KGS-00-25.pdf

download KGS-00-25.pdf

of 212

Transcript of KGS-00-25.pdf

  • 8/12/2019 KGS-00-25.pdf

    1/212

    Multichannel Analysis of Surface Wave

    Theory and Applications

    _______________________________________

    Presented at China University of Geosciences, Wuhan, PRCChengdu University of Technology, Chengdu, PRC

    China University of Geosciences, Beijing, PRCNorth China Institute of Water Conservancyand Hydroelectric Power, Zhengzhou, PRC

    June 5, 2000 June 15, 2000

    Presented by

    Jianghai Xia

    Prepared byJianghai Xia, Richard D. Miller,

    and Choon B. Park

    Kansas Geological Survey

    The University of Kansas

    1930 Constant Avenue

    Lawrence, KS 66047, USA

    KGS Open-file Report 2000-25

  • 8/12/2019 KGS-00-25.pdf

    2/212

    Theory and ApplicationsTheory and ApplicationsTheory and ApplicationsTheory and ApplicationsTheory and ApplicationsTheory and ApplicationsTheory and ApplicationsTheory and Applications

    Multichannel Analysis of Surface WavesMultichannel Analysis of Surface WavesMultichannel Analysis of Surface WavesMultichannel Analysis of Surface WavesMultichannel Analysis of Surface WavesMultichannel Analysis of Surface WavesMultichannel Analysis of Surface WavesMultichannel Analysis of Surface Waves

    (MASW)(MASW)(MASW)(MASW)(MASW)(MASW)(MASW)(MASW)

  • 8/12/2019 KGS-00-25.pdf

    3/212

    Part 2

    Verifications

    Real World Examples

  • 8/12/2019 KGS-00-25.pdf

    4/212

    A Pitfall in Shallow Shear-waveRefraction Surveying

    An Interesting Real-World Example

  • 8/12/2019 KGS-00-25.pdf

    5/212

    Construction of 2-D Vertical Shear-waveConstruction of 2-D Vertical Shear-waveConstruction of 2-D Vertical Shear-waveConstruction of 2-D Vertical Shear-waveConstruction of 2-D Vertical Shear-waveConstruction of 2-D Vertical Shear-waveConstruction of 2-D Vertical Shear-waveConstruction of 2-D Vertical Shear-waveVelocity Field by the Multichannel AnalysisVelocity Field by the Multichannel AnalysisVelocity Field by the Multichannel AnalysisVelocity Field by the Multichannel AnalysisVelocity Field by the Multichannel AnalysisVelocity Field by the Multichannel AnalysisVelocity Field by the Multichannel AnalysisVelocity Field by the Multichannel Analysis

    of Surface Wave Techniqueof Surface Wave Techniqueof Surface Wave Techniqueof Surface Wave Techniqueof Surface Wave Techniqueof Surface Wave Techniqueof Surface Wave Techniqueof Surface Wave Technique

    Part 3

  • 8/12/2019 KGS-00-25.pdf

    6/212

    Part 4

    Future Study

    1. Higher Modes

  • 8/12/2019 KGS-00-25.pdf

    7/212

    Advantages of Calculating

    Shear-wave Velocity fromSurface Waves with Higher Modes

    Why Use Higher Modes?

  • 8/12/2019 KGS-00-25.pdf

    8/212

    Outline

    Introduction

    Modeling ResultsA Real-World Example

    Discussion and Conclusions

  • 8/12/2019 KGS-00-25.pdf

    9/212

    Introduction

    What are higher modes?

    More than one phase velocity can be associated with a given

    frequency of Rayleigh wave simply because these waves

    can travel at different velocities for a given frequency.

    The lowest velocity for any given frequency is called the

    fundamental-modevelocity (or the first mode). The next

    higher velocity above the fundamental-mode phase

    velocity is called the second-modevelocity, and so on.

  • 8/12/2019 KGS-00-25.pdf

    10/212

    Why do we need higher modes?

    In some situations, highermodes take more energy

    than the fundamental mode

    in a higher frequency

    range, which means thefundamental-mode data

    may not be available in the

    higher frequency range and

    higher modes are the only

    choice.

  • 8/12/2019 KGS-00-25.pdf

    11/212

    An Example of Higher Modes

    Data acquired in San Jose, California, in 1998

  • 8/12/2019 KGS-00-25.pdf

    12/212

    Modeling Results

    1. the sensitivity of

    higher modes ofsurface waves,

    2. investigation depth,

    3. stability duringinversion.

    The six layer model isused to analyze

  • 8/12/2019 KGS-00-25.pdf

    13/212

    Selected papers on surface wave techniques (as of June 1, 2000)

    1.Xia, J., Miller, R.D., and Park, C.B., 1999, Estimation of near-surface shear-wave velocity byinversion of Rayleigh wave: Geophysics, 64, 691-700.

    2.Park, C.B., Miller, R.D., and Xia, J., 1999, Multi-channel analysis of surface waves:

    Geophysics, 64, 800-808.3. Miller, R.D., Xia, J., Park, C.B., Ivanov, J., 1999, Multichannel analysis of surface waves to

    map bedrock: The Leading Edge, 18, 1392-1396.

    4. Xia, J., Miller, R.D., Park, C.B., Hunter, J.A., and Harris, J.B., 2000, Comparing shear-wavevelocity profiles from MASW with borehole measurements in unconsolidated sediments,

    Fraser River Delta, B.C., Canada: September 2000 issue ofJournal of Environmental andEngineering Geophysics.

    5. Park, C.B., Miller, R.D., and Xia, J., 1998, Imaging dispersion curves of surface waves onmulti-channel record: Technical Program with Biographies, SEG, 68th Annual Meeting,

    New Orleans, Louisiana, 1377-1380.

    6. Xia, J., Miller, R.D., Park, C.B., Wightman, E. and Nigbor, R., 1999, A pitfall in shallowshear-wave refraction surveying: Technical Program with Biographies, SEG, 69th

    Annual Meeting, Houston, TX, 508-511.

    7. Xia, J., Miller, R.D., Park, C.B., and Ivanov, J., 2000, Construction of 2-D vertical shear-wavevelocity field by the multichannel analysis of surface wave technique: Proceedings of the

    Symposium on the Application of Geophysics to Engineering and Environmental

    Problems (SAGEEP 2000), Arlington, Va., February 20-24, 2000, 1197-1206 .

    8.Miller, R.D., Xia, J., Park, C.B., Shefchik W.T., and Moore, L., 1999, Seismic techniques todelineate dissolution features in the upper 1000 ft at a power plant site: Technical

    Program with Biographies, SEG, 69th Annual Meeting, Houston, TX, 492-495.

    9.Xia, J. Miller, R.D., Park, C.B., in review, Advantage of calculating shear-wave velocity fromsurface waves with higher modes: submitted to the 70th SEG Annual Meeting, Calgary,

    Canada.

    10. Xia, J., Miller, R.D., and Park, C.B., 1997, Estimation of shear wave velocity in acompressible Gibson half-space by inverting Rayleigh wave phase velocity: Technical

    Program with Biographies, SEG, 67th Annual Meeting, Dallas, TX, 1927-1930.

    11. Park, C.B., Miller, R.D., and Xia, J., 1999, Detection of near-surface voids using surface

    wave: Proceedings of the Symposium on the Application of Geophysics to Engineering

    and Environmental Problems (SAGEEP 99), Oakland, CA, March 14-18, 281-286.12. Park, C.B., Miller, R.D., and Xia, J., Hunter, J.A., and Harris, J. B., 1999, Higher mode

    observation by the MASW method:Technical Program with Biographies, SEG, 69thAnnual Meeting, Houston, TX, 524-527.

    13.Park, C.B., Miller,R.D, Xia, J., Ivanov, I., Hunter, J.A., Good, R.L., and Burns., R.A.,

    Multichannel analysis of underwater surface waves: submitted to the 70th SEG Annual

  • 8/12/2019 KGS-00-25.pdf

    14/212

    Sensitivity of Higher Modes

    Second mode Third mode

    Contribution to the higher-mode Rayleigh-wave phase

    velocity by a 25% change in each earth parameter.

    200

    400

    600

    800

    1000

    1200

    10 15 20 25 30 35 40

    Frequency (Hz)

    Second-modephasevelocity(m/s)

    Model

    S-wave

    P-wave

    Density

    Thickness

    400

    500

    600

    700

    800

    900

    1000

    25 30 35 40 45

    Frequency (Hz)

    Third-modep

    hasevelocity(m/s)

    Model

    S-wave

    P-wave

    Density

    Thickness

  • 8/12/2019 KGS-00-25.pdf

    15/212

    Penetrating Depth of Higher Modes

    Experimental analysis indicates that energy ofhigher modes tends to become more dominant

    as the source distance increases.

    The Jacobian matrix of the higher-mode

    Rayleigh-wave data suggests higher-mode data

    have deeper investigation depths than do the

    fundamental-mode data.

  • 8/12/2019 KGS-00-25.pdf

    16/212

    Penetrating Depth

    The open circles are therow vectors of theJacobian matrix associated

    with the shortest wave-

    length data.

    A wavelength of 8.7 m

    reaches zero at a depth of

    13 m for the fundamental-mode data

    Wavelength

    0.001

    0.01

    0.1

    1

    0 5 10 15 20

    Depth (m)

    Rowve

    ctor

    134

    63.6

    20.7

    12.3

    8.7

  • 8/12/2019 KGS-00-25.pdf

    17/212

    Penetrating Depth Comparison

    Fundamental mode Second mode

    Wavelength

    0.001

    0.01

    0.1

    1

    0 5 10 15 20

    Depth (m)

    Rowvector

    134

    63.6

    20.7

    12.3

    8.7

    Wavelength

    0.001

    0.01

    0.1

    1

    0 5 10 15 20

    Depth (m)

    Rowvector

    93.2

    40.8

    17.9

    13.6

    10.9

  • 8/12/2019 KGS-00-25.pdf

    18/212

    Penetrating Depth Comparison

    Second mode Third mode

    Wavelength

    0.001

    0.01

    0.1

    1

    0 5 10 15 20

    Depth (m)

    Row

    vector

    93.2

    40.8

    17.9

    13.6

    10.9

    Wavelength

    0.001

    0.01

    0.1

    1

    0 5 10 15 20

    Depth (m)

    Row

    vector

    27.9

    21.7

    16.9

    10.7

    6

  • 8/12/2019 KGS-00-25.pdf

    19/212

    Conclusion on Penetrating Depth

    Higher-mode Rayleigh-wave data cansee deeper when compared to the

    same wavelength components of the

    fundamental-mode Rayleigh-wave data.

