Kieran Flanagan

23
Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy Kieran Flanagan K.U. Leuven: K. Flanagan, P. Lievens G. Neyens, D. Yordanov. The University of Manchester: J. Billowes, P. Campbell, B. Cheal. Universität Mainz: K. Blaum, M. Kowalska, R. Neugart, W. Nörtershäuser. The University of Birmingham: D. Forest, G. Tungate. GSI: C. Geppert New York University: H.H. Stroke

description

Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy. K.U. Leuven : K. Flanagan, P. Lievens G. Neyens, D. Yordanov. The University of Birmingham: D. Forest, G. Tungate. Kieran Flanagan. GSI: C. Geppert. - PowerPoint PPT Presentation

Transcript of Kieran Flanagan

Page 1: Kieran Flanagan

Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam

laser spectroscopyKieran Flanagan

K.U. Leuven: K. Flanagan, P. Lievens G. Neyens, D. Yordanov.

The University of Manchester: J. Billowes, P. Campbell, B. Cheal.

Universität Mainz: K. Blaum, M. Kowalska, R. Neugart,

W. Nörtershäuser.

The University of Birmingham: D. Forest, G. Tungate.

GSI: C. Geppert

New York University: H.H. Stroke

Page 2: Kieran Flanagan

Laser spectroscopy at ISOLDE

• An atomic probe that extracts model independent nuclear information (spin, nuclear moments, charge radii).

• Several approaches (in-source, trapped, collinear…)

• Efficiency vs resolution

• Background (radioactive isobars, scattered light…)

Page 3: Kieran Flanagan

Collinear and in-source laser spectroscopy

Sensitivity of collinear laserspectroscopy has a limit of ~1:100. Typically 1:10 000.

Resolution ~ MHz, resultingfrom the velocity compressionof the line shape through acceleration.

With this resolution quadrupole moments andaccurate isotope shift measurements are possible

Page 4: Kieran Flanagan

Kluge & Nörtershäuser 2003

Status of laser measurements of moments and radii

• Production at ISOL facilities• Suitable transitions for tunable lasers exist only for the atom• Losses in the neutralization process and through optical pumping into dark states

Future area of interest includingthis work presently proposed

Page 5: Kieran Flanagan

30

28

29Cu78

Cu59

• Changes in the mean square charge radii.

Zn69

Cu68

Ni67

Zn70

Zn71

Zn72

Zn73

Zn74

Zn75

Zn76

Zn77

Zn78

Zn79

Zn80

Cu69

Cu70

Cu71

Cu72

Cu73

Cu74

Cu75

Cu76

Cu77

Cu78

Cu79

Ni68

Ni69

Ni70

Ni71

Ni72

Ni73

Ni74

Ni75

Ni76

Ni77

Ni78

Zn57

Zn58

Zn59

Zn60

Zn61

Zn62

Zn63

Zn64

Zn65

Zn66

Zn67

Zn68

Cu55

Cu56

Cu57

Cu58

Cu59

Cu60

Cu61

Cu62

Cu63

Cu64

Cu65

Cu66

Cu67

Ni53

Ni54

Ni55

Ni56

Ni57

Ni58

Ni59

Ni60

Ni61

Ni62

Ni63

Ni64

Ni65

Ni66

Cu57

Cu58

Cu72

Cu73

Cu74

Cu75

Cu76

Cu77

Cu78

Cu59

Cu60

Cu61

Cu62

Cu64

Cu66

28 50

• Magnetic moments, high sensitivity to the migration of the 5/2- level with neutron excess

• Quadrupole moments

Cu77

Cu76

Cu75

Cu74

Cu78Cu78

Cu77

Cu76

Cu75

Cu74

Cu73Cu73

Cu72Cu72

Cu71Cu71

Cu70Cu70

Cu68

Cu69

Cu68

Cu67

Cu57Cu57

Cu58Cu58

• Spin assignment of ground and isomeric states

Physical motivation

• Evolution of nuclear structure towards N=50 and the onset of deformation

Cu63

Cu65

Cu59

Cu68

Cu69

Cu70

Cu71

Cu72

Cu73

Cu74

Cu75

Cu76

Cu77

Cu78

Cu57

Cu58

Cu60

Cu61

Cu62

Cu63

Cu64

Cu65

Cu66

Cu67

Page 6: Kieran Flanagan

Experimental technique• Collinear laser spectroscopy at ISOLDE with the COLLAPS setup

