KIN2 q=19 ° .30 deuterium

16
KIN2 q=19 ° .30 deuterium t min =-0.123 GeV 2 q’=2.78 GeV P’ d =.352 Gev Inner calo 10x9 block R=13.5 cm q g=8° t min =-0.33 GeV 2 q’=2.72 GeV P’ d =.579 Gev The Problem to detect the maximum of recoil deutons with reasonable silicon det hout interfere with the accepted experiment PYB

description

The Problem. KIN2 q=19 ° .30 deuterium. t min =-0.123 GeV 2 q’=2.78 GeV P’ d =.352 Gev. Inner calo 10x9 block. R=13.5 cm q g ’ =8°. t min =-0.33 GeV 2 q’=2.72 GeV P’ d =.579 Gev. How to detect the maximum of recoil deutons with reasonable silicon detector - PowerPoint PPT Presentation

Transcript of KIN2 q=19 ° .30 deuterium

Page 1: KIN2     q=19 ° .30    deuterium

KIN2 q=19°.30 deuterium

tmin=-0.123 GeV2 q’=2.78 GeV P’d=.352 Gev

Inner calo 10x9 block R=13.5 cm qg’=8°

tmin=-0.33 GeV2 q’=2.72 GeV P’d=.579 Gev

The Problem

How to detect the maximum of recoil deutons with reasonable silicon detectorWithout interfere with the accepted experiment

PYB

Page 2: KIN2     q=19 ° .30    deuterium

Reasonnable silicona+/- 40° angular range ===> close of the Target as possible

1) Move the beam it is possible let said 1cm 2) Detector close to 1cm from the target

2 cm

Silicon detector dimension +/- 2xtan(40°)/sin(18)=+/-5.42cm

which is limit of reasonable

20°

This insure that all the dvcs events produced in the target and with -tmin <t<0.33GeV2

And with fg<90° or fg>270° are emitted in front of the silicon.We favor the Beth-Heither process

PYB

Page 3: KIN2     q=19 ° .30    deuterium

QgD

QgD

TD MEV

-t GeV2

DQ=k-k’

18o

f

PYB

Page 4: KIN2     q=19 ° .30    deuterium

LD2

SILICON

1Stop in LD2

DE=0

2Stop in Si

DE>> MeV

3Stop after Si

DE<10 MeV

T Mev

DE=0

1

2

3

At angle a fixedcos a

DE=0

1

2

3

At T fixed

a

Note: With a Silicon thickness of 1mm (DE)2~5-10MeV . In the silicon of Compton Polarimeter (DE)3~0.3 MeV

PYB

Page 5: KIN2     q=19 ° .30    deuterium

Conclusion: it is possible to do a full f distribution between -80o to+80o f

for the bin [2.6,3.] GeV2 in –t . in this bin DE is >3MeV 10 times bigger that in the Compton Polarimeter

PYB

Page 6: KIN2     q=19 ° .30    deuterium

2 cm

16x(5.5x50 mm2) strips

32 strips

Silicon strips: 1mm

100 mm

PYB

Page 7: KIN2     q=19 ° .30    deuterium

ARSARS

Charge amplifier. + derivation

Using ARS allow:Times coincidence ~ 1-2 nsDE analyze

Vacuum feed-through

Like this of the polarimeter Compton

Only the charge amplifier require a new study

PYB

Page 8: KIN2     q=19 ° .30    deuterium

•Proton from the electro-desintegration of the deuton

e+De+n+p

Are the two dominant backgrounds

•Moller electrons

The proton field was computed by Pavel :

Page 9: KIN2     q=19 ° .30    deuterium

PYB

Page 10: KIN2     q=19 ° .30    deuterium

15 cm LH2 I=10mA

32 stripes : 5,5 x100 mm2

at 2 cm from the beamPYBBut some stop in the deuterium Tp< 21 MeV

Page 11: KIN2     q=19 ° .30    deuterium

2 cm

Tan(a)=d/l=2/16 a=7.12°

Electron Backgroung :

The forward part of the silicon must have difficulties. If it the case 1,2 or n strips can be forgotten

The best will be to use a shorter target 5 or 4 cm a= 18o

PYB

But that will implied to increase beam intensity to 20 µA and this intensity require the use of the raster !!!!!!

Page 12: KIN2     q=19 ° .30    deuterium

Possible Improvement

20 o

Target f=20 mm

Page 13: KIN2     q=19 ° .30    deuterium

An other setup

18o

X

0D=8cm

Page 14: KIN2     q=19 ° .30    deuterium
Page 15: KIN2     q=19 ° .30    deuterium

But an any case the absorption in the LH2 will conduct at the same range in t and f

Page 16: KIN2     q=19 ° .30    deuterium

My feeling:1) It is technically doable* for KIN22) It will be better to used a 4 or 5 cm target !! 3) The range in t and f is limited . • In this range a cross section can be extract • In this range the B-H is dominant

“Le jeu en vaut il la chandelle ?”Knowing that this technique will be and more difficult to be applied at the 12 GeV when Q2 and t will increase.

• mechanical support of the silicon• vacuum feed –through• position of target versus beam• Preamplifier

*

PYB