  • 8/12/2019 KGS-00-25.pdf

    20/212

    Stability of Inversion with Higher Modes

    The most significant result is that higher-mode data stabilizes the inversion process

    and increases the resolution of inverted

    S-wave velocities.

  • 8/12/2019 KGS-00-25.pdf

    21/212

    Stability of Inversion

    A difference of more than 100% in S-wave velocity models at

    depths of 6 m and 7 m only result in a standard deviation of4.6m/s in the fundamental-mode data,

    33.5m/s in second-mode data, and

    27.3m/s in the third-mode data.

    Differences in phase velocity S-wave velocity models

    -50

    0

    50

    100

    150

    0 10 20 30 40 50 60 70

    Frequency (Hz)

    Difference(m/s)

    Fundamental

    Second

    Third

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 5 10 15 20

    Depth (m)

    Vsvelocity(m/s)

    Model 1

    Model 2

  • 8/12/2019 KGS-00-25.pdf

    22/212

    Stability of Inversion

    A 100% difference in S-wave velocity models at depths of 6 m

    and 7 m and 9 m and 10 m only result in a standard deviation of59m/s in the fundamental-mode data,

    113m/s in second-mode data, and

    110m/s in the third-mode data.

    Differences in phase velocity S-wave velocity models

    -50

    0

    50

    100

    150

    200

    250

    300

    350

    0 10 20 30 40 50 60 70 80

    Frequency (Hz)

    Difference(m/s)

    Fundamental

    Second

    Third

    0

    200

    400

    600

    800

    1000

    1200

    0 5 10 15 20

    Depth (m)

    Vsvelocity(m/s)

    Model 1

    Model 2

  • 8/12/2019 KGS-00-25.pdf

    23/212

    Stability of Inversion

    A 80% difference in S-wave velocity models at depths of 6 m and

    7 m and 9 m and 10 m only result in a standard deviation of13m/s in the fundamental-mode data,

    45m/s in second-mode data, and

    37m/s in the third-mode data.

    Differences in phase velocity S-wave velocity models

    0

    200

    400

    600

    800

    1000

    0 5 10 15 20

    Vs velocity (m/s)

    Depth(m)

    Model 1

    Model 2-40

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 10 20 30 40 50 60 70 80

    Frequency (Hz)

    Difference(m/s)

    Fundamental

    Second

    Third

  • 8/12/2019 KGS-00-25.pdf

    24/212

    Stability of Inversion

    80% difference in S-wave velocity models at depths from 3 m

    to 6 m only result in a standard deviation of17m/s in the fundamental-mode data

    66m/s in second-mode data

    35m/s in the third-mode data.

    Differences in phase velocity S-wave velocity models

    0100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0 5 10 15 20

    Depth (m)

    VsVelocity(m/s)

    Model 1

    Model 2-100

    -50

    0

    50

    100

    150

    200

    250

    0 10 20 30 40 50 60 70 80

    Frequency (Hz)

    Difference(m/s)

    Fundamental

    Second

    Third

  • 8/12/2019 KGS-00-25.pdf

    25/212

    Conclusion on Stability

    An inversion with higher mode data can

    reject irrational model 2 due to itshigher RMS error. Model 2 may be

    accepted by an inversion only with the

    fundamental mode data due to its lower

    RMS error.

    A stabilized inversion can be achievedby including higher mode data in an

    inversion process.

  • 8/12/2019 KGS-00-25.pdf

    26/212

    A Real-world Example

    San Jose, California, Fall of 1998

  • 8/12/2019 KGS-00-25.pdf

    27/212

    Field Layout

    To determine S-wave velocity in near-surface materials up to

    10 m deep.

  • 8/12/2019 KGS-00-25.pdf

    28/212

    Layered Model

    A fourteen-layermodel with each

    layer 1 m in

    thickness.

  • 8/12/2019 KGS-00-25.pdf

    29/212

    Shot gather and its image in F-K domain

  • 8/12/2019 KGS-00-25.pdf

    30/212

    Fundamental Mode Data(Set One)

    100

    150

    200

    250

    300

    350

    5 10 15 20 25

    Frequency (Hz)

    Phas

    evelocity(m/s)

    MEASURED

    INITIAL

    FINAL

    100

    150

    200

    250

    300

    350

    400

    450

    0 5 10 15 20

    Depth (m)

    Shearwavevelocity(m/s)

    INITIAL

    INVERTED

    Pink lines present results of inversion of fundamental mode of

    surface wave data with errors.

  • 8/12/2019 KGS-00-25.pdf

    31/212

    Fundamental Mode Data with Errors(Set Two)

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20

    Depth (m)

    S-w

    avevelocity(m/s)

    Fundamental with e rror

    Fundamental

    Fundamental with error

    plus s econd mode

    Pink lines present results of inversion of fundamental mode of

    surface wave data with errors.

    100

    150

    200

    250

    300

    350

    5 10 15 20 25

    Frequency (Hz)

    Phasevelocity(m/s)

    Measured

    Initial

    Final

  • 8/12/2019 KGS-00-25.pdf

    32/212

    Fundamental Mode Data with Errors

    Plus the Second Mode Data(Set Three)

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20

    Depth (m)

    S-wa

    vevelocity(m/s)

    Fund amental with error

    Fundamental

    Fundamental with error

    plus second mode

    Yellow lines present results of inversion of fundamental mode

    of surface wave data with errors plus the second mode data.

    100

    150

    200

    250

    300

    350

    5 10 15 20 25 30

    Frequency (Hz)

    Phas

    evelocity(m/s)

    MEASURED

    INITIAL

    FINAL

  • 8/12/2019 KGS-00-25.pdf

    33/212

    Discussion

    In the real world, we normally make achoice between error and resolution of a

    model. The instability that we see in the

    inverted S-wave velocities of data set twois error in the inverted model, which can

    be reduced by reducing the resolution of

    the model.

  • 8/12/2019 KGS-00-25.pdf

    34/212

    Trade off BetweenResolution and Error

    100

    200

    300

    400

    500

    0 5 10 15 20

    Depth (m)

    S-

    wavevelocity(m/s)

    INITIAL Vs

    INVERTED Vs

    NO ERROR

    100

    200

    300

    400

    5 10 15 20 25

    Frequency (Hz)

    Ph

    asevelocity(m/s)

    MEASURED

    INITIAL

    FINAL

    Resolution is reduced by one half (layer thickness is increased

    to 2 m) to obtain a stable result (less model errors).

  • 8/12/2019 KGS-00-25.pdf

    35/212

    Acknowledgments

    The authors thank Geometrics, Inc. for itssupport in acquiring data used in this paper.

    The authors also thank Rob Huggins, Craig

    Lippus, Ming-Wen Sung, and Mark Prouty ofGeometrics for their assistance in acquiring

    the seismic data. The authors also appreciate

    the efforts of Mary Brohammer in manuscriptpreparation and submission.

  • 8/12/2019 KGS-00-25.pdf

    36/212

    Future Study (continuation)

    2. Accuracy of phase velocity

    To extract phase velocity from higher

    resolution image in the f-k domain and/orin the wavelet domain.

  • 8/12/2019 KGS-00-25.pdf

    37/212

    3. Group Velocity and Attenuation

    To extract S-wave velocity from groupvelocity and/or attenuation curve.

    Both group velocity and attenuation arerelated to derivatives of phase velocity.

  • 8/12/2019 KGS-00-25.pdf

    38/212

    4. Wave equation modeling andlaboratory modeling

    To model cases such as a dipping layered earthmodel, voids in layered earth models, layered

    model with S-wave velocity inversion (higher

    velocity on the top of lower velocity layer).

    To verify if there are any surface wave

    reflections and/or refractions. If yes, in whatsituations they will occur.

  • 8/12/2019 KGS-00-25.pdf

    39/212

    5. Resolution

    Horizontal resolution of inverted S-wavevelocity changes with depth due difference

    wavelengths.

    Vertical resolutionstudy by modeling?

