Juliusz B. Gajewskifluid.itcmp.pwr.wroc.pl/elektra/L 06.pdfR e s o n a n c e is generated o n l y...

97
Juliusz B. Gajewski Professor of Electrical Engineering 1

Transcript of Juliusz B. Gajewskifluid.itcmp.pwr.wroc.pl/elektra/L 06.pdfR e s o n a n c e is generated o n l y...

  • Juliusz B. GajewskiProfessor of Electrical Engineering

    1

  • 222

    FACULTY OF MECHANICAL AND ELECTRIC POWER ENGINEERING

    Process Engineering and Equipment, Electrostaticsand Tribology Research Group

    Wybrzeże S. Wyspiańskiego 2750-370 Wrocław, POLAND

    Building A4 „Stara kotłownia”, Room 359Tel.: +48 71 320 3201; Fax: +48 71 328 3218

    E-mail: [email protected]: www.itcmp.pwr.wroc.pl/elektra

  • 3

    Contents

    1. Terms. Fundamental Definitions and Units.2. Electrostatics. Electrostatic and Electric Fields.3. Electrodynamics. DC Current.4. Electromagnetism. Magnetic Field of DC Current.5. Electric Circuit Elements.6. Sinusoidal AC Voltage.7. Complex Frequency Concept.8. Electric Filters.9. Electrical Measurements.

    10. Three-Phase Circuits.11. Electrical Signals.12. Electric Switches.

  • 4

    Sinusoidal AC Voltage

    Nikola Tesla (1856–1943) George Westinghouse (1846–1914)

    …advocated alternating current while Thomas A. Edison (1847–1931) promoted direct current

  • 5

    Sinusoidal AC Voltage

    A l t e r n a t i n g v o l t a g e — Periodic voltage, the averagevalue of which over a period is zero.

    The time variations of periodic voltages can be waves of differentshapes: square, rectangular, triangular, sine, and so forth. Theirdistinctive feature is a cycle of changes repeated within the time Tcalled a period. Its reciprocal is the frequency of voltage f.

    21 T

    f

    f — voltage frequency [Hz]T — period [s] — angular velocity of rotation of an electromotive force

    (emf) vector Em [rad·s1] or else angular frequency [1/s]

  • 6

    Sinusoidal AC Voltage

    B

    l

    d

    AC Voltage Generation

  • 7

    Sinusoidal AC Voltage

    AC Voltage Generation

    Synchronous AC generator

  • 8

    Sinusoidal AC Voltage

    AC Voltage Generation

    e Bl m Bld

    B B m sin Bld tcos cos m

    e B l E

    E t

    m m

    m

    sin sin

    sin

    tEtzt

    tzt

    ze

    sinsindcosd

    dd

    mm

    m

    i eRER t I t m

    msin sin

    B = var B = const

  • 9

    Sinusoidal AC Voltage

    AC Voltage

    u u t U t ( ) sinm

    tUtuu sin)( mUm — amplitude (peak-to-peak, maximum absolute value) [V] — angular frequency [1/s] — phase angle [rad]

    In general

    u(t) e(t) and hence Um Em

  • 10

    Sinusoidal AC Voltage

    AC Voltage

    t, t

    u(t)

    T

    Umt 0

    Conclusion: Any variable sinusoidal physical quantitiescan be presented e x p l i c i t l y by means of threequantities: amplitude, frequency and phase angle.

    amplitude

    angular frequency

    phase angle

    period

  • 11

    AC Voltage

    iu tItitUtu sin)(sin)( mm

    iuiu tt

    Phase Shift

    u

    t

    u, i

    0

    u

    i

    i

    Sinusoidal AC Voltage

  • 12

    AC VoltageRotating Vector*) — Phasor Diagram

    t

    u, i

    0

    u

    i

    i

    u

    i

    u

    *) Also known as phasor.

    Sinusoidal AC Voltage

  • 13

    AC VoltageRotating Vector

    1m11 sin tUu

    2m22 sin tUu tUuuu sinm21

    Sinusoidal AC Voltage

  • 14

    AC VoltageRotating Vector

    t

    u

    0

    u1 u2

    u

    1

    2

    Sinusoidal AC Voltage

  • 15

    Sinusoidal AC Voltage

    AC VoltageRotating Vector

    U2

    U11

    2

    180° (2 1)

