Keynote lecture Morita Tuesday, 11.7. 09:00-10:00 Chair: V ... · 2004 Seventh International...

41
1 Seizo Morita Seizo Morita , Yoshiaki Sugimoto, , Yoshiaki Sugimoto, Noriaki Noriaki Oyabu Oyabu , , Ryuji Nishi, Insook Yi, Yoshihide Seino, Oscar Oscar Custance Custance and and M.Abe M.Abe Graduate School of Engineering, Osaka University In this review talk, we will introduce: (3) Chemical Identification Chemical Identification of Atom Species of Atom Species. (4)&(5) Mechanical Atom Manipulation at LT and RT Mechanical Atom Manipulation at LT and RT (2) Principles Principles and Performance Performance of NC NC - - AFM AFM. Atom Selective Imaging Atom Selective Imaging and and Atomic Force vs. Z distance Atomic Force vs. Z distance Site Site - - Specific Force Spectroscopy Specific Force Spectroscopy , , Atom Atom Manipulation Manipulation and and Artificial Artificial Nanostructuring Nanostructuring CEAC Summer Workshop on: Nanoanalysis, Monday & Tuesday, July 10 & 11, 2006 in the ETH main building, Lecture hall: HG E 1.1, ETH Zentrum, 8092 Zürich, Switzerland, Keynote lecture Morita Tuesday, 11.7. 09:00-10:00 Chair: V. Sandoghdar (ca. 45 (max. 50) minutes) (5) Vertical (5) Vertical and and (6) (6) Lateral Lateral Atom Manipulation Atom Manipulation (6) Atom Inlay at RT Atom Inlay at RT. Assembly Assembly of of Nanostructure Nanostructure from from Two Atom Species Two Atom Species Modification Modification of of Atomic Structure Atomic Structure made of made of One Atom Species One Atom Species (1) History History of of N N on on C C ontact ontact (NC) (NC) AFM AFM Universidad Autonoma de Madrid Pablo Pablo Pou Pou , , Pavel Pavel Jelinek Jelinek , Rub , Rub é é n n P P é é rez rez

Transcript of Keynote lecture Morita Tuesday, 11.7. 09:00-10:00 Chair: V ... · 2004 Seventh International...

  • 1

    Seizo MoritaSeizo Morita, Yoshiaki Sugimoto, , Yoshiaki Sugimoto, NoriakiNoriaki OyabuOyabu, , Ryuji Nishi,Insook Yi, Yoshihide Seino, Oscar Oscar CustanceCustance and and M.AbeM.Abe

    Graduate School of Engineering, Osaka University

    In this review talk, we will introduce:

    (3) Chemical IdentificationChemical Identification of Atom Speciesof Atom Species.

    (4)&(5) Mechanical Atom Manipulation at LT and RTMechanical Atom Manipulation at LT and RT

    (2) PrinciplesPrinciples and PerformancePerformance of NCNC--AFMAFM.

    Atom Selective Imaging Atom Selective Imaging andand Atomic Force vs. Z distanceAtomic Force vs. Z distance

    Site-Specific Force Spectroscopy, Atom Manipulation and Artificial Nanostructuring

    SiteSite--Specific Force SpectroscopySpecific Force Spectroscopy, , Atom Atom ManipulationManipulation and and Artificial Artificial NanostructuringNanostructuring

    CEAC Summer Workshop on: Nanoanalysis, Monday & Tuesday, July 10 & 11, 2006 in the ETH main building, Lecture hall: HG E 1.1, ETH Zentrum, 8092 Zürich, Switzerland,

    Keynote lecture Morita Tuesday, 11.7. 09:00-10:00 Chair: V. Sandoghdar (ca. 45 (max. 50) minutes)

    (5) Vertical(5) Vertical and and (6)(6) Lateral Lateral Atom ManipulationAtom Manipulation

    (6) Atom Inlay at RTAtom Inlay at RT.Assembly Assembly of of NanostructureNanostructure from from Two Atom SpeciesTwo Atom Species

    Modification Modification of of Atomic StructureAtomic Structure made of made of One Atom SpeciesOne Atom Species

    (1) HistoryHistory of of NNononCContactontact (NC)(NC) AFMAFM

    Universidad Autonoma de MadridPablo Pablo PouPou, , PavelPavel JelinekJelinek, Rub, Rubéén n PPéérezrez

  • 2

    ImagingImaging

    Repulsive ForceRepulsive Force

    NNearearCContactontact AFMAFMAtom ManipulationAtom Manipulation

    History of History of AFMAFM

    Since 1986(1) ContactContact AFMAFM

    [destructive][StrongStrong repulsive force]

    Atom AssemblyAtom Assembly

    Precisely Precisely controlledcontrolledNNearearCContactontact

    Displacement Sensor

    contactcontact

    Displacement Sensor

    0(2) TappingTappingAFM/AFM/CyclicCyclicContactContact

    cyclic contactcyclic contact

    Displacement Sensor

    DynamicDynamic

    DynamicDynamic

    [WeakWeak repulsive force]

    (1) (1) HistoryHistory of of NonContactNonContact (NC)(NC) AFMAFM

    ImagingImaging

    Since 1995

    True Atomic ResolutionTrue Atomic Resolution[WeakWeak attractive force]

    [nondestructive]

    (3) (3) NNononCContactontact AFMAFMAttractive Attractive ForceForce

    Displacement Sensor

    noncontactnoncontact

    DynamicDynamic

  • 3

    19871987 Lattice Image of GraphiteLattice Image of Graphite obtained using SiO2 micromicro--cantilevercantilever under contact regioncontact regionG.Binnig, Ch.Gerber, E.Stoll, T.R.Albrecht and C.F.Quate

    Europhys.Lett, 3 (12) (1987) pp.1281-1286.