  • 8/12/2019 KGS-00-25.pdf

    40/212

    6. Surface Wave Tomography

    New 3-D near-surface technology

  • 8/12/2019 KGS-00-25.pdf

    41/212

    Introduction

    The Method Examples

    Mapping bed rock, Olathe, Kansas

    Imaging a steam tunnel, Lawrence, Kansas Mapping bed rock, Joplin, Missouri

    Mapping dissolution features, Damascus, Alabama

    Locating a pit site, Raleigh, North Carolina

    Conclusions

    Acknowledgements

    2-D Vertical S-wave Velocity Map2-D Vertical S-wave Velocity Map2-D Vertical S-wave Velocity Map2-D Vertical S-wave Velocity Map

  • 8/12/2019 KGS-00-25.pdf

    42/212

    INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONA Three-phase Research ProjectA Three-phase Research Project

    1) acquisition of high-frequency broad band

    ground roll

    2) creation of efficient and accurate algorithmsto extract Rayleigh wave dispersion curves

    from ground roll

    3) development of stable and efficient inversionalgorithms to obtain near-surface S-wave

    velocity profiles

  • 8/12/2019 KGS-00-25.pdf

    43/212

    INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION (continued)(continued)(continued)(continued)

    A 2-D S-wave Velocity Section2-D S-wave Velocity Section2-D S-wave Velocity Section2-D S-wave Velocity Section2-D S-wave Velocity Section2-D S-wave Velocity Section2-D S-wave Velocity Section2-D S-wave Velocity Section

    A combination of inverted S-wave velocity and

    the standard CDP roll-along acquisition format

    to generate a two-dimensional S-wave velocity

    section

  • 8/12/2019 KGS-00-25.pdf

    44/212

    THE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHOD

    Acquiring data in CDP acquisition format

    Extracting phase velocities of ground roll from

    each shot gather

    Generating a 1-D S-wave profile for each shot

    Contouring a 2-D section of S-wave velocity field

  • 8/12/2019 KGS-00-25.pdf

    45/212

    THE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHOD (continued)(continued)(continued)(continued)

    75

    100

    125150

    175

    200

    0 5 10 15

    Frequency (Hz)

    Phasevelo

    city(m/s)

  • 8/12/2019 KGS-00-25.pdf

    46/212

    THE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHODTHE METHOD (continued)(continued)(continued)(continued)

    0

    50

    100

    150

    200

    250

    0 5 10 15 20 25 30

    Depth (m)

    120 140 160 180 200 220 240 260 280 300 320 340

    120

    100

    80

    60

    40

    20

    0

    Source station number

    D

    h

  • 8/12/2019 KGS-00-25.pdf

    47/212

    THE REAL WORLD EXAMPLESTHE REAL WORLD EXAMPLESTHE REAL WORLD EXAMPLESTHE REAL WORLD EXAMPLESTHE REAL WORLD EXAMPLESTHE REAL WORLD EXAMPLESTHE REAL WORLD EXAMPLESTHE REAL WORLD EXAMPLES

    1. Mapping Bedrock (

  • 8/12/2019 KGS-00-25.pdf

    48/212

    Olathe ExampleOlathe ExampleOlathe ExampleOlathe Example

    Traces per shot:Traces per shot:Traces per shot:Traces per shot: 48484848

    Sampling Rayleigh waves:Sampling Rayleigh waves:Sampling Rayleigh waves:Sampling Rayleigh waves:

    2 to 94 ft2 to 94 ft2 to 94 ft2 to 94 ft

    Length of four lines:Length of four lines:Length of four lines:Length of four lines: 1400 ft1400 ft1400 ft1400 ft

  • 8/12/2019 KGS-00-25.pdf

    49/212

    GeophonesGeophonesGeophonesGeophones with spikes,with spikes,with spikes,with spikes, baseplatesbaseplatesbaseplatesbaseplates, or, or, or, orbaseplatesbaseplatesbaseplatesbaseplates with sandbagswith sandbagswith sandbagswith sandbags

    Geophones with spikes andbaseplates

    Geophones with baseplatesand baseplates with

    sandbags

  • 8/12/2019 KGS-00-25.pdf

    50/212

    GeophonesGeophonesGeophonesGeophones with spikes,with spikes,with spikes,with spikes, baseplatesbaseplatesbaseplatesbaseplates, or, or, or, orbaseplatesbaseplatesbaseplatesbaseplates with sandbagswith sandbagswith sandbagswith sandbags

    spikes baseplates baseplates with sandbags

  • 8/12/2019 KGS-00-25.pdf

    51/212

    GeophonesGeophonesGeophonesGeophones with spikes,with spikes,with spikes,with spikes, baseplatesbaseplatesbaseplatesbaseplates, or, or, or, or

    baseplatesbaseplatesbaseplatesbaseplates with sandbagswith sandbagswith sandbagswith sandbags

    Dispersion curves Inverted S-wave velocities

    15 0

    20 0

    25 0

    30 0

    35 0

    40 0

    25 30 35 40 45 50 55 60

    Freq ue nc y (Hz)

    Sandbag

    Plate

    Spike

    0

    100

    200

    300

    400

    500

    600

    0 2 4 6 8 10

    Depth (m)

    S-w

    avevelocity(m/s)

    Sandbag

    Plate

    Spike

  • 8/12/2019 KGS-00-25.pdf

    52/212

    OlatheOlatheOlatheOlathe (continued)(continued)(continued)(continued)

    4.5 Hz geophone

    with baseplate

    12 lb hammer and

    1 ft by 1 ft steel plate

  • 8/12/2019 KGS-00-25.pdf

    53/212

    OlatheOlatheOlatheOlathe (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    54/212

    OlatheOlatheOlatheOlathe (continued)(continued)(continued)(continued)

    Observed frequency ofObserved frequency ofObserved frequency ofObserved frequency ofRayleigh waves:Rayleigh waves:Rayleigh waves:Rayleigh waves:

    20 to 60 Hz20 to 60 Hz20 to 60 Hz20 to 60 Hz

    Observed wavelength ofObserved wavelength ofObserved wavelength ofObserved wavelength of

    Rayleigh waves:Rayleigh waves:Rayleigh waves:Rayleigh waves:

    9 to 50 ft9 to 50 ft9 to 50 ft9 to 50 ft

    A ten-layer model

  • 8/12/2019 KGS-00-25.pdf

    55/212

    Line 1, on asphalt parking lotLine 1, on asphalt parking lotLine 1, on asphalt parking lotLine 1, on asphalt parking lot

  • 8/12/2019 KGS-00-25.pdf

    56/212

    OlatheOlatheOlatheOlathe (continued)(continued)(continued)(continued)

    1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210

    Station Number

    30

    25

    20

    15

    10

    5

    0

    Dep

    th(ft)

    0 800 1200 1600 2000 2400 2800

    0 20 40 60 80

    Contour interval is 200 ft/s.

    ft/s

    ft

    S N

    A 2-D S-wave velocity map of line 1, Olathe, KansasA 2-D S-wave velocity map of line 1, Olathe, KansasA 2-D S-wave velocity map of line 1, Olathe, KansasA 2-D S-wave velocity map of line 1, Olathe, Kansas

  • 8/12/2019 KGS-00-25.pdf

    57/212

    Line 2, on asphalt parking lotLine 2, on asphalt parking lotLine 2, on asphalt parking lotLine 2, on asphalt parking lot

  • 8/12/2019 KGS-00-25.pdf

    58/212

    OlatheOlatheOlatheOlathe (continued)(continued)(continued)(continued)

    2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180 219030

    25

    20

    15

    10

    5

    0

    0 800 1200 1600 2000 2400 2800

    0 20 40 60 80

    ft/sft

    Station Number

    Depth(ft)

    W E

    A 2-D S-wave velocity map of line 2, Olathe, KansasA 2-D S-wave velocity map of line 2, Olathe, KansasA 2-D S-wave velocity map of line 2, Olathe, KansasA 2-D S-wave velocity map of line 2, Olathe, Kansas

  • 8/12/2019 KGS-00-25.pdf

    59/212

  • 8/12/2019 KGS-00-25.pdf

    60/212

    OlatheOlatheOlatheOlathe (continued)(continued)(continued)(continued)

    4030 4040 4050 4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190

    Station number

    30

    25

    20

    15

    10

    5

    0

    Depth(ft)

    0 800 1200 1600 2000 2400 2800ft/s

    Contour interval is 200 ft/s.

    W E

    A 2-D S-wave velocity map of line 4, Olathe, KansasA 2-D S-wave velocity map of line 4, Olathe, KansasA 2-D S-wave velocity map of line 4, Olathe, KansasA 2-D S-wave velocity map of line 4, Olathe, Kansas

  • 8/12/2019 KGS-00-25.pdf

    61/212

    OlatheOlatheOlatheOlathe (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    62/212

    EXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLES (continued)(continued)(continued)(continued)

    2.2.2.2.2.2.2.2. Imaging a Steam Tunnel (

  • 8/12/2019 KGS-00-25.pdf

    63/212

    Steam Tunnel Testing SiteSteam Tunnel Testing SiteSteam Tunnel Testing SiteSteam Tunnel Testing Site

  • 8/12/2019 KGS-00-25.pdf

    64/212

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

    Traces per shot:Traces per shot:Traces per shot:Traces per shot: 30303030

    Sampling Rayleigh waves:Sampling Rayleigh waves:Sampling Rayleigh waves:Sampling Rayleigh waves:

    4 to 116 ft4 to 116 ft4 to 116 ft4 to 116 ft

    76 shots along a line76 shots along a line76 shots along a line76 shots along a line

  • 8/12/2019 KGS-00-25.pdf

    65/212

    IVIIVIIVIIVI MinivibMinivibMinivibMinivib

  • 8/12/2019 KGS-00-25.pdf

    66/212

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    67/212

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

    The observed frequencyThe observed frequencyThe observed frequencyThe observed frequency

    of Rayleigh waves:of Rayleigh waves:of Rayleigh waves:of Rayleigh waves:

    10 to 50 Hz

    The observed wavelengthThe observed wavelengthThe observed wavelengthThe observed wavelengthof Rayleigh waves:of Rayleigh waves:of Rayleigh waves:of Rayleigh waves:

    4 to 65 ft

    Thickness of the layersThickness of the layersThickness of the layersThickness of the layersFirst four layers:First four layers:First four layers:First four layers: 3.3 ft each

    Last five layers:Last five layers:Last five layers:Last five layers: 6.6 ft each

    A ten-layer model

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    68/212

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

    At beginning of line At top of tunnel

  • 8/12/2019 KGS-00-25.pdf

    69/212

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

    The difference between the twodispersion curves indicates the

    existence of an anomalous

    subsurface.

    Relatively lower phase velocity

    (pink line) in lower frequencies

    (< 17 Hz) suggests low S-wave

    velocity at a relatively deeper

    depth. Relatively higher phasevelocity in a range (> 20 Hz)

    suggests very shallow materials

    are compacted.