Page 7: Kieran Flanagan

Collinear spectroscopy of copper

327nm

324nm

2S1/2

2P1/2,3/2

2D5/2

2D3/2

Cu I

5.1eV

IP 7.7eV

Na Charge exchange

1. Voltage tuning of the ion beam

2. Neutralization within Na or Li vapor

3. Transit of atomic beam between vapor cell and light collection region.4. Detection of resonant fluorescence in the light collection region

Page 8: Kieran Flanagan

2S1/2

2P3/2

a

March 2006 A1/2=5865(2), B3/2=-28(2)

Literature (RF measurements and level mixing)A1/2=5866.915(5), B3/2=-28.8(6)

March 2006A detection efficiency 1:30 000 for the strongest component of the hyperfine structure.

Stable beam test, March 2006Alkali-like 2S1/2-2P3/2 (D2) transition 63Cu

I=3/2

Page 9: Kieran Flanagan

Systematic migration of nuclear states in copper isotopes

57 59 61 63 65 67 69 71 73

1000

E(keV)

Mass number

1/2-

5/2-

I=5/2- level:•Remains static between 57-69Cu at ~1MeV•Systematically drops in energy as the ν(g9/2) shell begins to fill •Predictions on the

inversion of the ground state lie between 73Cu and 79Cu.•Experimental evidence for the inversion to occur at 75Cu.A.F. Lisetskiy et al. Eur. Phys. J. A, 25:95, 2005

N.A. Smirnova et al. Phys. Rev. C, 69:044306, 2004

S. Franchoo et al. Phys. Rev. C 64 054308

•5/2- level associated with the π(f5/2) orbital

Page 10: Kieran Flanagan

0

0,5

1

1,5

2

2,5

3

3,5

4

55 57 59 61 63 65 67 69 71 73 75 77 79 81A

Mag

netic

mom

ent (

n.m

.)

N=28 N=50

• High sensitivity to the monopole shift in measured magnetic moments.

• Magnetic moment calculations assuming a 5/2-

ground state in 75Cu and beyond show reasonable agreement with experimental data.

• Higher resolution data required.

Shell model with realistic interaction (G-matrix) and different monopole modifications

A. Lisetskiy (OXBASH) no quenching 0.7gs

N. Smirnova (ANTOINE), monopole by Nowacki

Page 11: Kieran Flanagan

Ground and excited state spin assignment

70Cu

1+

(3-)

(6-)

242.4(3)

101.1(3)

0

6.6(2)

33(2)

44.5(2)

IT ≈ 5%

IT = 50%

β ≈95%

β ≈50%

β ≈100%

Jπ E/keV T1/2/S

68Cu

1+

(6-)β =16%

IT = 84%

β =100%

721.6 225Jπ E/keV T1/2/S

0 31.1

π ν-coupling

πp3/2νg9/2

3-

4-5-

6-

πp3/2νp1/2-1(g9/2

)2+

1+

2+

πf5/2νg9/22-

4- 5-

6-

3-

7-

J. Van RoosbroeckPhys. Rev. Lett. 92:112501 2004

J. Van RoosbroeckPhys. Rev. C 69:034313 2004

E/k

eV

69Cu 69Niπ ν

Page 12: Kieran Flanagan

72Cu

(6-)

(3-)

(2+) 137

E1

0

(4-)

82 M

1

51 E

2

(1+)

376

E1

138

219

270

376

0

0.01

0.02

0.03

0.04

30534.5 30535.1 30535.6 30536.2

frequency ( cm-1)

Nor

mili

zed

inte

nsity

652 keV

847 keV

1004 keV

1253 keV

Cu I S1/2 – P1/2A(72Cu) = 5.4(1) GHzA(65Cu) = 12.48(7) GHz, μ(65Cu) = 2.3817(3) n.m.

I μ(μnm)

Exp.

μ(μnm)

Cal.

1 ±0.92 ±2.03

2 ±1.10 +2.76

3 ±1.18 -2.74

4 ±1.22 -0.99

5 ±1.25 +0.43

6 ±1.27 +1.66

β-decay and γ-ray spectroscopy studies

J.C Thomas, et al. Submitted to Phys. Rev. C

M. Stanoiu, PhD thesis, Université de Caen 2003

H. Mach, Symposium on Nuclear Structure PhysicsUniversity of Göttingen, 2001

Contrary to results from in-source laser spectroscopy!

This proposal aims to resolve this inconsistency.

Page 13: Kieran Flanagan

Onset of deformation

• Evidence from ISOLTRAP.