    19901990 OpticalOptical--beambeam--deflectiondeflection AFM and lattice image of NaCl(001)lattice image of NaCl(001) under UHVG.Meyer and N.M.Amer, Appl.Phys.Lett. 56 (1990) pp.2100-2101.

    Beginning Beginning ofof AFMAFM: Simple : Simple contact AFMcontact AFM measurementmeasurement

    19911991 Frequency modulation (FM) methodFrequency modulation (FM) method combined with large amplitudelarge amplitude and high Qhigh QT.R.Albrecht, P.Grutter, D.Horne and D.Ruger, J.Appl.Phys. 69 (1991) 668.

    1988 1988 Optical fiberOptical fiber--based interferometerbased interferometer AFM D.Ruger, H.J.Mamin, R.Erlandsson, J.E.Stern and B.D.Terris,

    Rev.Sci.Instrum. 53 (1988) 2337.

    19861986 InventionInvention of Atomic Force Microscope (AFMAFM)G.Binnig, C.F.Quate and Ch.Gerber, Phys.Rev.Lett. Vol.56 (1986) pp.930-933.

    Dawn Dawn ofof NoncontactNoncontact AFM AFM with true atomic resolutionwith true atomic resolution

    19921992 K and Br ionsK and Br ions, and monostepmonostep with atomic resolutionwith atomic resolution of KBr(001) in UHV at 4.2KF.J.Giessibl and G.Binnig, Ultramicroscopy, 42-44 (1992) pp.281-289, pp.7-15.

    History of Noncontact AFMHistoryHistory ofof NoncontactNoncontact AFMAFM

  • 4

    InP(110)InP(110)

    Si(111)Si(111)--(7x7)(7x7)

    19951995 Si(111)Si(111)--(7x7)(7x7) by noncontact AFM, F.J.GiessiblF.J.GiessiblScience 267 (1995) pp.68-71 [30 Aug.199430 Aug.1994; accepted 31 Oct.1994]

    19951995 Si(111)Si(111)--(7x7)(7x7) by noncontact AFM, S.KitamuraS.Kitamura and and M.IwatsukiM.Iwatsuki, Jpn.J.Appl.Phys. 34 (1995) pp.L145-L148[Nov.14, 1994Nov.14, 1994; Accepted Dec.6, 1994]

    19951995 Atomic point defectsAtomic point defects of InP(110)InP(110) cleaved surfacecleaved surface by noncontact AFM, H.UeyamamH.Ueyamam, , M.OhtaM.Ohta, , Y.SugawaraY.Sugawara and and S.MoritaS.Morita,JpanJ.Appl.Phys. 34 (1995) pp.L1086-L1088 [May 31, 1995May 31, 1995; accepted July 13, 1995]

    1995 1995 Defect MotionDefect Motion of Atomic point defectsAtomic point defects of InP(110),InP(110),Y.SugawaraY.Sugawara, , M.OhtaM.Ohta, , H.UeyamamH.Ueyamam and and S.MoritaS.Morita,Science 270 (1995) pp.1647-1648 [27 July, 199527 July, 1995; accepted 11 Oct, 1995]

    19971997 Dissipation imageDissipation image of NaCl(001)NaCl(001) and by noncontact AFM, M.Bammerlin, R.Luthi, E.Meyer, A.Baratoff, J.Lu, M.Guggisberg, Ch.Gerber, L.Howaldand H.-J.Guntherodt, Probe Microscopy, 1 (1997) pp.3-9.

    19971997 TiOTiO22(110)(110) by noncontact AFM, K.Fukui, H.Onishi and Y.Iwasawa, Phys.Rev.Lett, 79 (1997) pp.4202-4205.

    NaCl(001)NaCl(001)TiO2(110)TiO2(110)

    In 1995, Achievement of In 1995, Achievement of True Atomic ResolutionTrue Atomic Resolution

    Si(111)Si(111)--(7x7)(7x7)

    Beginning of Beginning of NoncontactNoncontact AFM AFM with true atomic resolutionwith true atomic resolution

  • 5

    1998 1998 First International Workshop on First International Workshop on NoncontactNoncontact Atomic Force MicroscopyAtomic Force MicroscopyConvention Center, Osaka University, July 21-July 23, 1998

    Proceedings [Appl.Surf.SciAppl.Surf.Sci. 140 (3. 140 (3--4) (1999) pp.2434) (1999) pp.243--456456]

    Ag(111)Ag(111) Cu(111)Cu(111)

    C60/Si(111)C60/Si(111) Graphite(0001)Graphite(0001)at 22 Kat 22 K

    Far NearTip-to-Sample distance

    InAs(110)InAs(110)

    Si(111)Si(111)√√33×√×√33--AgAg

    TGSTGS

    MetalMetal

    MoleculeMolecule

    Ferroelectric Ferroelectric materialmaterial

    Force SpectroscopyForce Spectroscopy

    GaAs(110)GaAs(110)GaAs(110)GaAs(110)TopographyTopography Charge ImagingCharge Imaging by by EFMEFM

    (a) (b)

    TopographyTopography CPD ImagingCPD Imaging by by KPFMKPFMSi(111)7x7 with Ag Si(111)7x7 with Ag depositesdeposites

    Layer materialLayer materialVan Van derder WaalsWaals ForceForce

    tiptip--toto--sample distance dependence of sample distance dependence of ncnc--AFM imageAFM image

    8 years ago8 years ago

  • 6

    Si(001)2x1(-32Hz)

    Si(001)c(4x2)(-24Hz)

    Ge(105)-(1×2) Ge(105)-(1×2)

