations Objectives: Students will use kinematic equations to describe and represent the motion of objects by determining: the distance traveled by an object with constant acceleration. the velocity of an object with constant acceleration. the distance traveled or time of travel for falling objects. You have learned there are a variety of quantities associated with the motion of objects – displacement (and distance), velocity (and speed), acceleration, and time. Knowledge of these quantities provides descriptive information about an object’s motion. For example, if a car is known to move with a constant velocity of 22.0 m/s north for 12.0 seconds for a northward displacement of 264 meters, then the motion of the car is fully described. And if a second car is known to accelerate from a rest position with an eastward acceleration of 3.0 m/s 2 for a time of 8.0 seconds, providing a final velocity of 24 m/s east and an eastward displacement of 96 meters, then the motion of this car is fully described. These two statements provide a complete description of the motion of an object. However, such completeness is not always known. It is often the case that only a few parameters of an object’s motion are known, while the rest are unknown. For example, as you approach the stoplight, you might know that your car has a velocity of 22 m/s east and is capable of a skidding acceleration of 8.0 m/s 2 west. However you do not know the displacement that your car would experience if you were to slam on your brakes and skid to a stop; and you do not know the time required to skid to a stop. In such an instance as this, the unknown quantities can be determined using the kinematic equations. The kinematic equations are a set of four equations that can be used to predict unknown information about an object’s motion, if other information is known. The equations can be used for any motion that can be described as being either constant velocity motion (an acceleration of 0 m/s 2 ) or a constant acceleration motion. They can never be used over any period of time during which the acceleration is changing. The Kinematic Equations d = v i t + 1 2 at 2 v f 2 = v i 2 + 2 ad v f = v i + at d = v i + v f 2 × t ( d is also sometimes represented with Δx , change in distance)

Transcript of Kinematic Equations Notes - Mrs....

Page 1: Kinematic Equations Notes - Mrs. Ashmore-Goodcashmorewhs.weebly.com/.../kinematic_equations_notes.pdf · 2018. 9. 10. · Each!of!these!equations!can!be!used!to!predict!unknown!information!about!an!object’s!motion!if!the!

Kinematic  Equations    Objectives:  Students  will  use  kinematic  equations  to  describe  and  represent  the  motion  of  objects  by  determining:    

the  distance  traveled  by  an  object  with  constant  acceleration.  the  velocity  of  an  object  with  constant  acceleration.  the  distance  traveled  or  time  of  travel  for  falling  objects.    

   You  have  learned  there  are  a  variety  of  quantities  associated  with  the  motion  of  objects  –  displacement  (and  distance),  velocity  (and  speed),  acceleration,  and  time.  Knowledge  of  these  quantities  provides  descriptive  information  about  an  object’s  motion.  For  example,  if  a  car  is  known  to  move  with  a  constant  velocity  of  22.0  m/s  north  for  12.0  seconds  for  a  northward  displacement  of  264  meters,  then  the  motion  of  the  car  is  fully  described.  And  if  a  second  car  is  known  to  accelerate  from  a  rest  position  with  an  eastward  acceleration  of  3.0  m/s2  for  a  time  of  8.0  seconds,  providing  a  final  velocity  of  24  m/s  east  and  an  eastward  displacement  of  96  meters,  then  the  motion  of  this  car  is  fully  described.  These  two  statements  provide  a  complete  description  of  the  motion  of  an  object.      However,  such  completeness  is  not  always  known.  It  is  often  the  case  that  only  a  few  parameters  of  an  object’s  motion  are  known,  while  the  rest  are  unknown.  For  example,  as  you  approach  the  stoplight,  you  might  know  that  your  car  has  a  velocity  of  22  m/s  east  and  is  capable  of  a  skidding  acceleration  of  8.0  m/s2  west.  However  you  do  not  know  the  displacement  that  your  car  would  experience  if  you  were  to  slam  on  your  brakes  and  skid  to  a  stop;  and  you  do  not  know  the  time  required  to  skid  to  a  stop.  In  such  an  instance  as  this,  the  unknown  quantities  can  be  determined  using  the  kinematic  equations.      The  kinematic  equations  are  a  set  of  four  equations  that  can  be  used  to  predict  unknown  information  about  an  object’s  motion,  if  other  information  is  known.  The  equations  can  be  used  for  any  motion  that  can  be  described  as  being  either  constant  velocity  motion  (an  acceleration  of  0  m/s2)  or  a  constant  acceleration  motion.  They  can  never  be  used  over  any  period  of  time  during  which  the  acceleration  is  changing.        The  Kinematic  Equations  