• Upward kink in the plot of S2N.

• Further confirmation will be obtained from the model independent measurements of Q and δ‹r2›.

C. Guénaut et al., submitted to Phys. Rev. C.

Page 14: Kieran Flanagan

Further evidence for large deformation from isomeric shift data

Isomer shift in 68Cu~390(250)MHz

• Enhanced Isomeric shift observed in 70Cu• δν70g,70m1 ~ 900(230)MHz• δν70g,70m2 ~ 1100(220)MHz

• No mass shift in system• Pure field effect• Sensitivity to isomer shift in low resolution in-source spectroscopy

L. Weissman et al. Phys. Rev. C, 65:024315, 2002S. Gheysen et al. Phys. Rev. C, 69:064310, 2004

70Cu

Page 15: Kieran Flanagan

September 2006• First on-line run for IS439 on neutron rich

copper.

• Primary goal was to measure the ground state spin of 72Cu.

Page 16: Kieran Flanagan

Sign of the magnetic moment of 66Cu

First measurements were made in 1966 and 1969and have had little attention paid to them since. Both 64Cu and 66Cu have I=1+ ground states.

1/2

2S1/2

2P3/2

I=1

3/2

1/23/25/2

+ve μ

1/22S1/2

2P3/2

I=1

3/2

1/23/25/2

-ve μ

C.J. Cussens et al. J. Phys. A, 2:658, 1969G.K. Rochester et al. Phys. Lett. B, 8:266, 1964

66Cu

64Cu

Page 17: Kieran Flanagan

1+ Ground state of 64,66,68Cu

Schmidt πp3/2νf-15/2 -0.936μn

Empirical πp3/2νf-15/2 -0.707μn

64Cu -0.217(2)μn

66Cu +0.282(2)μn

Empirical πp3/2νp1/2 +1.68μn

Schmidt πp3/2νp1/2 +2.84μnμn

2

1

0

-1

68gCu +2.48(2)μn

Currently under investigation

Page 18: Kieran Flanagan

Summary of results

• New quadrupole moments• New isotope shifts• Higher accuracy magnetic moments•Sign confirmation (+ve 70gCu)•Isomer shift 68g-68mCu

Negative isomer shift

Page 19: Kieran Flanagan

Experimental requirements for fluorescence spectroscopy on the COLLAPS beam line

Low noise on the separator voltage•Suppression of Isobaric contamination

Current limit for optical detection continuous ion beam: 106 ions/μC

• Photon background detected by PMT ~1000-2000/s • Atom-laser overlap in the light collection region•Optical pumping during transit from vapour cell to light collection region

• Further optimization of light collection region, at best an order of magnitude improvement.•RFQ cooler: Improved beam emittance.

Bunched beam spectroscopy, background suppression by a factor up to 104

Page 20: Kieran Flanagan

2007

•70m1,70m2Cu Isomer shifts and quadrupole moments•72Cu Ground-state spin•73-75Cu monopole migration of f5/2 with p3/2

All possible before the RFQ cooler is installed

Page 21: Kieran Flanagan

Effect of improved ion beam for fluorescence spectroscopy on the COLLAPS beam line

Current limiting factors for laser spectroscopy

• Background of scattered laser light detected by PMT ~2000/s.• Detection efficiency within the light collection region.• Broadening of lineshape due to voltage ripples.

Currently the minimum ion beam diameter reached is ~5mm

Within the light collection region the ion beam should have zero divergence (parallel beam)

In order to maximize the detection efficiency good overlap between laser and ion beams is necessary

This results in a high background level from scattered light

Page 22: Kieran Flanagan

Effect of improved ion beam for fluorescence spectroscopy on the COLLAPS beam line

• A reduction in the ion beam diameter will allow the laser to be reduced in diameter (and therefore power) with no detrimental effect on the detection efficiency.• Immediate consequences for the detected background

Bunching ions in the RFQ cooler

Trap and accumulates ions – typically for 300 ms

Releases ions in a 15 µs bunch

Background suppression equal to the ratio of the trapping time to the bunch width 300ms/15 µs ~ 104

Page 23: Kieran Flanagan

8000 ions/sec

5.3 hours

Data from work at Jyvaskyla JYFL J.Billowes

Photons from laser-excitation of radioactive 88Zr

Laser frequency

200

100

30

0

BEFORE

AFTER

(Photon-ion coincidence

method)

2000 ions/sec

48 minutes

For optical measurements the minimum

ion beam intensity is 106/s

Compare to COLLAPS