    STM nc-AFM

    2004 2004 Seventh International Conference on Seventh International Conference on NoncontactNoncontact Atomic Force Microscopy,Atomic Force Microscopy,the University of Washington (UW), 12-15 September 2004, Seattle, USAProceedings [Nanotechnology, Vol.16, No.3 (2005) pp.S1Nanotechnology, Vol.16, No.3 (2005) pp.S1--S137S137]This conference inThis conference in SeattleSeattle was the first meeting held inwas the first meeting held in USAUSA.. ncnc--AFM 2004AFM 2004Atomic ResolutionAtomic Resolution

    Atomic Resolution Beyond STMAtomic Resolution Beyond STM

    C12 monolayer underan ambient condition (Q = 292)

    Sn/Si(111)-(√3×√3)R30º

    Sn/Si(111)-(7x7)

    Imaging MoleculesImaging MoleculesAtom Discrimination (Chemical Identification)Atom Discrimination (Chemical Identification)

    before after

    c da bGe(111)-c(2x8)[01-1] 78.6 K

    Vertical Vertical Atom ManipulationAtom Manipulation

    Control of Atomic Force and Atom RelaxationControl of Atomic Force and Atom Relaxation

    Lateral Lateral Atom ManipulationAtom Manipulation

    ““Atom InlayAtom Inlay””Embedded Atom LettersEmbedded Atom Letters

    Molecular and Molecular and SubmolecularSubmolecularResolution Even in LiquidResolution Even in Liquid

    Sn/Si(111)-(2√3×2√3)

  • 7

    First English Book on NC-AFMFirst English Book on NCFirst English Book on NC--AFMAFM

    Citations 112Citations 112 S.Morita, R.Wiesendanger and E.Meyer (eds.); “Noncontact Atomic Force Microscopy”, Springer, NanoScience and Technology, the end of August (20022002) pp.1-439

  • 8Oscillation Frequency of CantileverνO

    scill

    atio

    n A

    mpl

    itude

    A0∆ν

    Frequency ShiftFrequency Shift

    Weak Attractive ForceWeak Attractive Force

    DisplacementDetection of Frequency ShiftDetection of Frequency Shift

    MechanicalMechanicalResonantResonantOscillationOscillation

    How to detect Weak Attractive ForceWeak Attractive Force?How to Achieve True Atomic Resolution?How to Achieve True Atomic ResolutionTrue Atomic Resolution?

    NoncontactNoncontact AFMAFM

    atomic point defectatomic point defect

    (2)(2) PrinciplesPrinciples and and PerformancePerformance of of NCNC-- AFMAFM

    ν0∼150kHz

    k

    mKts

  • 9

    CantileverX,Y

    Z+δZ

    Sample

    ∆ν

    Topography

    Frequency Shift

    Image12

    ∆Ζ

    ∆ν

    δZ

    FM Demodulator

    Fiber-Optic Interferometer

    Feedback and Scan Circuits

    Feedback LoopFeedback Loop

    AGC Circuit

    Phase Shifter

    NC-AFM using the FM detection methodFM detection method. This system has three feedback loopsthree feedback loops.

    Schematic diagram of the NC-AFMSchematic diagramSchematic diagram of the NCof the NC--AFMAFMHow to detectHow to detect Weak Attractive ForceWeak Attractive Force??

    Oscillation Frequency of Cantilever

    νOsc

    illat

    ion

    Am

    plitu

    de

    A0∆ν

    Frequency ShiftFrequency Shift

    ν0

  • 10

    How to measure energy dissipation?How to measureHow to measure energy dissipation?energy dissipation?

    Sample

    Feedback LoopFeedback Loop

    Constant Constant Amplitude Amplitude

    ModeMode

    Constant Constant Excitation Excitation

    ModeMode

    Exc

    itatio

    n V

    olta

    ge [m

    V]

    Exc

    itatio

    n V

    olta

    ge [m

    V]

    Osc

    illat

    ion

    Am

    plitu

    de [

    Osc

    illat

    ion

    Am

    plitu

    de [ ÅÅ

    ]]

    CantileverX,Y

    Z+δZ

    ∆ν

    Topography

    Frequency Shift Image

    12

    ∆Ζ

    ∆ν

    δZ

    FM Demodulator

    Fiber-Optic Interferometer

    Feedback and Scan Circuits

    AGC Circuit

    Phase Shifter

    p-GaAs(110) NA=1.4x10 cm19 -3

    p-GaAs(110) NA=1.4x10 cm19 -3

    @RT@RT@RT@RT

  • 11

    Where is Contact Point?Where is Contact PointContact Point?

    p-GaAs(110) NA=1.4x10 cm19 -3

    Constant Excitation Mode

    NoncontactContactContact Point Decay Length

    -0.5 0 0.5 1.0 1.5 2.0-100

    -101

    -102

    7.5

    8.0

    8.5

    9.0

    9.5

    Tip-Sample Surface Distance Z[nm]

    Freq

    uenc

    y Sh

    ift ∆ν(

    Hz)

    Osc

    illat

    ion

    Am

    plitu

    deA

    0[ n

    m]

    (c)z~ 0.08nm(b)z~ 0.1nm (a)z~ 0.4nm

    1 2

    L1~ 0.16nmL2~ 1.1nm

    Where is Noncontact Region?Where is NoncontactNoncontact RegionRegion?

    @RT@RT

  • 12

    11.5nm12

    .2H

    z

    ∆ν = -70Hz

    4.57

    Hz

    11.5nm

    ∆ν = -62Hz

    1.91

    Hz

    11.5nm

    ∆ν = -31Hz(a)z~0.4nm (b)z~0.1nm (c)z~0.08nm

    Journal of Crystal Growth, Vol.210, 408 (2000)

    Where can we obtain True Atomic Resolution?Where can we obtain True Atomic ResolutionTrue Atomic Resolution?