!!!!!!!!!!!!!!d ! = !v it !+ !12at

2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!v f2 = !v i2 + !2ad

!!!!!!!!!!!!!!!!v f = !v i + !at !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d ! = !v i + !v f2 !× !t

(d !is!also!sometimes!represented!with!Δx , !change!in!distance)

 

Page 2: Kinematic Equations Notes - Mrs. Ashmore-Goodcashmorewhs.weebly.com/.../kinematic_equations_notes.pdf · 2018. 9. 10. · Each!of!these!equations!can!be!used!to!predict!unknown!information!about!an!object’s!motion!if!the!

Each  of  these  equations  can  be  used  to  predict  unknown  information  about  an  object’s  motion  if  the  other  information  is  known.        Example  Problem  1    

Using the Kinematic Equations Ima Hurryin is approaching a stoplight moving with a velocity of 30.0 m/s. The light turns yellow, and Ima applies the brakes and skits to a stop. If Ima’s deceleration is 8.00 m/s2, then determine the displacement of the car during the skidding process. Identify the Unknown: displacement: d List the Knowns: initial velocity: vi = 30.0 m/s (positive direction) final velocity: vf = 0 m/s (came to a stop) acceleration: a = − 8.00 m/s2 (slowing down) Set Up the Problem: 𝒗𝒇! = 𝒗𝒊! + 2𝒂𝒅

rearrange: 𝒗𝒇!  !  𝒗𝒊

!

!𝒂= 𝒅

Solve the Problem: 𝟎𝒎𝒔

𝟐  –   𝟑𝟎.𝟎𝒎𝒔

𝟐

! !𝟖.𝟎𝟎𝒎𝒔𝟐

= 𝟓𝟔.𝟐𝟓  𝐦  𝐟𝐨𝐫𝐰𝐚𝐫𝐝

The sign is positive, which reinforces the idea that Ima will skid in the same direction she was originally traveling.

Check the Answer: The magnitude of the displacement (56.25 m,

approximately half the length of a football field) is reasonable for a car traveling at 30.0 m/s (approximately 65 mi/hr) to come to a stop. The displacement is in the same direction as the velocity, which is expected when stopping at a light.

Page 3: Kinematic Equations Notes - Mrs. Ashmore-Goodcashmorewhs.weebly.com/.../kinematic_equations_notes.pdf · 2018. 9. 10. · Each!of!these!equations!can!be!used!to!predict!unknown!information!about!an!object’s!motion!if!the!

Example  Problem  2    

Using the Kinematic Equations Ben Rushin is waiting at a stoplight. When it finally turns green, Ben accelerated from rest at a rate of 6.00 m/s2 for a time of 4.10 seconds. Determine the displacement of Ben’s car during this time period. Identify the Unknown: displacement: d List the Knowns: initial velocity: vi = 0 m/s (sitting at rest) acceleration: a = 6.00 m/s2 time: t = 4.10 s Set Up the Problem: 𝒅 = 𝒗𝒊𝒕+  

12𝒂𝒕

2

Solve the Problem: 𝒅 = 𝟎𝒎𝒔𝟒.𝟏𝟎  𝒔 + 𝟏

𝟐𝟔.𝟎𝟎 𝒎

𝒔𝟐𝟒.𝟏𝟎  𝒔 𝟐

                                                                                                     = 𝟓𝟎.𝟒𝟑  𝐦  𝐟𝐨𝐫𝐰𝐚𝐫𝐝 The sign is positive, which shows forward motion. Check the Answer: The magnitude of the displacement (50.43 m

approximately half the length of a football field) is reasonable for a car accelerating at 6.00 m/s2 for 4.10 s as the car will reach a speed of 24 m/s in this time (approximately 50 mi/hr).