    700

    800

    900

    1000

    1100

    1200

    13 17 21 25 29 33

    Frequency (Hz)

    Phasevelocity(ft/

    s)

    Station 1001

    Station 1060

    Dispersion curves for imaging beginning of line and top of tunnelDispersion curves for imaging beginning of line and top of tunnelDispersion curves for imaging beginning of line and top of tunnelDispersion curves for imaging beginning of line and top of tunnel

  • 8/12/2019 KGS-00-25.pdf

    70/212

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

    1010 1020 1030 1040 1050 1060 107030

    25

    20

    15

    10

    5

    0

    Depth(ft)

    Station Number

    200 500 700 900 1100 1300 1500

    0 20 40 60 80 Feet

    S-wave velocity map, Steam Tunnel at KUS-wave velocity map, Steam Tunnel at KUS-wave velocity map, Steam Tunnel at KUS-wave velocity map, Steam Tunnel at KU

  • 8/12/2019 KGS-00-25.pdf

    71/212

    Steam TunnelSteam TunnelSteam TunnelSteam Tunnel (continued)(continued)(continued)(continued)

    1010 1020 1030 1040 1050 1060 1070

    30

    25

    20

    15

    10

    5

    0

    -350 -250 -150 -50 50 150 250

    Depth

    (ft)

    Station Number

    ft/s0 20 40 60 80 Feet

    Residual S-wave velocity, first-order trend removed,Residual S-wave velocity, first-order trend removed,Residual S-wave velocity, first-order trend removed,Residual S-wave velocity, first-order trend removed,

    Steam Tunnel, KUSteam Tunnel, KUSteam Tunnel, KUSteam Tunnel, KU

  • 8/12/2019 KGS-00-25.pdf

    72/212

    EXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLES (continued)(continued)(continued)(continued)

    3. Mapping Bedrock Surface (

  • 8/12/2019 KGS-00-25.pdf

    73/212

    Joplin ExampleJoplin ExampleJoplin ExampleJoplin Example

  • 8/12/2019 KGS-00-25.pdf

    74/212

    JoplinJoplinJoplinJoplin (continued)(continued)(continued)(continued)

    Traces per shot: 34

    Sampling Rayleigh waves:

    4 to 132 ft

    Observed frequency of

    Rayleigh waves: 10 to 25 Hz

    Observed wavelength ofRayleigh waves: 40 to 100 ft

    A five-layer model

  • 8/12/2019 KGS-00-25.pdf

    75/212

    JoplinJoplinJoplinJoplin (continued)(continued)(continued)(continued)

    Shot for imaging station 1050 Shot for imaging station 1326

  • 8/12/2019 KGS-00-25.pdf

    76/212

    JoplinJoplinJoplinJoplin (continued)(continued)(continued)(continued)

    Dispersion curves for imaging stations 1050 and 1326

    800

    900

    1000

    1100

    1200

    1300

    17 19 21 23 25 27 29

    Frequency (Hz)

    Phasevelocity(ft/s)

    Station 1050

    Station 1326

    200 ft/s difference

    between these two

    dispersion curves:

    station 1050 is at thebeginning of the line,

    and station 1326 is at

    the location of the

    second well.

  • 8/12/2019 KGS-00-25.pdf

    77/212

    JoplinJoplinJoplinJoplin (continued)(continued)(continued)(continued)

    1050 1100 1150 1200 1250 1300 1350100

    80

    60

    40

    20

    0

    0 800 1200 1600 2000 2400 2800 3200 3600

    Well, 70 ft to bedrock Well, 40 ft to bedrockFill Gravel road

    Depth(ft)

    Station number

    0 50 100 150 200 ftft/s

    A 2-D S-wave velocity map of line 1, Joplin, MissouriA 2-D S-wave velocity map of line 1, Joplin, MissouriA 2-D S-wave velocity map of line 1, Joplin, MissouriA 2-D S-wave velocity map of line 1, Joplin, Missouri

  • 8/12/2019 KGS-00-25.pdf

    78/212

    JoplinJoplinJoplinJoplin (continued)(continued)(continued)(continued)

    Feet

    50 100 150 200 250 300

    100

    80

    60

    40

    20

    0

    Well, 36 ft to bedrock Well, 51 ft to bedrock

    0 50 100 150 200

    Depth(f

    t)

    Station number

    0 800 1200 1600 2000 2400 2800 3200 3600ft/s

    A 2-D S-wave velocity map of line 2, Joplin, MissouriA 2-D S-wave velocity map of line 2, Joplin, MissouriA 2-D S-wave velocity map of line 2, Joplin, MissouriA 2-D S-wave velocity map of line 2, Joplin, Missouri

  • 8/12/2019 KGS-00-25.pdf

    79/212

    EXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLES (continued)(continued)(continued)(continued)4. Mapping Dissolution Feature (

  • 8/12/2019 KGS-00-25.pdf

    80/212

  • 8/12/2019 KGS-00-25.pdf

    81/212

    Line LocationLine LocationLine LocationLine Location

    MapMapMapMap

    13 lines13 lines13 lines13 lines

    2,500 shots2,500 shots2,500 shots2,500 shots

  • 8/12/2019 KGS-00-25.pdf

    82/212

    Working SiteWorking SiteWorking SiteWorking Site

    Damascus ExampleDamascus ExampleDamascus ExampleDamascus Example (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    83/212

    A rubber band accelerated weight dropperA rubber band accelerated weight dropperA rubber band accelerated weight dropperA rubber band accelerated weight dropper

  • 8/12/2019 KGS-00-25.pdf

    84/212

    DamascusDamascusDamascusDamascus (continued)(continued)(continued)(continued)

    A survey lineA survey lineA survey lineA survey line

  • 8/12/2019 KGS-00-25.pdf

    85/212

    DamascusDamascusDamascusDamascus (continued)(continued)(continued)(continued)

    224 shots along line 1

  • 8/12/2019 KGS-00-25.pdf

    86/212

    DamascusDamascusDamascusDamascus (continued)(continued)(continued)(continued)

    Traces per shot: 48

    Sampling Rayleigh waves:

    4 to 188 ft

    Observed frequency of

    Rayleigh: 5 to 22 Hz

    Observed wavelength ofRayleigh waves:

    25 to 200 ft

    A fourteen-layer model

    DamascusDamascusDamascusDamascus (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    87/212

    A 2-D S-wave velocity map of line 1A 2-D S-wave velocity map of line 1A 2-D S-wave velocity map of line 1A 2-D S-wave velocity map of line 1

    Two distinguished S-wave velocity lows are around stations 1050 and 1270 from 40 to 100 ft

    depth. The weathered limestone surface is interpreted along the 1,200 ft/s contour line.

    Depth(ft)

    Station Number

    ft

    W E

    1030 1050 1070 1090 1110 1130 1150 1170 1190 1210 1230 1250 1270 1290 1310 1330 1350 1370 1390 1410 1430 1450

    120

    100

    80

    60

    40

    20

    0

    0 80 160 240 3200 200 400 600 800 1000 1200 1400 1600 ft/s

    DamascusDDDamascus (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    88/212

    DamascusDamascus

    2050 2070 2090 2110 2130 2150 2170 2190 2210 2230 2250 2270 2290 2310 2330 2350 2370 2390 2410 2430 2450 2470

    120

    100

    80

    60

    40

    20

    0

    N S

    0 80 160 240 320

    Station Number

    Dept

    h(ft)

    0 200 400 600 800 1000 1200 1400 1600ft/s

    ft

    A 2-D S-wave velocity map of line 2A 2-D S-wave velocity map of line 2A 2-D S-wave velocity map of line 2A 2-D S-wave velocity map of line 2

    EXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLES ( ti d)( ti d)( ti d)( ti d)

  • 8/12/2019 KGS-00-25.pdf

    89/212

    EXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLESEXAMPLES (continued)(continued)(continued)(continued)

    5. Pit site location (< 40 ft), Raleigh, North Carolina5. Pit site location (< 40 ft), Raleigh, North Carolina5. Pit site location (< 40 ft), Raleigh, North Carolina5. Pit site location (< 40 ft), Raleigh, North Carolina

    (250 shots acquired along two lines)

    Source: one ground impacts from 8 lb. hammer

    Source spacing: 2 ft

    Geophone: Single 4.5 Hz vertical component geophone

    Geophone spacing: 2 ft

    Nearest source-geophone offset: 24 ft

    48-channel48-channel48-channel48-channel Geometrics StrataViewGeometrics StrataView

  • 8/12/2019 KGS-00-25.pdf

    90/212

    8888 lblblblb Hammer and 1 ft by 1 ft plate (DELRIN)Hammer and 1 ft by 1 ft plate (DELRIN)Hammer and 1 ft by 1 ft plate (DELRIN)Hammer and 1 ft by 1 ft plate (DELRIN)

  • 8/12/2019 KGS-00-25.pdf

    91/212

    4 5 Hz vertical component4 5 Hz vertical component4 5 Hz vertical component4 5 Hz vertical component geophonegeophonegeophonegeophone

  • 8/12/2019 KGS-00-25.pdf

    92/212

    4.5 Hz vertical component4.5 Hz vertical component4.5 Hz vertical component4.5 Hz vertical component geophonegeophonegeophonegeophone

    Raleigh, North CarolinaRaleigh, North CarolinaRaleigh, North CarolinaRaleigh, North Carolina

  • 8/12/2019 KGS-00-25.pdf

    93/212

    Raleigh, North CarolinaRaleigh, North CarolinaRaleigh, North CarolinaRaleigh, North Carolina

  • 8/12/2019 KGS-00-25.pdf

    94/212

    1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 126030

    25

    20

    15

    10

    5

    0

    0 20 40 60 80Station Number

    Depth(ft)

    200 600 1000 1400 2000 2400 2800 ft/s

    S-wave velocity section of line 1

    Raleigh, North CarolinaRaleigh, North CarolinaRaleigh, North CarolinaRaleigh, North Carolina