    8 Hz8 Hz0.02 nm0.02 nm

    8Hz 20pm 0.1Hz0.1Hz 0.25pm0.25pm1mHz1mHz 2.5fm2.5fm

    p-GaAs(110) NA=1.4x10 cm19 -3

    @RT@RT

  • 13

    Preparation ChamberAFM

    ChamberLoad Lock Chamber

    ☆ UHV: ~4×10-11Torr

    Home-built RT-UHV-NC-AFMHomeHome--builtbuilt RTRT--UHVUHV--NCNC--AFMAFMSchematic Side View Cantilever (Sb-doped n+Si)

    Ar+ Ion Sputtering k=41-49N/mν0=169-172kHzQ=38,000 in UHVTip Radius:5-10nmA0=3nm-10nm

    ““Atom InlayAtom Inlay””Embedded Atom LettersEmbedded Atom Letters

  • 14

    DNADNA ImageImage

    7nmx7nm7nmx7nmBB--DNADNA

    High Resolution NCHigh Resolution NC--AFM ImagesAFM ImagesNonContact AFM (NC-AFM)NonContactNonContact AFM (NCAFM (NC--AFM)AFM)

    Langmuir, 16 (3), 1349 -1353, 2000. T.Uchihashi, M.Tanigawa, M.Ashino, Y. Sugawara, K.Yokoyama, S.Morita, and M.Ishikawa

    Appl.Surf.Sci. Vol.157, No.4 (2000) pp.244-250.T.Uchihashi, T.Ishida, M.Komiyama, M.Ashino, Y.Sugawara, M.Mizutani, K.Yokoyama, S.Morita, H.Tokumoto and M.Ishikawa,

    Organic monolayersOrganicOrganic monolayersmonolayers

    Adenine MoleculesAdenineAdenine MoleculesMolecules

    @RT@RT@RT@RT

  • 15

    LiF(100) LiF(100)

    2nm×2nm

    Ag(111)Ag(111)

    InsulatorInsulator

    3838ÅÅx38x38ÅÅ

    SnSn//SiSi(111)(111)√3×√3

    mosaicmosaic phase SnSn=1/6 =1/6 MLML Sn:50%Sn:50% Si:50%Si:50%

    MetalMetalon Si(111)on Si(111)

    Atomically Resolved NCAtomically Resolved NC--AFM AFM ImagesImages

    NonContact AFM (NC-AFM)NonContactNonContact AFM (NCAFM (NC--AFM)AFM)MotionMotion of of Ag Ag

    atoms at atoms at step sitestep site@RT@RT

    SiSiSnSn

  • 16

    SiSiInIn

    SiSi InIn

    SiSiSiSiInIn

    Cantilever

    InIn

    Deflection

    Displacement sensor

    SelectiveSelectivemanipulation/

    assembly

    Evaporation of many atom species many atom species

    TipTip

    Chemical Chemical Identification:Identification:

    Many atom speciesMany atom species

    Strong bondStrong bond

    AFMAFM InsulatorInsulator is is observableobservable

    Covalent bondCovalent bond

    InsulatorInsulator Ionic bondIonic bondSelective Selective atom atom

    manipulation/assembly :

    Chemical Chemical IdentificationIdentification

    Atomic force measurement Atomic force measurement of individual atomsof individual atoms

    Atomic force Atomic force is is measurablemeasurable

    RTRT&3D3D--structurestructure

    Electronic deviceElectronic device

    Novel Novel nanomaterialnanomaterial/Novel /Novel nanodevicenanodevicewithwith Novel functionNovel function

    --Mechanical AssemblyMechanical Assembly Using Many Atom SpeciesMany Atom Species--

    Displacement sensor

    Cantilever Deflection

    Novel Bottom Up Nanostructuring SystemNovelNovel Bottom UpBottom Up NanostructuringNanostructuring SystemSystem

  • 17

    => from => from topography with chemical contrasttopography with chemical contrast(=Atom Selective Imaging)(=Atom Selective Imaging)

    => from => from frequency shift vs. tipfrequency shift vs. tip--samplesampledistance curvedistance curve

    (=>Force Curve and Potential Curve) (=>Force Curve and Potential Curve)

    (3) Chemical IdentificationChemical Identification of Atom Speciesof Atom SpeciesHow to Achieve Chemical Identification?How to Achieve Chemical IdentificationChemical Identification?

    Y.Sugimoto, M.Abe, K.Yoshimoto, O.Custance, I.Yi and S.Morita; “Non-contact atomic force microscopy study of the Sn/Si(111) mosaic phase”, Applied Surface Science, Volume 241, Issues 1-2, 28 February (2005) pp.23-27.

    M. Abe, Y. Sugimoto, O. Custance, and S. Morita, “Room-temperature reproducible spatial force spectroscopy using atom-tracking technique”, Applied Physics Letters, Vol.87, Issue 17, 24 October (2005) pp.173503-1~173503-3.

    Noriaki Oyabu, Pablo Pou, Yoshiaki Sugimoto, Pavel Jelinek, Masayuki Abe, Seizo Morita, Rubén Pérez, and Óscar Custance; “Single Atomic Contact Adhesion and Dissipation in Dynamic Force Microscopy”, Phys.Rev.Lett. Vol.96, No.10 (2006) 106101-1~106101-4.

    Y.Sugimoto, P.Pou , O.Custance, P.Jelinek, S.Morita, R.Pérez and M.Abe, “Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: The case of the α-Sn(111)-(√3×√3)R30”, Phys.Rev.B, Vol.73 (2006) pp.205329-1~205329-9.