    U

    O A B

    C

    D

  • 16

    Sinusoidal AC Voltage

    AC VoltageRotating Vector

    12m2m12m22m1

    12m2m12m2

    2m1m

    cos2

    180cos2

    UUUU

    UUUUU

    2211

    2211

    coscossinsinarctg

    ABOACDBCarctg

    UUUU

    tUuuu sinm21

    law of cosines

  • 17

    Sinusoidal AC Voltage

    AC VoltageMean (Average) Value

    2/

    0/2 d

    T

    T tiQ

    2a/2TIQT

    m

    2/

    0mm

    2/

    0a 637.0

    2dsin2d2 IIttIT

    tiT

    ITT

  • 18

    Sinusoidal AC Voltage

    AC VoltageMean (Average) Value

    i(t) |i(t)|

    t0 T/2

    Ia

    T

    Imi(t)

  • 19

    Sinusoidal AC Voltage

    AC VoltageRMS Value*)

    *) Also known as root-mean-square value, effective value.

    tRiA dd 2

    TT

    T tiRtRiA0

    2

    0

    2 dd

    RTIAT 2

    mm

    0

    22m

    0

    2 707.02

    dsin1d1 IIttIT

    tiT

    ITT

  • 20

    Sinusoidal AC Voltage

    AC VoltageRMS Value

    U U E E m mi2 2

    i(t)

    i(t)

    t 0 T/2

    I

    T

    Im

    i2(t)

    2mI

  • 21

    Sinusoidal AC Voltage

    AC Power CircuitResistance R

    uip

    mmmm sinsin RIURiutIitUu

    tPtIUp 2m2mm sinsin

    mmm IUP

    T

    T tpA0

    d

    PTAT

    Ideal resistor R const, L C 0instantaneous power

    T

    ttPT

    P0

    2m dsin

    1

  • 22

    Sinusoidal AC Voltage

    AC Power CircuitResistance R

    IUIUIUPPP 2222mmmmm

    i

    u P R

    [P] W

    active (real) power

    u(t)

    i(t)t 0 T/2

    P UI

    T

    p(t)

  • 23

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    i ImsintIdeal inductor L const, R C 0

    i

    u L eL

    LL eueu 0

    2sincos

    dd

    mm tLItLI

    tiLeL

  • 24

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    2sin

    mtEe LL

    u e u eL L 0

    2sin

    2sincos mmm tUtLItLIu

    Conclusion: the phase of the current l a g s that of the voltage by π/2.

  • 25

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    I

    EL

    U LI

    u, i

    2

    i

    eLuL

    0 /2 t

  • 26

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    LIULIU 22mm

    LX L

    LL X

    UIIXU

    fLLX L 2[XL] [] [L] (1 s)1·1 H (1 s)1·(·s)

    inductive reactance

  • 27

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    tUIttIUuip 2sin2

    sinsinmm

    t

    u, i, p

    i p

    2

    uL

    0 /2

  • 28

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    In an ideal inductive element — an inductor (L = const, R C = 0)— there is periodical exchange of energy between a receiver and asource without a one-directional energy flow strictly related toirreversible conversion of the electrical energy into another form ofenergy, for instance the thermal energy, as in a resistor.As a result, electrical energy used by an inductor within a given timeconsisting of some periods equals z e r o (in joules), and electricpower, equal to the energy taken within a unit time (in watts), is alsoz e r o.In consequence of periodical exchange of electrical energy throughan inductor reactive current flows whose effective value (RMS) is Iand at its terminals is effective (RMS) voltage U.

  • 29

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    T

    T tpA0

    d

    00 TAPA TT

    4/

    0 0m

    2m

    4/

    04/

    m

    2dd

    ddd

    T IT

    T WLIiLiti

    tiLtuiA

  • 30

    Sinusoidal AC Voltage

    AC Power CircuitInductance L

    2,IUUIQ

    [Q] var

    QtAb

    [Ab] var·s

    reactive power

    reactive energy

  • 31

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    tuCi

    uCqtiq

    dd

    dddd

    Ideal capacitor C const, R L 0u Umsint

    i

    u C uC

    tCUt

    tCUtuCi cos

    d)d(sin

    dd

    mm

  • 32

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    2sin

    2sincos ttt

    2sin

    2sin mm tItCUi

    Conclusion: the phase of the voltage l a g s that of the current by π/2.

  • 33

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    I U C I CUm m2 2

    t

    u, i

    2

    i

    uC

    0 /2

    I/2

    U I/C

  • 34

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    CX C

    1

    CC

    IXUXUI

    fCCX C

    211

    [XC] [] 1 [C] 1 1 s:1 F 1s1F 1s:(1C:1V 1V:1A

    capacitive reactance

  • 35

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    tUIttIUuip 2sin2

    sinsinmm

    t

    u, i, p

    ip

    2

    uC

    0 /2

  • 36

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    In an ideal capacitive element — a capacitor (C = const, R L = 0)— there is periodical exchange of energy between a receiver and asource without a one-directional energy flow strictly related toirreversible conversion of the electrical energy into another form ofenergy, for instance the thermal energy, as in a resistor.As a result, electrical energy used by a capacitor within a given timeconsisting of some periods equals z e r o (in joules), and electricpower, equal to the energy taken within a unit time (in watts), is alsoz e r o.In consequence of periodical exchange of electrical energy througha capacitor reactive current flows whose effective value (RMS) is Iand at its terminals is effective (RMS) voltage U.