  • 8/12/2019 KGS-00-25.pdf

    95/212

    2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 224030

    25

    20

    15

    10

    5

    0

    200 600 1000 1400 2000 2400 2800

    Station Number

    Depth(ft)

    ft/s0 10 20 30 40 ft

    S-wave velocity section of line 2

    CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS

  • 8/12/2019 KGS-00-25.pdf

    96/212

    CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS1. Shallower target investigationShallower target investigationShallower target investigationShallower target investigation

    High-frequency (>2 Hz) ground roll

    Investigation depth from 5 to 100 feet

    2. Feasibility in noisy environmentsFeasibility in noisy environmentsFeasibility in noisy environmentsFeasibility in noisy environments

    Ground roll, high signal-to-noise ratio, allowing 2-D

    images to be obtained in noisy environments

    3.EfficiencyEfficiencyEfficiencyEfficiency

    The standard CDP roll-along acquisition methodprovides an efficient way to acquire large quantities of

    broadband surface wave data along a line

    CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS (continued)(continued)(continued)(continued)

  • 8/12/2019 KGS-00-25.pdf

    97/212

    CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS (continued)(continued)(continued)(continued)4.ReliabilityReliabilityReliabilityReliability

    The redundancy of the CDP acquisition method providesa reliable way to verify inverted S-wave velocities so that

    it reduces the ambiguity of inverted S-wave velocities

    5. SimplicitySimplicitySimplicitySimplicity

    A contouring software: from a 1-D S-wave velocity profile

    to a 2-D S-wave velocity map

    6. Anomaly enhancementAnomaly enhancementAnomaly enhancementAnomaly enhancement

    2-D data processing techniques can be applied to a 2-D

    S-wave velocity section to enhance local anomalies

    ACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTS

  • 8/12/2019 KGS-00-25.pdf

    98/212

    ACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTS

    The authors would like to thank Brett Bennett, David

    Laflen, Joe Anderson, Tom Weis, and Chad Gratton for their

    assistance during the field tests.

    The authors appreciate the efforts of Mary Brohammer,

    John Charlton, and Amy Stillwell in manuscript and slide

    preparations.

    Outline

  • 8/12/2019 KGS-00-25.pdf

    99/212

    OutlineIntroduction

    A Real World Example

    SH-wave Refraction Survey

    P-wave Refraction Survey

    Explanation

    MASWAn Alternative for Determining

    S-wave Velocity

    S-wave Velocity from Suspension LoggingConclusions

    Introduction

  • 8/12/2019 KGS-00-25.pdf

    100/212

    Introduction

    For a ser ies of

    hor izontal layers,

    a pure, plane SH

    wave refracts andreflects only SH

    waves. There is

    no wave-typeconversion.

    Introduction (continued)

  • 8/12/2019 KGS-00-25.pdf

    101/212

    Introduction (continued)

    However, complex near-surface geology

    may not fit into the assumption of a ser ies

    of horizontal layers. That a plane SH waveundergoes wave-type conversion along an

    interface in an area of non-horizontal layers

    is theoretically inevitable.

    Introduction (continued)

  • 8/12/2019 KGS-00-25.pdf

    102/212

    Introduction (continued)

    Can we recognize converted waves?

    How do we find true S-wave velocities ifwave-type conversion really occurs?

    A Real-World Example

  • 8/12/2019 KGS-00-25.pdf

    103/212

    A Real World Example

    A shallow SH-wave refraction survey wasconducted in Wyoming during the fall of

    1998 to determine shear-wave velocities in

    near-surface materials up to 7 m deep.

    SH-wave Source

  • 8/12/2019 KGS-00-25.pdf

    104/212

    Field Layout for SH-wave Refraction Survey

  • 8/12/2019 KGS-00-25.pdf

    105/212

    y y

    SH-wave Refraction Data

  • 8/12/2019 KGS-00-25.pdf

    106/212

    A Layer Model from SH-wave Data

  • 8/12/2019 KGS-00-25.pdf

    107/212

    Compared

    with the SH-

    wave velocityof the first

    layer, the SH-

    wave velocity

    of the second

    layer is more

    than double.

    Are velocities of the second and thirdlayers the true SH-wave velocities, or

    are they converted P-wave velocities?

    Field Layout for P-wave Refraction Survey

  • 8/12/2019 KGS-00-25.pdf

    108/212

    y y

    P-wave Refraction Data

  • 8/12/2019 KGS-00-25.pdf

    109/212

    A Layer Model from SH-wave Data

    P wave

  • 8/12/2019 KGS-00-25.pdf

    110/212

    P-wave

    velocities of

    the second

    and third

    layers are

    almost the

    same as therelevant

    SH-wave

    velocities.

    Velocities from SH-wave refractionsurvey actually are converted P-wave

    velocities.

    Explanation

  • 8/12/2019 KGS-00-25.pdf

    111/212

    p

    Field Layout for MASW Survey

  • 8/12/2019 KGS-00-25.pdf

    112/212

    Surface Wave Data

  • 8/12/2019 KGS-00-25.pdf

    113/212

    Dispersion C r e S a e Velocit Model

  • 8/12/2019 KGS-00-25.pdf

    114/212

    Dispersion Curve S-wave Velocity Model

    150

    200

    250

    300

    350

    400

    450

    10 15 20 25 30Frequency (Hz)

    Measured (E)

    Final (E)

    Measured (W)

    Final (W)

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20

    Dep th (m)

    Inverted (E)

    Inverted (W)

    S-wave Velocities from

    SH-wave Refraction and MASW

  • 8/12/2019 KGS-00-25.pdf

    115/212

    S-wave Velocity from Suspension Logging

  • 8/12/2019 KGS-00-25.pdf

    116/212

    To confirm

    the inverted

    S-wavevelocity, a

    borehole was

    drilled on the

    site andsuspension

    logging was

    conducted.

    Be CarefulWhen Doing SH-wave Refraction Surveys

  • 8/12/2019 KGS-00-25.pdf

    117/212

    When Doing SH-wave Refraction Surveys

    In a case of a

    dipping layer, SH-P

    conversion will

    occur if a surveyline is not parallel to

    Yaxis.

    Conclusions

  • 8/12/2019 KGS-00-25.pdf

    118/212

    Shallow shear-wave refraction survey may not provide the

    true S-wave velocity because of wave-type conversion in

    an area of non-horizontal layers.

    To verify if velocities based on shear-wave refraction

    surveys are velocities of converted waves, an additional

    P-wave refraction survey is necessary.

    The best alternative at this time is MASW, which can

    provide reliable S-wave velocities, even in an area of

    velocity inversion (a higher velocity layer underlain bya lower velocity layer).

    Acknowledgments

  • 8/12/2019 KGS-00-25.pdf

    119/212

    The authors wish to thank Blackhawk Geometrics for

    their permission to publish the seismic data presentedherein. Authors extend their thanks to Bart Hoekstra

    of Blackhawk Geometrics for acquiring seismic data

    and to Julian Ivanov for constructive discussions onthis topic. The authors also appreciate the efforts of

    Mary Brohammer and Amy Stillwell in manuscript

    preparation.

  • 8/12/2019 KGS-00-25.pdf

    120/212

    Comparing Shear-Wave Velocity Profiles

    from MASW with Borehole Measurementsin Lawrence, Kansas

    One Detailed Real-World Example

    Testing SiteKGS Front Yard

  • 8/12/2019 KGS-00-25.pdf

    121/212

    Field Layout

  • 8/12/2019 KGS-00-25.pdf

    122/212

    Raw Data

    Seismograph:

  • 8/12/2019 KGS-00-25.pdf

    123/212

    Seismograph:

    Geometr ics StrataView

    Seismic Source: I VI M inivib

    Geophone:

    10 Hz vertical component

    Acquisition filter:

    No

    Recording length:

    1024 mil l iseconds

    Sample interval:

    1 mil l isecond

    Layered Model for Inversion

  • 8/12/2019 KGS-00-25.pdf

    124/212

    A ten-layer model

    with a one meterthick top layer

    gradually increasing

    to a 6 meter layeron the bottom.

    Dispersion Curves S-wave Velocity Models

    1000

    M d

  • 8/12/2019 KGS-00-25.pdf

    125/212

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    15 20 25 30 35 40 45 50 55 60 65 70 75 80

    Frequency (Hz)

    Phasevelocity(m/s

    )

    Measured

    Initial A

    Final A

    Initial B

    Final B

    Three-component borehole data were acquired. Overall error in S-wave

    velocity of the borehole survey is 10%.

    Effects of Initial Models

  • 8/12/2019 KGS-00-25.pdf

    126/212

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 5 10 15 20 25 30 35 40

    Depth (m)

    S-wavevelocity(m/s)

    100

    200

    300

    400

    500

    600

    700

    800

    900

    Borehole

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 5 10 15 20 25 30 35 40

    Depth (m)

    S-wavevelocity(m/s)

    half

    Quarter

    half-h

    Inverted B

    Borehole

    Initial models are blindly selected as a uniform half-space with a

    constant S-wave velocity from 100 m/s to 1,800 m/s.

    Effect of the Number of Data Points

  • 8/12/2019 KGS-00-25.pdf

    127/212

    Half (solid diamonds):

    33 points from 15 to 47 Hz;Quarter (solid squares):

    17 points from 15 to 31 Hz;

    Half-h (solid tr iangles):17 points from 15 to 47 Hz

    at 2 Hz interval, and

    Inverted B (Solid circles):

    66 points from 15 to 80 Hz.

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    0 5 10 15 20 25 30 35 40

    Depth (m)

    S-wavevelocity(m/s)

    half

    Quarter

    half-hInverted B

    Borehole

    Summary

    The proposed inversion is stable. 1. Inverted

  • 8/12/2019 KGS-00-25.pdf

    128/212

    The proposed inversion is stable. 1. Inverted

    models do not seem to be too sensitive to

    initial models; 2. The inversion is continuously

    improving inverted modes during inversion

    processing.Inverted S-wave velocities are reliable. A 15%

    difference can be expected between inverted

    S-wave velocities and borehole measurements.