  • 18

    Sn:50%Sn:50% Si:50%Si:50%

    mosaicmosaic phase intermediate phase purepure phase

    Sn:75%Sn:75% Si:25%Si:25% Sn:99%Sn:99% Si:1%Si:1%

    8nm

    20nm

    Sn:1/6MLSn:1/6ML 1/4ML1/4ML 1/3ML1/3ML

    NC-AFM images of SnSn/SiSi(111)-(√3×√3) surfaces

    SiSiSnSn

    SiSiSnSn

    SiSiSnSn

    SnSn1/6ML1/6ML

    SnSn1/3ML1/3ML

    @RT@RT7x77x7

  • 19

    SiSiSnSnSiSiSnSn

    pure phasepure phase (SnSn:99% :99% SiSi:1%:1%) mosaic phasemosaic phase (SnSn:50% :50% SiSi:50%:50%)

    Chemical Identification and Histgram of Sn/Si(111)√3×√3 intermixed surface

    Chemical Identification Chemical Identification and and HistgramHistgram of of SnSn//SiSi(111)(111)√3×√3 intermixedintermixed surfacesurface

    Sn

    Si

    (a)

    SnSn: 1/3ML: 1/3ML

    -0.06 -0.04 -0.02 0.00 0.0202468

    10121416182022

    Cou

    nts

    Relative height [nm]

    Standard Standard deviationdeviationσσ=2pm=2pm

    RTRT

    Clear Clear discriminationdiscrimination

    pure phasepure phase SnSi(b)

    SnSn: 1/6ML: 1/6ML

    -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.020

    2

    4

    6

    8

    10

    12

    14

    16

    Cou

    nts

    Relative height [nm]

    RTRTWide Wide

    VariationVariation

    ??

    mosaic phasemosaic phase

    SnSn: 1/3ML: 1/3ML SnSn: 1/6ML: 1/6ML

  • 20

    (a)

    Sn atom effect surrounding Si atom on Si atom heightSnSn atom effectatom effect surroundingsurrounding SiSi atom onatom on Si Si atom heightatom height

    1/6ML1/6MLmosaic mosaic phasephase

    SiSi--bbSiSi--aa SnSn

    SiSi--aa

    SiSi--bbSnSn

    30pm

    0 2 4 6 8 10 12 14 16 18-1.3-1.2-1.1-1.0-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10.00.1

    Z[Å

    ]

    X [Å]

    10pm/surround10pm/surround--ing ing SnSn atomatom

    RTRT

    Charge transferCharge transfer=>=>Change Change of of bonding forcebonding force(Bond order)(Bond order)Z heightZ height(Wave function)(Wave function)

    55 SnSn atoms surround SiSi--aa

    Charge transfer

    2 2 SnSn atoms surround SiSi--bb

    SnSn effect surrounding effect surrounding SiSi//SnSn atom atom onon heightheight

    Si

    No charge trnsfer

    SP3

    SP3

    SiSi

    Si Si

    Si Si

    SiSi

    SiSn

    Pz

    SP2

    SnSn

    Sn Sn

    Sn Sn

    SiSi

    Si

    Sn

    Sn: 1/6ML

    0 1 2 3 4 5 6-0.10-0.09-0.08-0.07-0.06-0.05-0.04-0.03-0.02-0.010.000.01

    Rel

    ativ

    e he

    ight

    Rel

    ativ

    e he

    ight

    (nm

    )

    Number of Sn atoms surrounding Si atom

    SiSi--aa

    SiSi--bb0.665nm

    P3

  • 21

    NC-AFM images of Sn/Si(111)-(√3x√3)NC-AFM images of SnSn/SiSi(111)-(√3x√3)

    (b)(a)

    SnSnSiSi

    @RT@RT

    Far distance

    Near distance

    (c)

    SnSnSiSi

    TipTip--Sample distance dependenceSample distance dependence of of atom selective imagingatom selective imaging

    SnSnSiSi

  • 22

    SnSn//SiSi(111)(111)--((√√3x3x√√3)3)SSFSSSFS & averaging 100100 curvesusing Atom Atom Tracking MethodTracking Method

    @RT@RT

    0 2 4 6 8 10 12 14 16 18 20

    -24-22-20-18-16-14-12-10-8-6-4-20

    -18-16-14-12-10-8-6-4-2

    Freq

    uenc

    y Sh

    ift ∆

    f[H

    z]

    Tip-Sample Distance Z[Å]

    γ[f

    N√

    m]

    SiSi

    SnSn

    0

    height differenceheight difference

    ImagingImaging

    Long range force

    SSFS: Site Specific Force SpectroscopySSFSSSFS: : SSite ite SSpecific pecific FForce orce SSpectroscopypectroscopy

    Sn Si

    0 2 4 6 8 10 12 14 16 18 20 22 24-3

    -2

    -1

    0

    1

    2

    Shor

    t Ran

    ge F

    orce

    F[n

    N]

    Short Range ForceShort Range ForceSnSn

    SiSi

    Covalent Covalent Bonding ForceBonding Force

    Tip-Sample Distance Z[Å]

    0 2 4 6 8 10 12 14 16 18 20 22 24-3

    -2

    -1

    0

    1

    Shor

    t Ran

    ge P

    oten

    tial U

    [eV

    ] Short Range PotentialShort Range Potential

    SnSn

    SiSi

    Tip-Sample Distance Z[Å]

    Covalent Bonding Covalent Bonding PotentialPotential

    Atom height and Atom height and atom radius etc.atom radius etc.