     Free  Fall  A  free-­‐falling  object  is  an  object  that  is  falling  solely  under  the  influence  of  gravity.  Any  object  that  is  moving  and  being  acted  upon  only  by  the  force  of  gravity  is  said  to  be  “in  a  state  of  free  fall.”  Such  an  object  will  experience  a  downward  acceleration  of  9.8  m/s2.  Whether  the  object  is  falling  downward  or  rising  upward  toward  its  maximum  height,  if  it  is  under  the  sole  influence  of  gravity,  then  its  acceleration  value  is  9.8  m/s2.      Like  any  moving  object,  the  motion  of  an  object  in  free  fall  can  be  described  by  the  four  kinematic  equations.      Applying  Free  Fall  Concepts  to  Problem-­‐Solving  

• The  acceleration  of  an  object  that  is  falling  is  +9.8  m/s2,  whereas  the  acceleration  of  an  object  that  has  been  thrown  into  the  air  is  –9.8m/s2.  Remember,  the  negative  sign  refers  to  the  direction  of  the  acceleration.  This  also  makes  sense;  as  an  object  thrown  into  the  air  will  slow  down,  i.e.  decelerate.    

Page 4: Kinematic Equations Notes - Mrs. Ashmore-Goodcashmorewhs.weebly.com/.../kinematic_equations_notes.pdf · 2018. 9. 10. · Each!of!these!equations!can!be!used!to!predict!unknown!information!about!an!object’s!motion!if!the!

• If  an  object  is  merely  dropped  (as  opposed  to  being  thrown)  from  an  elevated  height,  then  the  initial  velocity  of  the  object  is  0  m/s.    

• If  an  object  is  thrown  upwards,  then  it  will  slow  down  as  it  rises  upward.  The  instant  at  which  it  reaches  its  maximum  height,  its  final  velocity  is  0  m/s.    

• If  an  object  is  thrown  upwards,  then  the  velocity  at  which  it  is  thrown  is  equal  in  magnitude  and  opposite  in  sign  to  the  velocity  that  it  has  when  it  returns  to  the  same  height.  That  is,  a  ball  thrown  upward  with  a  velocity  of  +30  m/s  will  have  a  velocity  of  –30  m/s  when  it  returns  to  the  same  height.      

These  four  principles  and  the  four  kinematic  equations  can  be  combined  to  solve  problems  involving  the  motion  of  free  falling  objects.        Example  Problem  3    

Solving Free Fall Problems Luke Autbeloe drops a pile of roof shingles from the top of a roof located 8.52 meters above the ground. Determine the time required for the singles to reach the ground. Identify the Unknown: time: t List the Knowns: distance: d = 8.52 m (height of roof)

initial velocity: vi = 0 m/s (being dropped) acceleration: a = 9.8 m/s2 (gravity) Set Up the Problem: 𝒅 = 𝒗𝒊𝒕+  

12𝒂𝒕

2 recognize: 𝒗𝒊𝒕 = 0 simplify: 𝒅 =   !

!𝒂𝒕!

rearrange: 𝒕 =   !𝒅𝒂

Solve the Problem: 𝒕 =   ! 𝟖.𝟓𝟐  𝒎𝟗.𝟖  𝒎/𝒔𝟐

= 𝟏.𝟑𝟏𝟗  𝒔

Check the Answer: The shingles are falling a distance of approximately 10

meters; it seems that an answer between 1 and 2 seconds would be highly reasonable. The calculated time easily falls within this range of reasonability.

   

Page 5: Kinematic Equations Notes - Mrs. Ashmore-Goodcashmorewhs.weebly.com/.../kinematic_equations_notes.pdf · 2018. 9. 10. · Each!of!these!equations!can!be!used!to!predict!unknown!information!about!an!object’s!motion!if!the!