    Comparing Shear-Wave Velocity Profilesfrom MASW with Borehole Measurements

  • 8/12/2019 KGS-00-25.pdf

    129/212

    in the Fraser River Delta,

    Vancouver, Canada

    Eight Real-World Examples

    Testing Site

  • 8/12/2019 KGS-00-25.pdf

    130/212

    Common Parameters

  • 8/12/2019 KGS-00-25.pdf

    131/212

    Seismograph: Geometr ics StrataView

    Seismic Source: Weight dropper (bui l t by KGS)

    Geophone: 4.5 Hz vertical component

    Acquisition filter: NoRecording length: 2048 mil l iseconds

    Sample interval: 1 mil l isecond

    Field Layout

  • 8/12/2019 KGS-00-25.pdf

    132/212

    Field Layout for Borehole FD95-2

  • 8/12/2019 KGS-00-25.pdf

    133/212

    Borehole FD95-2140

    150

    160

    170

    ocity(m/s)

  • 8/12/2019 KGS-00-25.pdf

    134/212

    100

    110

    120

    130

    5 10 15 20 25

    Frequency (Hz)

    Phasevelo

    Measured

    Final

    0

    50

    100

    150

    200

    250

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity(m/s)

    Borehole FD95-2

    Inverted

    Borehole FD95-2

  • 8/12/2019 KGS-00-25.pdf

    135/212

    Wavelength Range: 6 - 23 m

    Phase Velocity Range: 130 - 158 m/s

    Frequency Range: 7 - 23 Hz

    Depth Studied: 30 m

    Inverted S-wave Velocity Range: 111 - 206 m/s

    Average Relative Difference: 10%

    Average Difference: 19 m/s

    Field Layout for Borehole FD97-2

  • 8/12/2019 KGS-00-25.pdf

    136/212

    Borehole FD97-2

    140

    150

    160

    170

    180

    evelocity(m/s)

  • 8/12/2019 KGS-00-25.pdf

    137/212

    100

    110

    120

    130

    0 5 10 15 20

    Frequency (Hz)

    Phase

    Measured

    Final

    0

    50

    100

    150

    200

    250

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity(m/s)

    Borehole FD97-2

    Inverted

    Borehole FD97-2

  • 8/12/2019 KGS-00-25.pdf

    138/212

    Wavelength Range: 7 - 56 m

    Phase Velocity Range: 127 - 169 m/s

    Frequency Range: 3 - 20 Hz

    Depth Studied: 30 m

    Inverted S-wave Velocity Range: 111 - 207 m/s

    Average Relative Difference: 9%

    Average Difference: 16 m/s

    Field Layout for Borehole FD92-11

  • 8/12/2019 KGS-00-25.pdf

    139/212

    120

    140

    160

    180

    200

    evelocity(m/s) Measured

    FinalBorehole FD92-11

  • 8/12/2019 KGS-00-25.pdf

    140/212

    60

    80

    100

    0 5 10 15 20 25 30

    Frequency (Hz)

    Phase

    0

    50

    100

    150

    200

    250

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity(m/s)

    Borehole FD92-11

    Inverted

    Cross hole

    Borehole FD92-11

  • 8/12/2019 KGS-00-25.pdf

    141/212

    Wavelength Range: 3 - 44 m

    Phase Velocity Range: 85 - 176 m/s

    Frequency Range: 4 - 27 Hz

    Depth Studied: 30 m

    Inverted S-wave Velocity Range: 92 - 209 m/s

    Average Relative Difference: 8%

    Average Difference: 12 m/s

    Field Layout for Borehole FD92-3

  • 8/12/2019 KGS-00-25.pdf

    142/212

    Borehole FD92-3

    100

    150

    200

    250

    300

    350

    Phasevelocity(m/s)

    Measured

    Final

  • 8/12/2019 KGS-00-25.pdf

    143/212

    0

    50

    100

    0 5 10 15 20

    Frequency (Hz)

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity(m/s)

    Borehole FD92-3

    Inverted

    Borehole FD92-3

  • 8/12/2019 KGS-00-25.pdf

    144/212

    Wavelength Range: 5 - 110 m

    Phase Velocity Range: 93 - 328 m/s

    Frequency Range: 3 - 20 Hz

    Depth Studied: 30 m

    Inverted S-wave Velocity Range:82 - 404 m/s

    Average Relative Difference: 17%

    Average Difference: 42 m/s

    Field Layout for Borehole Unknown

  • 8/12/2019 KGS-00-25.pdf

    145/212

    Borehole Unknown

    100

    150

    200

    250

    Phasevelocity(m/s)

    M d

  • 8/12/2019 KGS-00-25.pdf

    146/212

    50

    10 15 20 25

    Frequency (Hz)

    Measured

    Final

    0

    50

    100

    150

    200

    250

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity

    (m/s)

    Inverted Vs

    Borehole

    Borehole Unknown

    W l th R 7 60

  • 8/12/2019 KGS-00-25.pdf

    147/212

    Wavelength Range: 7 - 60 m

    Phase Velocity Range: 107 - 179 m/s

    Frequency Range: 3 - 15 Hz

    Depth Studied: 30 m

    Inverted S-wave Velocity Range: 92 - 205 m/s

    Average Relative Difference: 9%

    Average Difference: 14 m/s

    Field Layout for Borehole FD86-5

  • 8/12/2019 KGS-00-25.pdf

    148/212

    Borehole FD86-5

    100

    110

    120

    130

    140

    150

    Phasevelocity(m/

    s)

    Measured

  • 8/12/2019 KGS-00-25.pdf

    149/212

    80

    90

    0 5 10 15 20 25 30

    Frequency (Hz)

    Final

    0

    50

    100

    150

    200

    250

    300

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity(m/s)

    Borehole FD86-5

    Inverted

    Borehole FD86-5

    Wavelength Range: 4 29 m

  • 8/12/2019 KGS-00-25.pdf

    150/212

    Wavelength Range: 4 - 29 m

    Phase Velocity Range: 99 - 146 m/s

    Frequency Range: 5 - 25 Hz

    Depth Studied: 30 m

    Inverted S-wave Velocity Range: 98 - 186 m/s

    Average Relative Difference: 26%

    Average Difference: 50 m/s

    Field Layout for Borehole FD92-4

  • 8/12/2019 KGS-00-25.pdf

    151/212

    Borehole FD92-4

    100

    150

    200

    250

    Phasevelocity(m/s)

    Measured

    Final

  • 8/12/2019 KGS-00-25.pdf

    152/212

    500 5 10 15 20 25 30

    Frequency (Hz)

    0

    50

    100

    150

    200

    250

    300

    350

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity(m/s

    )

    Borehole FD92-4

    Inverted

    Borehole FD92-4

    Wavelength Range: 4 - 68 m

  • 8/12/2019 KGS-00-25.pdf

    153/212

    Wavelength Range: 4 - 68 m

    Phase Velocity Range: 96 - 239 m/s

    Frequency Range: 3.5 - 25 Hz

    Depth Studied: 30 mInverted S-wave Velocity Range: 92 - 311 m/s

    Average Relative Difference: 10%

    Average Difference: 19 m/s

    Field Layout for Borehole FD97-7

  • 8/12/2019 KGS-00-25.pdf

    154/212

    Borehole FD97-7

    30

    40

    50

    60

    70

    Phasevelocity(m/s)

    Measured

  • 8/12/2019 KGS-00-25.pdf

    155/212

    20

    0 2 4 6 8

    Frequency (Hz)

    Final

    0

    20

    40

    60

    80

    100

    120

    0 2 4 6 8

    Depth (m)

    S-wavevelocity(m/s)

    Borehole FD97-7

    Inverted

    Borehole FD97-7

    Wavelength Range: 4 - 31 m

  • 8/12/2019 KGS-00-25.pdf

    156/212

    Wavelength Range: 4 31 m

    Phase Velocity Range: 29 - 63 m/s

    Frequency Range: 2 - 7 Hz

    Depth Studied: 7 mInverted S-wave Velocity Range: 29 - 67 m/s

    Average Relative Difference: 14%

    Average Difference: 22 m/s

    Reasons for differences

  • 8/12/2019 KGS-00-25.pdf

    157/212

    Body waves and/orhigher-mode

    Rayleigh waves.

    Sharpness of

    dispersion curve in

    the F-K domain.

    Reasons for differences

  • 8/12/2019 KGS-00-25.pdf

    158/212

    Heterogeneity of thenear-surface materials.

    Borehole measurement is

    in vertical direction and

    the MASW S-wave

    velocity is is horizontal

    direction.

    Reasons for differences

  • 8/12/2019 KGS-00-25.pdf

    159/212

    Random noise and/or reflected ground roll.

    Non-uniqueness in the inversion of Rayleigh wave

    data and a local minimum search of the inverse

    algorithm.

    The first arrival picking on borehole data.

    Conclusions

    The overall difference between S-wave velocities from the

    MASW method and borehole measurements is 15%.

  • 8/12/2019 KGS-00-25.pdf

    160/212

    Most errors can be associated with random and coherentnoise and accuracy of borehole measurements.

    Differences between S-wave velocities from the MASW

    method and borehole measurements appear to berandom.

    This comparison demonstrates the reliability and accuracy

    of S-wave velocities estimated from the MASW methodin unconsolidated sediments.

    Acknowledgments The authors would like to thank Brett Bennett,

  • 8/12/2019 KGS-00-25.pdf

    161/212

    David Laflen, Ron Good, Jim Droddy, andChad Gratton for their assistance during the

    field tests.

    The authors appreciate the efforts ofMary Brohammer, John Charlton, and

    Amy Stillwell in manuscript preparations.