  • 37

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    T

    T tpA0

    d

    00 TAPA TT

    4/

    0 0e

    2m

    4/

    04/

    m

    2dd

    ddd

    T UT

    T WCUuCut

    tuuCtuiA

  • 38

    Sinusoidal AC Voltage

    AC Power CircuitCapacitance C

    tQA cb

    2CUQc

    2,IUUIQ

    [Q] var

    [Ab] var·s

    reactive power

    reactive energy

  • 39

    Sinusoidal AC Voltage

    ResonanceThe phenomenon of r e s o n a n c e occurs in various physicalsystems and comes out when a system is underwent the periodicalexcitation with frequency equal to the natural frequency of freevibration of a system — the r e s o n a n c e frequency.R e s o n a n c e is generated o n l y when the transient responseof a circuit (system) is of an o s c i l l a t o r y character whichrequires energy to be stored in two different ways: in an electric field as the capacitor is charged, and in a magnetic field as current flows through the inductor.Energy can be transferred from one to the other within the circuitand this can be oscillatory. Therefore the resonant circuit musthave the p a s s i v e elements that store energy of an electric field— capacitors, and of a magnetic field — inductors.

  • 40

    Sinusoidal AC Voltage

    ResonanceResonance of a circuit involving capacitors and inductors occursbecause the collapsing magnetic field of the inductor generates anelectric current in its windings that charges the capacitor, and thenthe discharging capacitor provides an electric current that buildsthe magnetic field in the inductor, and the process is repeatedcontinually. An analogy is a mechanical pendulum. In some cases,resonance occurs when the inductive reactance and the capacitivereactance of the circuit are of equal magnitude, causing electricalenergy to oscillate between the magnetic field of the inductor andthe electric field of the capacitor.

  • 41

    Sinusoidal AC Voltage

    ResonanceAccording to the way the elements L and C are connected with asource of energy there are two possible cases for resonance tooccur when electric circuits are as follows: s e r i e s ones — the v o l t a g e resonance; p a r a l l e l ones — the c u r r e n t resonance.

  • 42

    Sinusoidal AC Voltage

    Resonance

    i

    u L

    C

    RuR

    uL

    uC

    Series RLC Circuit

  • 43

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    t

    CLR tiCtiLRiuuuu

    0

    d1dd

    IC

    IXULIIXURIU CCLLR 1;;

    tIi sinm

    ?sinm tUu 2;

    2mm IIUU

  • 44

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    I U

    UL

    UC

    UL

    UC

    UR

    LCR UUUU

  • 45

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    IZXXRIC

    LRI

    IC

    LIRIUUUU

    CL

    CLR

    222

    2

    2222

    1

    1

  • 46

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    22222

    2 1 XRXXRC

    LRZ CL

    Z — impedance []XL — inductive reactance []XC — capacitive reactance []X — reactance []

  • 47

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    R

    Z X

    RC

    L

    RXX

    RX CL

    1

    tg

    impedance triangle

  • 48

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    RC

    L

    RXX

    RX CL

    1

    tg

    X 0 XL XC u i 0 — inductive character;

    X 0 XL XC u i 0 — capacitive character;

    X 0 XL XC u i 0 UL UC — resistivecharacter series (voltage) r e s o n a n c e.

  • 49

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    LCf

    21

    20

    0

    CL

    1

    I

    0

    UL UL

    UC

    UC

    U UR

  • 50

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    f

    XXC

    0

    XL

    f0

  • 51

    Sinusoidal AC Voltage

    ResonanceSeries RLC Circuit

    f f0 XL XC — inductive;

    f f0 XL XC — capacitive;

    f = f0 XL = XC — resistive s e r i e s r e s o n a n s ef

    I

    R2

    0

    R1

    f0

    U/R1

    R2 R1

    U/R2

  • 52

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    i

    u L C R

    iR iC iL

  • 53

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    tuCtu

    LRuiiii

    t

    CLR ddd1

    0

    CUXUI

    LU

    XUI

    RUI

    CC

    LLR

    ;;

    tUu sinm

    ?sinm tIi 2;