    Disappearance of chemical contrast

  • 23YearYear

    “Now”20052000 2010 2015

    “5 years later” “10 years later” “Further”“5 years ago”

    Chemical Identification of Atom Species by AFMChemical Identification of Atom Species by AFM

    1999InAs(110)NCNC--AFMAFM78K&14K

    2001年CaF2(111)NCNC--AFMAFM

    2003Si and Sbin Si(111) 5√3×5√3-Sb: KPFMKPFM

    20073 atom speciesForce curveForce curve

    20105 atom species

    Intermixed aperiodic atom

    distribution

    Periodic atom distribution

    Atomicallyflat surface

    Rough (or amorphous) surface

    2015 3 atom species in atom clusteratom cluster

    2012 IsolatedIsolated 3 adsorbed atom adsorbed atom speciesspecies

    2020 AmorphousAmorphous

    20062 atom species : NCNC--AFM in gasAFM in gas

    20072 atom species : NCNC--AFM in liquidAFM in liquid

    2006 3 atom speciesNCNC--AFMAFM2005Sn/Ge(111)-c(2×8)NCNC--AFMAFM

    2004Sn/Si(111)√3×√3NCNC--AFMAFM

    20102 atom speciesDissipationDissipation

    2005Subsurface(B/Si(111))

    20153-D recognition NMRNMR

    Achieved

    Achievable

    Indeterminate

    2006Insulating Surface

  • 24Seizo Morita, Osaka University, Japan (Ed.), Roadmap 2005 of Scanning Probe Microscopy, ca.the end of Aug. 20062006 ca.255 p. 135 illus. Hardcover, NanoScience and Technology, ISBN 3-540-34314-8

    First English Book on SPM RoadmapFirst English Book on SPM RoadmapFirst English Book on SPM Roadmap

  • 25

    ImagingImaging

    ImagingImaging

    Repulsive Repulsive ForceForce

    Since 1995

    True Atomic ResolutionTrue Atomic Resolution

    NNearearCContactontact AFMAFMAtom ManipulationAtom Manipulation

    History of History of AFMAFM

    Since 1986Contact AFM

    [destructive][StrongStrong repulsive force]

    [WeakWeak attractive force]

    [nondestructive]

    Atom AssemblyAtom Assembly

    Displacement Sensor

    noncontactnoncontact

    Precisely Precisely controlledcontrolledNearContactNearContact

    NNononCContactontact AFMAFMAttractive Attractive ForceForce

    Displacement Sensor

    contactcontact

    Displacement Sensor

    0

    cyclic contactcyclic contact

    Tapping AFM/Cyclic Contact

    Displacement Sensor

    DynamicDynamic

    DynamicDynamic

    DynamicDynamic

    [WeakWeak repulsive force]

  • 26

    (4)(4) Mechanical Atom Manipulation Mechanical Atom Manipulation atat LT LT andandand atatat RTRTRT

    VerticalVertical and and LateralLateral Atom ManipulationAtom Manipulation

    Modification Modification of of Atomic StructureAtomic Structuremade of made of One Atom SpeciesOne Atom Species

    Noriaki Oyabu, Oscar Custance, Masayuki Abe, and Seizo Morita; “Mechanical Atom Manipulation and Artificial Nanostructuring at Low Temperature”, e-Journal of Surface Science and Nanotechnology (e-JSSNT), Vol.4 (2006) pp. 1-8.

    by Vertical Contact Methodby by Vertical Contact MethodVertical Contact Method

    R. Nishi, D. Miyagawa, H. Etou, Y. Seino, Insook Yi and S. Morita ; “NC-AFM study on atomic manipulation on ionic crystal surface by nanoindentation”, Nanotechnology Vol.17 (2006) S142-S147.

    N.Oyabu, O.Custance, I.Yi, Y.Sugawara, and S.Morita; “Mechanical Vertical Manipulation of Selected Single Atoms by Soft Nanoindentation Using Near Contact Atomic Force Microscopy”, Phys.Rev.Lett., Vol.90, No.17 (2003), pp.176102-1~176102-4.

  • 27

    How to manipulate selected individual atomsby using “Mechanical Vertical Contact”

    How to manipulateHow to manipulate selected individual atomsselected individual atomsby using by using ““Mechanical Vertical ContactMechanical Vertical Contact””

    Step 2Mechanical ContactMechanical Contact

    Step 1Noncontact imaging Noncontact imaging

    Z piezo-scaneerFeedback Controller

    Step 3NoncontactNoncontact imagingimaging

    Feedback Controller

    Approachsignal

    *Imaging distance is close to contact point

    piez

    o-sc

    anne

    r ext

    ensi

    on

    0time0

    Imaging distance

    (B) Slow vertical contact*Slow vertical contact*experimentexperiment

    piez

    o-sc

    anne

    r ext

    ensi

    on

    Probe and sample were groundedProbe and sample were grounded

    Ge(111)-c(2x8)

    Clean Si tip

    Ge(111)-c(2x8)Ge(111)-c(2x8)

  • 28S.I.PT.S.P

    S.I.PT.S.P

    UHV: less than 1×10-10Torr

    Home-built LT-UHV-NC-AFMHomeHome--builtbuilt LTLT--UHVUHV--NCNC--AFMAFM

    AFMChamber

    AFMChamber

    Preparation Chamber

    Preparation Chamber

    Load Lock Chamber

    Load Lock Chamber

    Schematic Side View

    Liq.N2

    Liq.He

  • 29

    Si Removal and Repair of Missing Si Adatom Defect by Mechanical contactSi RemovalSi Removal and RepairRepair of Missing Si Missing Si AdatomAdatom DefectDefect by Mechanical contact

    Mechanical frequency : 168.108kHz, Oscillation amplitude : 12.2nm, mfN16−=∆− γ

    7×7

    Si

    11stst ContactContact 22ndnd ContactContact(a)(1) Before Selected Si

    adatom Extraction

    (b)(1) After Selected Si adatom ExtractionExtraction

    [2] Before Repair of Selected

    Si adatom Defect

    Si

    (c)

    [2] After RepairRepair of Selected

    Si adatom Defect

    78K78KSi(111)7××7 DepositionDeposition

  • 30(d) (e) (f)

    (a) (c)(b)

    Equilateral Equilateral TriangleTriangle

    Vertical and Lateral Atom ManipulationVertical Vertical andand LateralLateral Atom ManipulationAtom Manipulation108x108Å