    Presented atPresented at

    China University of Geosciences, Wuhan

    Chengdu University of Technology, Chengdu

  • 8/12/2019 KGS-00-25.pdf

    162/212

    China University of Geosciences, BeijingNorth China Institute of Water Conservancyand Hydroelectric Power, Zhengzhou

    June 5, 2000 June 15, 2000

    ByBy Jianghai Xia

    [email protected]

    Prepared byPrepared byPrepared byPrepared byPrepared byPrepared byPrepared byPrepared by

    Jianghai XiaJianghai XiaJianghai XiaJianghai XiaJianghai XiaJianghai XiaJianghai XiaJianghai Xia

    Richard D. MillerRichard D. MillerRichard D. MillerRichard D. MillerRichard D. MillerRichard D. MillerRichard D. MillerRichard D. Miller

    Choon B. ParkChoon B. ParkChoon B. ParkChoon B. ParkChoon B. ParkChoon B. ParkChoon B. ParkChoon B. Park

  • 8/12/2019 KGS-00-25.pdf

    163/212

    Kansas Geological SurveyKansas Geological SurveyKansas Geological SurveyKansas Geological SurveyKansas Geological SurveyKansas Geological SurveyKansas Geological SurveyKansas Geological Survey

    The University of KansasThe University of KansasThe University of KansasThe University of KansasThe University of KansasThe University of KansasThe University of KansasThe University of Kansas

    I would like to thank the following people who made this trip

    successful.

    Prof. Jiaying Wang, Vice President of China University of

    AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments

  • 8/12/2019 KGS-00-25.pdf

    164/212

    Geosciences, Wuhan;

    Prof. Yixian Xu, Chairman of Department of Geophysics, CUG;

    Prof. Zhenhua He, President of Chengdu University of Technology;

    Prof. Xuben Wang, Chairman of Department of Geophysics, CUT;Prof. Qinfan Yu and Prof. Xiaohong Meng, China University of

    Geosciences, Beijing; and

    Prof. Xujin Sun, North China Institute of Water Conservancy andHydroelectric Power.

    I greatly appreciate Prof. Richard Miller, Chief of Exploration

    Services, Kansas Geological Survey, for his motivation

    AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments

  • 8/12/2019 KGS-00-25.pdf

    165/212

    and support of this trip.

    I would also like to thank the Kansas Geological Survey for

    the continuous support to this project during the last fiveyears.

    TheoryTheory

    OutlineOutlineOutlineOutlineOutlineOutlineOutlineOutline

  • 8/12/2019 KGS-00-25.pdf

    166/212

    VerificationsVerifications

    2-D S-wave Velocity Sections2-D S-wave Velocity Sections

    Future StudiesFuture Studies

    Part 1Part 1Part 1Part 1Part 1Part 1Part 1Part 1

    TheoryTheory

  • 8/12/2019 KGS-00-25.pdf

    167/212

    From field shot gather toS-wave velocity profile

    MultichannelMultichannelrecording systemrecording system

  • 8/12/2019 KGS-00-25.pdf

    168/212

    Raw Field DataRaw Field Data

  • 8/12/2019 KGS-00-25.pdf

    169/212

    Surface wave background

    TheoryOutlineTheoryOutlineTheoryOutlineTheoryOutlineTheoryOutlineTheoryOutlineTheoryOutlineTheoryOutline

  • 8/12/2019 KGS-00-25.pdf

    170/212

    Calculation of dispersion curve

    Inversion of dispersion curve

    Parameters of a layered earth model Equipment and data acquisition

    parameters

    TheorySurface waveTheorySurface waveTheorySurface waveTheorySurface waveTheorySurface waveTheorySurface waveTheorySurface waveTheorySurface wave

  • 8/12/2019 KGS-00-25.pdf

    171/212

    TheoryPenetrating depthTheoryPenetrating depthTheoryPenetrating depthTheoryPenetrating depthTheoryPenetrating depthTheoryPenetrating depthTheoryPenetrating depthTheoryPenetrating depth

    Penetrating depth is

    about one wavelength.

  • 8/12/2019 KGS-00-25.pdf

    172/212

    Longer wavelengths

    can see deeper than

    shorter wavelengths.

    In a homogeneous

    half-space, Rayleigh

    wave velocity is about

    0.92Vs if Poissonsratio = 0.25.

    TheoryModel responseTheoryModel responseTheoryModel responseTheoryModel responseTheoryModel responseTheoryModel responseTheoryModel responseTheoryModel response A B S-wave velocity

  • 8/12/2019 KGS-00-25.pdf

    173/212

    TheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curve

    1.

    U(x,t) is a shot gather in the offset-time domain

    = dtetxuwxUiwt),(),(

  • 8/12/2019 KGS-00-25.pdf

    174/212

    U(x,w) isa shot gather in the offset-frequency domain after applied the

    Fourier transform to U(x,t).

    U(x,w)can be expressed as the multiplication of phase and amplitudespectrum

    ),(),( wxAewxU xi= wcw /=

    wis frequency in radian and cwis phase velocity for frequency w.

    TheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curveTheoryCalculation of dispersion curve

    2. Applying integral transformation toU(x,t)

  • 8/12/2019 KGS-00-25.pdf

    175/212

    dxwxUwxUewVxi ]),(/),([),( =

    ( )dxwxAwxAe

    xi ]),(/),([ =

    Because A(x,w)is both real and positive, will have a

    maximum if

    =

    ),( wV

    Example of dispersion curve imageExample of dispersion curve imageExample of dispersion curve imageExample of dispersion curve imageExample of dispersion curve imageExample of dispersion curve imageExample of dispersion curve imageExample of dispersion curve image

    FD97-1

  • 8/12/2019 KGS-00-25.pdf

    176/212

    TheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curve

    OutlineOutlineOutlineOutlineOutlineOutlineOutlineOutline

  • 8/12/2019 KGS-00-25.pdf

    177/212

    Forward calculation

    Partial derivatives of phase velocity function

    Sensitivity of earth model parameters

    Inversion algorithms

    TheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curveTheoryInversion of dispersion curve

    Layered earth model, four parametersLayered earth model, four parametersLayered earth model, four parametersLayered earth model, four parameters Free surfaceFree surface

    ___________________________________

    vs1 vp1 1 h1

  • 8/12/2019 KGS-00-25.pdf

    178/212

    _____________________________________________

    vs2 vp2 2 h2

    _____________________________________________

    .

    .

    .

    _____________________________________________

    vsi vpi i hi

    _____________________________________________

    .

    .

    .

    _____________________________________________

    vsn vpn n infinite

    Forward calculationForward calculationForward calculationForward calculationForward calculationForward calculationForward calculationForward calculation

    Fj(fj, cRj, vs, vp, d, h) = 0, (j= 1, 2, ..., m)

    m: the number of data points

  • 8/12/2019 KGS-00-25.pdf

    179/212

    m: the number of data points,

    fj: the frequency,

    cRj: the Rayleigh wave phase velocity,

    vs= (vs1, vs2, ..., vsn)T: the S-wave velocity vector,

    vp= (vp1, vp2, ..., vpn)T: the P-wave velocity vector,

    d = (d1, d2, ..., dn)T: the density vector, andh = (h1, h2, ..., hn-1)

    T: the thickness vector

    Partial derivatives of the phasePartial derivatives of the phasePartial derivatives of the phasePartial derivatives of the phasePartial derivatives of the phasePartial derivatives of the phasePartial derivatives of the phasePartial derivatives of the phasevelocity functionvelocity functionvelocity functionvelocity functionvelocity functionvelocity functionvelocity functionvelocity function

  • 8/12/2019 KGS-00-25.pdf

    180/212

    The Jacobian matrix calculated by

    Ridders methodone numericalmethod.

    Sensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parameters

    The six-layer model is

  • 8/12/2019 KGS-00-25.pdf

    181/212

    The six-layer model isused to analyze

    the sensitivity of

    higher modes ofsurface waves.

    Sensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parametersSensitivity of earth model parameters

    Why only S-wave velocity?

    Model Parameters model (%) data (%)

  • 8/12/2019 KGS-00-25.pdf

    182/212

    P-wave Velocity 25 3

    Density 25 10

    S-wave Velocity 25 39

    Thickness 25 16

    S-wave velocity is the dominant property for the fundamental mode of

    high-frequency Rayleigh wave dispersion data.

    Based on the sensitivity analysis of four groups of earth

    model parameters: S-wave velocity, P-wave velocity,

    density, and thickness of layers, S-wave velocity is

    dominant. If we can get good estimates of P-wave velocity

    Why only S-wave velocity?

  • 8/12/2019 KGS-00-25.pdf

    183/212

    do a t. we ca get good est ates o wave ve oc tyand density, we can only invert S-wave velocity from phase

    velocities of surface waves.

    The following discussion assumes P-wave velocity and

    density are known. Only S-wave velocities are updated

    during the inversion procedure based on the layered earth

    model.

    Inversion algorithmsInversion algorithmsInversion algorithmsInversion algorithmsInversion algorithmsInversion algorithmsInversion algorithmsInversion algorithms

    Objective function:

    2

  • 8/12/2019 KGS-00-25.pdf

    184/212

    2

    222xbJxWbJx +=

    SolutionSolutionSolutionSolutionSolutionSolutionSolutionSolution

    ( ) dUIVxT

    1

    2

  • 8/12/2019 KGS-00-25.pdf

    185/212

    Where dis the vector of difference between modeled

    and measured data, V, , and U are the SVD matrixesof the weighted Jacobian matrix A.

    ( ) dUIVx += 2

    TheoryTheoryTheoryTheoryTheoryTheoryTheoryTheory

    Parameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth model

    1. Initial values of S-wave velocities:

    v = c (high)/A (for the first layer)

  • 8/12/2019 KGS-00-25.pdf

    186/212

    vs1= cR(high)/A, (for the first layer)

    vsn= cR(low)/A, (for the half space)

    vsi = cR(i)/A, (i = 2, 3, ..., n-1)

    A = 0.88

    Initial values of S-wave velocities are

    determined based on dispersion curve data.