Example  Problem  4    

Solving Free Fall Problems Rex Things throws his mother’s crystal vase vertically upwards with an initial velocity of 26.2 m/s. Determine the height to which the vase will rise above its initial height. Identify the Unknown: distance: d List the Knowns: initial velocity: vi = 26.2 m/s acceleration: a = –9.8 m/s2 (thrown upward) final velocity: vf = 0 m/s (reached max height) Set Up the Problem: 𝒗𝒇! = 𝒗𝒊2 +  2𝒂𝒅

rearrange: 𝒗𝒇!!  𝒗𝒊

!

!𝒂= 𝒅

Solve the Problem: 𝟎  𝒎/𝒔 !  –   𝟐𝟔.𝟐  𝒎/𝒔 !

! !𝟗.𝟖  𝒎/𝒔𝟐=  𝟑𝟓.𝟎𝟐  𝒎

Check the Answer: The vase is thrown with a speed of approximately 50

mi/hr. Such a throw would never make it further than one football field in height (approximately 100 m), yet will surely make it past the 10-yard line (approximately 10 meters). The calculated answer certainly falls within this range of reasonability.

   Watch  the  following  videos  and  then  try  the  practice  problems  given  below.        

Kinematic  Equations:  Distance  a  Ferrari  Travels    

Kinematic  Equations:  Height  Required  to  Drop  a  Car    

Kinematic  Equations:  One  Dimensional  Flight  Time  and  Max  Height    

Kinematics:  Free  Fall  Gravity  Problem        

Page 6: Kinematic Equations Notes - Mrs. Ashmore-Goodcashmorewhs.weebly.com/.../kinematic_equations_notes.pdf · 2018. 9. 10. · Each!of!these!equations!can!be!used!to!predict!unknown!information!about!an!object’s!motion!if!the!

Practice  Problems    

1. An  airplane  starts  at  rest  and  accelerates  down  the  runway  at  3.20  m/s2  for  32.8  s  until  it  finally  lifts  off  the  ground.  Determine  the  distance  traveled  before  takeoff.      

2. A  bike  accelerates  uniformly  from  rest  to  a  speed  of  7.10  m/s  over  a  distance  of  35.4  m.  Determine  the  acceleration  of  the  bike.    

 3. An  engineer  is  designing  the  runway  for  an  airport.  Of  the  planes  that  will  use  the  airport,  

the  lowest  acceleration  rate  is  likely  to  be  3  m/s2.  The  takeoff  speed  for  this  plane  will  be  65  m/s.  Assuming  this  minimum  acceleration,  what  is  the  minimum  allowed  length  for  the  runway?  

 4. The  observation  deck  of  a  tall  skyscraper  is  370  m  above  the  street.  Determine  the  time  

required  for  a  penny  to  free  fall  from  the  deck  to  the  street  below.      

5. A  kangaroo  is  capable  of  jumping  to  a  height  of  2.62  m.  Determine  the  takeoff  speed  of  the  kangaroo.    

 6. A  baseball  is  popped  straight  up  into  the  air  and  has  a  hang-­‐time  of  6.25  s.  Determine  the  

max  height  for  the  baseball.  (Hint:  the  time  to  rise  to  the  max  height  is  one-­‐half  the  total  hang  time.)  

 7. Challenge    A  car  starts  from  rest  and  accelerates  uniformly  over  a  time  of  5.21  seconds  for  a  

distance  of  110  m.  Determine  the  acceleration  of  the  car.        

8. Challenge    A  race  car  accelerates  uniformly  from  18.5  m/s  to  46.1  m/s  in  2.47  seconds.  Determine  the  acceleration  of  the  car  and  the  distance  traveled.  

 9. Challenge    Upton  Chuck  is  riding  the  Giant  Drop  at  Great  America.  If  Upton  free  falls  for  2.60  

seconds,  what  will  be  his  final  velocity  and  how  far  will  he  fall?    

10. Challenge    A  feather  is  dropped  on  the  moon  from  a  height  of  1.40  meters.  The  acceleration  of  gravity  on  the  moon  is  1.67  m/s2.  Determine  the  time  for  the  feather  to  fall  to  the  surface  of  the  moon.