    @79K∆f=-20HzGe(111)-c(2x8) Vertical Contact MethodVertical Contact Method

    [110] VerticalVerticalExtraction with LateralExtraction with Lateral

    11stst ContactContact 22ndnd ContactContactCrystalCrystalAxisAxis

    LateralLateralLateral ShiftLateral Shift

    VerticalVerticalRepair of Created Repair of Created

    Atom VacancyAtom Vacancy

    Right Right TriangleTriangle

    33rdrd ContactContact

  • 31

    (5) Mechanical Atom Manipulation Mechanical Atom Manipulation atat LT LT and atand at RTRT

    LateralLateral Atom ManipulationAtom Manipulation

    Modification Modification of of Atomic StructureAtomic Structuremade of made of One Atom SpeciesOne Atom Species

    N.Oyabu, Y.Sugimoto, M.Abe, O.Custance and S.Morita; “Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy”, Nanotechnology 16 (2005) pp.S112–S117.

    using the mechanical raster scanusing the using the mechanical mechanical rasterraster scanscan

    R. Nishi, D. Miyagawa, H. Etou, Y. Seino, Insook Yi and S. Morita ; “NC-AFM study on atomic manipulation on ionic crystal surface by nanoindentation”, Nanotechnology Vol.17 (2006) S142-S147.

    using the mechanical vector scanusing the using the mechanical mechanical vectorvector scanscan

    Noriaki Oyabu, Oscar Custance, Masayuki Abe, and Seizo Morita; “Mechanical Atom Manipulation and Artificial Nanostructuring at Low Temperature”, e-Journal of Surface Science and Nanotechnology (e-JSSNT), Vol.4 (2006) pp. 1-8.

  • 32

    Lateral manipulation of single atoms with NC-AFMLateralLateral manipulation of manipulation of single atomssingle atoms with with NCNC--AFMAFM

    We are deeply involved in developing lateral manipulation with NC-AFM technique

    We have many results on lateral manipulation experiments

    First experimental evidence of the capability of NCFirst experimental evidence of the capability of NC--AFM technique AFM technique for performing lateral manipulation of atomsfor performing lateral manipulation of atoms

    a

    NC-AFM topographic images (2.2x3.5 )nm2

    f0 = 167485.8 Hz A = 9.3 nmKL = 33.6 N/m T = 79 K Q = XX

    Ge(111)-c(2x8)

    Raster scan

    Slow

    scan

    Fast scan

    c d e f g h

    CrystalCrystalAxisAxis

    k=33.2N/m=>∆Z=0.2nN/33.2N/m~6pm6pm

    Lateral Scan MethodLateral Scan Method

    Direction of slow scan:Imaging set point at FarFar distance ∆f = - –28 Hz => -0.8 nNWeak Weak attractive force

    NonContactNonContact ImageImage::Direction of slow scan:Imaging at nearnear (closer) distance∆f = –31 Hz => -1.0 nNStrong Strong attractive force

    NearContactNearContact ImageImage::

    b

    N. Oyabu, Y. Sugimoto, M. Abe, O. Custance, and S. Morita, Nanotechnology, 16 (2005) pp.S112–S117.

    [110]

    Straight Walk

  • 33

    Low Temperature 78K

    Lateral manipulation of single atoms with NC-AFMLateralLateral manipulation of manipulation of single atomssingle atoms with with NCNC--AFMAFM

    Ge(111)-c(2x8) Raster scan

    Slow

    scan

    Fast scan

    Lateral Scan MethodLateral Scan Method

    CrystalCrystalAxisAxis

    Before Lateral Before Lateral ManipulationManipulation

    NonContactNonContact AFM ImageAFM Image[110]

    Zigzag WalkZigzag Walk of Adsorbed Atom of Adsorbed Atom by Lateral Manipulationby Lateral Manipulation

    NearContactNearContact AFM ImageAFM Image

  • 34

    (6)(6) Atom Inlay at RTAtom Inlay at RT

    Assembly Assembly of of NanostructureNanostructurefrom from Two Atom SpeciesTwo Atom Species

    Yoshiaki Sugimoto, Masayuki Abe, Shinji Hirayama, Noriaki Oyabu, Oscar Custance and Seizo Morita; “Atom inlays performed at room temperature using atomic force microscopy”, Nature Materials, vol. 4, issue 2 (2005) pp.156-159.

    N.Oyabu, Y.Sugimoto, M.Abe, O.Custance and S.Morita; “Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy”, Nanotechnology 16 (2005) pp.S112–S117.

    SnSn GeGe @RT@RT

    Yoshiaki Sugimoto, Óscar Custance, Masayuki Abe and Seizo Morita; “Site-Specific Force Spectroscopy and Atom Interchange Manipulation at Room Temperature”, e-Journal of Surface Science and Nanotechnology (e-JSSNT), Vol.4 (2006) pp.376-383.

  • 35

    Ge(111)-c(2x8)RTRTRaster Raster

    ScanScan

    Lateral Atom Interchange Manipulation Using Near-Contact AFM

    LateralLateral Atom Interchange Atom Interchange Manipulation Manipulation Using Using NearNear--Contact AFMContact AFM

    NearContactNearContact AFM ImageAFM ImageNonContactNonContact AFM ImageAFM Image

    ∆f=-7.2Hz

    SnSn①②

    ∆f=-7.0Hz

    ∆f=-7.0Hz ∆f=-7.0Hz

    (a) (b) (c)

    [110]