    TheoryTheoryTheoryTheoryTheoryTheoryTheoryTheory

    Parameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth model

    Based on analysis of sensitivity of earth model

    parameters, the other three groups of

    parametersP-wave velocities, densities, and

  • 8/12/2019 KGS-00-25.pdf

    187/212

    p , ,

    thickness of layersare not changed during

    inversion procedure.

    2. P-wave velocities can be determined from the

    first arrivals of surface wave data. The first

    arrivals are refraction information on P-wave

    velocities.

    TheoryTheoryTheoryTheoryTheoryTheoryTheoryTheory

    Parameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth model

    3. Densities can be chosen from 1.62.2 g/cc for

    shallow sedimentary geology. Based on our

    experience, this range of density gives enough

  • 8/12/2019 KGS-00-25.pdf

    188/212

    p , g y g g

    accuracy for inverted S-wave velocities up to

    100 ft depth.

    TheoryTheoryTheoryTheoryTheoryTheoryTheoryTheory

    Parameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth model

    4. The depth to the top of the half-space is

    determined by your investigation depth. Ten tofifteen layers is a good place to start with testing

  • 8/12/2019 KGS-00-25.pdf

    189/212

    y y g pfifteen layers is a good place to start with testing.

    After determining the number of layers, the

    thickness of each layer can easily be defined.

    Make sure the maximum wavelength is greater

    than the investigation depth.

    TheoryTheoryTheoryTheoryTheoryTheoryTheoryTheory

    Parameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth modelParameters of a layered earth model

    Trade-off between resolution and accuracy

    The thickness of layers basically is a measurement

  • 8/12/2019 KGS-00-25.pdf

    190/212

    y y

    of the vertical resolution. The vertical resolution

    is limited by accuracy of the dispersion curve. In

    the case of low accuracy of dispersion curve data,

    you should reduce the number of layers (increase

    thickness of each layer) to reduce uncertainty of

    the inverted S-wave velocities (stabilize inversion).

    SummarySummarySummarySummarySummarySummarySummarySummary

    From shot gather to S-wave velocity profileFrom shot gather to S-wave velocity profileFrom shot gather to S-wave velocity profileFrom shot gather to S-wave velocity profileFrom shot gather to S-wave velocity profileFrom shot gather to S-wave velocity profileFrom shot gather to S-wave velocity profileFrom shot gather to S-wave velocity profile

    160

    170250

    f-k transformation Inversion

  • 8/12/2019 KGS-00-25.pdf

    191/212

    100

    110

    120

    130

    140

    150

    5 10 15 20 25

    Frequency (Hz)

    Phasevelocity(m/s)

    Measured

    Final

    0

    50

    100

    150

    200

    0 5 10 15 20 25 30

    Depth (m)

    S-wavevelocity(m/s)

    Borehole FD95-2

    Inverted

    Multichannel raw data Dispersion curve S-wave velocity

    Synthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic Examples

    Two-layer modelsTwo-layer modelsTwo-layer modelsTwo-layer models

    500600

    700

    (m/s)

  • 8/12/2019 KGS-00-25.pdf

    192/212

    0

    100

    200

    300

    400

    5 15 25 35 45 55 65 75

    Frequency (Hz)

    Phasevelocity

    Measured

    Initial

    Final

    Thickness of top layer: 2 m

    Synthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic Examples

    Two-layer modelsTwo-layer modelsTwo-layer modelsTwo-layer models

  • 8/12/2019 KGS-00-25.pdf

    193/212

    Thickness of top layer: 5 m

    Synthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic Examples

    Two-layer modelsTwo-layer modelsTwo-layer modelsTwo-layer models

  • 8/12/2019 KGS-00-25.pdf

    194/212

    Thickness of top layer: 10 m

    Synthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic Examples

    Why use two-layer models?

    One direct application of a two-layer model is

  • 8/12/2019 KGS-00-25.pdf

    195/212

    static correction in S-wave reflection and

    refraction survey in oil industry.

    Synthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic ExamplesSynthetic Examples

    A multilayer modelEffects of P-wave velocity and density

  • 8/12/2019 KGS-00-25.pdf

    196/212

    25% change (1) in S; (2) in S and P; (3) in S and density; and

    (4) in S, P, and density.

    Data Acquisition Equipment:Data Acquisition Equipment:

    Seismic SourcesSeismic SourcesA surface impact source

    can generate surfacewave enriched

  • 8/12/2019 KGS-00-25.pdf

    197/212

    wave e c ed

    records. Enriched

    means wavelengths of

    surface waves evenly

    cover the range of

    investigation depth.

    Seismic SourcesSeismic Sources

    1. Industrial Vehicle International (IVI) MinivibDownward weight 6,000 lb.

  • 8/12/2019 KGS-00-25.pdf

    198/212

    Investigation depth: 1 to 30 meters

    Seismic SourcesSeismic Sources

    2. KGS-built weight dropper

  • 8/12/2019 KGS-00-25.pdf

    199/212

    Investigation depth: 2 to 30 meters

    Seismic SourcesSeismic Sources

    3. Sledgehammer and plate

  • 8/12/2019 KGS-00-25.pdf

    200/212

    Investigation depth: 0.5 to 15 meters

    Seismograph48 to 60 channelsSeismograph48 to 60 channels

  • 8/12/2019 KGS-00-25.pdf

    201/212

    60-channel Geometrics StrataView

    GeophonesGeophones4.5 to 10 Hz vertical4.5 to 10 Hz vertical

    componentcomponent geophonegeophone

  • 8/12/2019 KGS-00-25.pdf

    202/212

    Geophone with spike Geophone with baseplate

    GeophonesGeophones4.5 to 10 Hz vertical4.5 to 10 Hz vertical

    componentcomponentgeophonegeophone

  • 8/12/2019 KGS-00-25.pdf

    203/212

    Geophone on tiles Geophone on carpet

    Data Acquisition ParametersData Acquisition Parameters

  • 8/12/2019 KGS-00-25.pdf

    204/212

    A. Nearest source-receiver offset

    B. Receiver spacing

    C. Receiver spread: distance between the firstreceiver and the last receiver

    Data Acquisition ParametersData Acquisition Parameters

    Nearest source-receiver offsetNearest source-receiver offset

    Near-offset effect: Lower frequency components are

    not fully developed as plane waves.

    Plane-wave propagation of surface waves occurs

  • 8/12/2019 KGS-00-25.pdf

    205/212

    when the nearest source-receiver offset is greater

    than half the maximum desired wavelength.The maximum desired wavelength is about equal to

    the maximum investigation depth so that the

    nearest source-receiver offset is about equal to themaximum investigation depth.

    Data Acquisition ParametersData Acquisition Parameters

    Receiver spacingReceiver spacing

    Receiver spacing should follow the Nyquist sampling

    theorem. Receiver spacing determines the shortest

    wavelength in recorded data, which is a guideline

    f d t i i thi k f l d l d i

  • 8/12/2019 KGS-00-25.pdf

    206/212

    for determining thickness of a layer model and is

    also a limit in the inverted S-wave velocity model.

    Data Acquisition ParametersData Acquisition Parameters

    Receiver spreadReceiver spread

    Receiver spread should also follow the Nyquist

    sampling theorem. Receiver spread determines the

    longest wavelength in recorded data, which is aguideline for determining total thickness of layers

  • 8/12/2019 KGS-00-25.pdf

    207/212

    guideline for determining total thickness of layers

    on the top of the half-space.

    The receiver spread is limited by far-offset effect.

    Far-offset effect: Higher frequency components of

    surface waves are contaminated by body wavesdue to high-frequency attenuation.

    Near-offset effectsNear-offset effects

    Nearest offset: 1.8 m.

    Receiver spacing: 1 m.Receiver spread: 40 m.

    10 Hz 16 Hz 22 Hz 28 Hz 34 Hz 40 Hz 46 Hz

  • 8/12/2019 KGS-00-25.pdf

    208/212

    Lower frequencycomponents are not

    fully developed as

    plane waves.

    1.5 s 3.0 s 4.5 s 6.0 s 7.5 s 9.0 s 10.5 s 12.0 s

    Far-offset effectsFar-offset effects

    Nearest offset: 89 m.

    Receiver spacing: 1 m.

    Receiver spread: 40 m.

    10 Hz 16 Hz 22 Hz 28 Hz 34 Hz 40 Hz 46 Hz

  • 8/12/2019 KGS-00-25.pdf

    209/212

    Higher frequencycomponents arecontaminated by bodywaves due toattenuation of high

    frequency componentsof surface waves.

    1.5 s 3.0 s 4.5 s 6.0 s 7.5 s 9.0 s 10.5 s 12.0 s

    Optimum offsetOptimum offset

    Nearest offset: 27 m.

    Receiver spacing: 1 m.Receiver spread: 40 m.

    10 Hz 16 Hz 22 Hz 28 Hz 34 Hz 40 Hz 46 Hz

  • 8/12/2019 KGS-00-25.pdf

    210/212

    Linearity of surfacewave is clearly

    improved from

    4 Hz to 35 Hz.1.5 s 3.0 s 4.5 s 6.0 s 7.5 s 9.0 s 10.5 s 12.0 s

    00

    2000 2000

    00

    2000 2000

    How to check near-

    offset effects or

    far-offset effects onimpulsive data?

    Impulsive data to

    swept data:

    Convolution

  • 8/12/2019 KGS-00-25.pdf

    211/212

    40004000 40004000

    Swept data to

    impulsive data

    (frequency

    decomposition):

    Correlation

    SummaryRule of thumbSummaryRule of thumb

    The nearest source-receiver offset = 1/3

    to 1/2 of the maximum investigation

    depth.

  • 8/12/2019 KGS-00-25.pdf

    212/212

    Receiver spacing = the thinnest layer of

    the layer model.

    Receiver spread = 1 to 2 times of the

    maximum investigation depth.