    2mm UUII

  • 54

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    U

    I

    IC

    IL

    IR

    IC

    IL

    LCR IIII

  • 55

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    UYBBGUL

    CR

    U

    LUCU

    RUIIII

    LC

    LCR

    2222

    2222

    11

  • 56

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    Y — admittance [S]BC — capacitive susceptance [S]BL — inductive susceptance [S]B — susceptance [S]

    222222 11 BGBBG

    LC

    RY LC

  • 57

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    G

    B Y

    admittance triangle

    G

    CL

    GL

    C

    GBB

    GB LC

    1

    tg

    1

    tg

  • 58

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    G

    CL

    GL

    C

    GBB

    GB LC

    1

    tg

    1

    tg

    B 0 BC BL u i 0 — capacitive character;

    B 0 BC BL u i 0 — inductive character;

    B 0 BC BL u i 0 UL UC — resistivecharacter parallel (current) r e s o n a n c e.

    Comparison of series and parallel circuitsX 0 B 0 X 0 B 0

  • 59

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    LCf

    21

    20

    0

    L C1

    U 0

    IC

    IL

    IR

    IC

    IL

  • 60

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    f

    BBL

    0

    BC

    f0

  • 61

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    f f0 BC BL — capacitive;

    f f0 BC BL — inductive;

    f = f0 BC = BL — resistive p a r a l l e l r e s o n a n c e

    f

    U

    G2

    0

    G1

    f0

    I/G1

    G2 G1

    I/G2

  • 62

    Sinusoidal AC Voltage

    ResonanceEnergy in Series RLC Circuit

    t

    wLit

    itiLuip m

    dd

    dd

    dd 2

    21

    Inductor: i Imsint

    tLItLILiw mm 2222

    212

    21 sinsin

    Capacitor: uC UCmsin(t /2 UCmcost

    tCUtCUCuw CCmCe 2222

    212

    21 coscos

  • 63

    Sinusoidal AC Voltage

    Resonance

    Sum of energies in resonanse

    constcossin 2022

    022 LItCUtLIww Cem

    CLI

    CIU

    CL

    CL C

    000 and

    1

    — characteristic impedance []

    Energy in Series RLC Circuit

  • 64

    Sinusoidal AC Voltage

    ResonanceParallel RLC Circuit

    Conclusion: At resonance an exchange of energy between themagnetic field of an inductor and the electric field of a capaci-tor occurs.

  • 65

    Sinusoidal AC Voltage

    Practical Applications of ResonanceAntenna

  • 66

    Sinusoidal AC Voltage

    Practical Applications of ResonanceRadio

  • 67

    Sinusoidal AC Voltage

    Practical Applications of ResonanceTelevision

  • 68

    Sinusoidal AC Voltage

    Practical Applications of ResonanceRadio Telephony

  • 69

    Sinusoidal AC Voltage

    Practical Applications of ResonanceMobile Phone = Cellphone

  • 70

    ResonanceParallel RLC circuit

    Complex Numbersin AC Network Analysis

  • 71

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    Re A

    j A

    A1

    Im A

    jA2

    j A complex number can be viewed as a p o i n tor a p o s i t i o n vector in a two-dimensionalCartesian coordinate system — the complexplane or Argand diagram.

  • 72

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersAlgebraic Form

    21 jAAA

    A1, A2 — projection of a vector on the real and imaginary axes

    1j — imaginary unit

  • 73

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersTrigonometric Form

    Acos = A1 — vector projection on the real axisAsin = A2 — vector projection on the imaginary axis

    sincos jAA

  • 74

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersPolar Form

    jAeA

    — modulus (absolute value) of a complex number

    — argument (phase, angle) of a complex number

    22

    21 AAA

    12arctg AA

  • 75

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersVoltage and Current Relationships

    in the Time and Frequency Domains

    ttiC

    tu

    ttiLtu

    tRitu

    d)(1)(

    d)(d)(

    )()(

    ttuCti

    ttuL

    ti

    tGutuR

    ti

    d)(d)(

    d)(1)(

    )()(1)(

    tjtjtjtj IItiUUtu e2e)(e2e)( mm

  • 76

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    ICjI

    CjU

    ILjUIRU

    1UCjI

    ULj

    I

    UGI

    1

    UYIIZU

    Voltage and Current Relationshipsin the Time and Frequency Domains

    Cj

    C

    jCj

    jCjC

    j

    221

    1since,1

  • 77

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    jZjXRC

    LjRZ e1

    — modulus of the complex impedance22 XRZ

    RXarctg

    cosRe ZRZ

    sinIm ZXZ

    — argument of the impedance (phase shift)