    NonContactNonContact AFM ImageAFM Image

    NonContactNonContact AFM ImageAFM Image

    CrystalCrystalAxisAxis

  • 36

    A B C

    D E F

    G H I

    Sequence of topographic NC-AFM images acquired during the process of rearranging single atoms for constructing the symbol associated with the Tin element by successive well-controlled lateral manipulations of tin adatoms embedded within the plane of the Ge(111)-c(2x8) surface using NC-AFM technique. (A) Initial surface template for performing the manipulation experiment. (B) to (H) several intermediate stages creating the letters and cleaning the surrounding region by manipulating adatoms one by one. A fixed substitutional Sn adatom during the whole construction process is indicated by an arrow as reference. (I) Letters of the symbol associated with the Tin element. Image size was 7.7x7.7 nm2. The images were performed with a cantilever oscillation amplitude value of 157 Å, using a Si cantilever of 29.5 N/m measured spring constant, at a frequency shift values of –4.7 Hz (A), –4.4 Hz (B and C), –4.2 Hz (D), –4.0 Hz (E, G, and H), –4.1 Hz (F) and –4.6 Hz (I), with respect to a free oscillation first mechanical resonant frequency value of 160.450 kHz.Within near 9 hours more than 120 single atom lateral manipulations.

    Process of Process of NanostructuringNanostructuring of Atom Inlayof Atom Inlay

    Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, and S. Morita, Nature Materials, vol. 4, issue 2 (2005), pp.156-159.Successive Imaging and Following Lateral Atom ManipulationSuccessive Imaging and Following Lateral Atom Manipulation@RT@RT

  • 37

    Atom Letters -Preceding and Present Achievements-Atom LettersAtom Letters --Preceding and Present AchievementsPreceding and Present Achievements--

    NiNi

    XeXeIBMIBMAdsorbedAdsorbed AtomAtom

    MoMoSS

    HCRLHCRLVacancyVacancy

    SnSn

    GeGeSnSn

    Embedded AtomEmbedded Atom

    Atom Inlay [Embedded Atom Letters] Atom Inlay [Embedded Atom Letters]

    Single ElementSingle Element: : XeXe AtomAtom

    STMSTM

    4 K4 K

    Single ElementSingle Element: S Vacancy: S Vacancy

    STMSTM

    RTRT

    1990

    1991

    Two ElementsTwo Elements: : SnSn and and GeGe AtomsAtoms

    AFMAFM

    RTRT

    2005 (Our ResultOur Result)

    IBM Almaden

    Hitachi Central Research Lab.

    Osaka University

    D.M. Eigler & E.K. Schweizer, Nature 344, 524 (1990)

    S.Hosoki, S.Hosaka and T.Hasegawa, Appl.Surf.Sci.60/61, 643 (1992).

    Y.Sugimoto et al., Nature Materials, vol. 4, issue 2, 156 (2005).

  • 38

    MovieMovie:: 9 hours with 120 times of lateral atom manipulation 9 hours with 120 times of lateral atom manipulation @ RT@ RTEmbedded Atom Letters Figured by NC-AFMEmbedded Atom Embedded Atom LettersLetters Figured by Figured by NCNC--AFMAFM

    Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, and S. Morita, Nature Materials, vol. 4, issue 2 (2005), pp.156-159.

    GeGeAtom

    EmbedEmbedded ded SnSnAtom

    AFMTip

    Tip induced directional Tip induced directional thermal diffusionthermal diffusion

    Tip Induced Directional Tip Induced Directional InterchangeInterchange of of SnSn and and GeGe

    adatomsadatoms

    GeGe AtomAtom

    SnSn AtomAtom

    How to use the How to use the vectorvector scan?scan?

  • 39

    ““Atom InlayAtom Inlay””: : Embedded Atom Embedded Atom LettersLetters Figured by Figured by NCNC--AFMAFM

    SnSn AtomAtom GeGe AtomAtom @RT

    Sn/Ge(111)-c(2x8)

  • 4020052000 20102015

    2003 Extraction and deposition of Si adatomon Si(111)7×7 by vertical atom manipulation: 78K

    2006 Vertical atom-interchange manipulation: RT

    Multi atom species

    Single atom species

    2012 Assembly of atom device using 3 atom species

    2006 Atom manipulation on insulating surface

    Mechanical Atom Manipulation by AFMMechanical Atom Manipulation by AFM

    2005 Lateral atom manipulation of single adsorbed atom on Ge(111)-c(2×8): 80K

    2005 Lateral atom-interchange manipulation of Sn and Geadatoms and “Atom Inlay” in Sn/Ge(111)-c(2×8): RT

    2006 Lateral atom manipulation in 3 atom species sample

    2015 Assembly of atom cluster using 3 atom species

    2020 Assembly of molecule using 2 atom species

    2008Atom manipulation in gas

    2009 Atom manipulation in liquid

    2010Assembly by atom manipulation in gas

    2011 Assembly by atom manipulation in liquid

    Achieved

    Achievable

    Indeterminate

    “Now” “5 years later” “10 years later” “Further”“5 years ago”

    YearYear

  • 41

    (1) Chemical Identification of atom speciesChemical Identification of atom species.(2) Mechanical Atom Manipulation at LT/RTMechanical Atom Manipulation at LT/RT.

    ⇒ It can cut and form covalent bond.

    ⇒ It can identify chemical species.

    Here, we demonstrated three topics:

    (3) Atom Inlay at RTAtom Inlay at RT.Assembly Assembly of of NanostructureNanostructure from from Two Atom SpeciesTwo Atom Species

    SiSiInIn

    SiSi InIn

    SiSiSiSiInIn

    Cantilever

    InIn

    Deflection

    Displacement sensor

    SelectiveSelectivemanipulation/

    assembly

    Evaporation of many atom species many atom species

    TipTip

    Chemical Chemical IdentificationIdentification

    Displacement sensor

    Cantilever Deflection

    Many atom speciesMany atom species Novel Novel nanomaterialnanomaterial/Novel /Novel nanodevicenanodevicewithwith Novel functionNovel function NanoNano--AlloysAlloys

    NanoNano--DevicesDevices