    — resistance of a circuit

    — reactance of a circuit

    Voltage and Current Relationshipsin the Time and Frequency Domains

  • 78

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    — modulus of the complex admittance22 BGY

    GBarctg

    cosRe YGY

    sinIm YBY

    — argument of the admittance (phase shift)

    — conductance of a circuit

    — susceptance of a circuit

    jYjBG

    LCjGY e1

    Voltage and Current Relationshipsin the Time and Frequency Domains

  • 79

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    1Y

    Z

    2222

    22

    1

    BGBX

    BGGR

    BGjBG

    jBGjXR

    2222

    22

    1

    XRXB

    XRRG

    XRjXR

    jXRjBG

    Voltage and Current Relationshipsin the Time and Frequency Domains

  • 80

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    iui

    uj

    j

    jj

    IU

    IU

    IUZZ

    e

    eee

    iuIU

    IUZ

    m

    m

    Voltage and Current Relationshipsin the Time and Frequency Domains

  • 81

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    iu jj IIUU ee mmmm

    iu jj IIUU ee

    )(mmm

    )(mmm

    eeee)(

    eeee)(ii

    uu

    tjjtjtj

    tjjtjtj

    IIIti

    UUUtu

    Voltage and Current Relationshipsin the Time and Frequency Domains

  • 82

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    IZU

    jXRC

    LjRZ

    1

    Cj

    C

    jCj

    jCjC

    j

    221

    1since,1

    Ohm’s Law

  • 83

    Sinusoidal AC Voltage

    AC Network Analysis — Complex Numbers

    21 ZZIUZ

    n

    i i

    n

    ii YY

    ZZ11

    11

    I

    U U1 U2

    Z1 Z2

    Ohm’s Law — Series Circuit

  • 84

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersOhm’s Law — Series Circuit

    n

    ii

    n

    ii XXjRRXjRZ

    12121

    1

    21

    21

    221

    221

    arctgRRXX

    XXRRZZ

  • 85

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersOhm’s Law — Parallel Circuit I

    U Z2 Z1 I1 I2

    21 YYUIY

    n

    i i

    n

    ii ZZ

    YY11

    11

  • 86

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersOhm’s Law — Parallel Circuit

    n

    ii

    n

    ii BBjGGBjGY

    12121

    1

    21

    21

    221

    221

    arctgGGBB

    BBGGYY

  • 87

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersOhm’s Law

    0jIeI

    jXR UejUUjXIRIIjXRIZU

    — modulus of voltage22 XR UUU

    RX UUarctg — argument of voltage (phase shift)

  • 88

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersOhm’s Law

    L (1/C) X 0, UX 0 u i 0 — inductivecharacter;

    L < (1/C) X < 0, UX < 0 u i < 0 — capacitivecharacter;

    L = (1/C) X = 0, UX = 0 u i = 0 — resistivecharacter v o l t a g e r e s o n a n c e.

  • 89

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersExample

    I

    U UL

    UC

    UR

    L1

    C1

    R1

    L2

    C2

    R2

    I1 I2

  • 90

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersExample

    2122221111 ;

    jbc

    jbc eIjIIIeIjIII

    I I I II

    I I I II

    c bb

    c

    c bb

    c

    1 12

    12

    11

    1

    2 22

    22

    22

    2

    arctg

    arctg

  • 91

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersExample

    jbbcc

    bcbc

    IeIIjIIjIIjIIIII

    2121

    221121

    cc

    bb

    bbcc

    IIII

    IIIII

    21

    21

    221

    221

    arctg

  • 92

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersAC Power

    ii

    u

    jj

    j

    IeIIeIUeU

    *

    jQPjUIUIeUIeIeUeIUS jjjj iuiu

    )sin(cos

    ijIeI *Remark: is the conjugate of the complex current

    sincos

    UIQUIP

  • 93

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersAC Power

    UIQPSS 22

    S — apparent power [VA]S — complex power (absolute value of complex power) [VA]P — active (real, true) power [W]Q — reactive power [var]

  • 94

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersAC Power — Power Triangle

    Re S

    j S

    P

    Im S jQ

  • 95

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersPower (Phase) Factor

    SP

    cos

    2

    U

    IC I2L I1L

    I1

    IC I2

    1

    IR

    constand

    R

    C

    I

    UCjI

  • 96

    Sinusoidal AC Voltage

    AC Network Analysis — Complex NumbersPower (Phase) Factor

    212121 tgtgtgtg UPIIIII RRLLC

    21 tgtg UPCU

    212 tgtg UPC

    0.1cos9.0

  • Thank you for your attention!

    © 2010 Juliusz B. Gajewski