Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression...

25
LNG physics Juan Manuel Martín Ordax

Transcript of Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression...

Page 1: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Juan Manuel Martín Ordax

Page 2: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

a) The vapor compression refrigeration cycleb) Simplified schematic of refrigeration cycle

Page 3: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

The reversed Carnot refrigeration cycle

Page 4: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Temperature‐entropy diagram of the reversed Carnot refrigeration cycle

Page 5: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Temperature‐entropy (T‐s) diagrams of Ericson and Stirling cycles

Page 6: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

The reversed Carnot cycle with finite heat transfer temperature difference

Page 7: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

The internal reversible cycle

The external reversible cycle

The entropy generation can be expressed as:

Page 8: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

a) The reversed Carnot cycle between heat source and heat sink with varying temperatures. b) The reversed Carnot cycle based on average equivalent temperatures.

Page 9: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Closed cycle cryogenic refrigerator

Page 10: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Ideal Linde‐Hampson liquefaction process

Page 11: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Ideal expander liquefaction process.

Page 12: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Different components in cryogenic systems

Page 13: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

The exergy efficiency of any refrigeration or cryogenic liquefaction system isdefined as follows:

For the processes or equipment (control volume) where there is no worktransfer involved, the concept of exergy efficiency can also be determined.Instead, the actual power supplied is replaced by exergy expenditure asfollows:

Page 14: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Utilization of input exergy in a nonideal Linde‐Hampson methane liquefierat heat exchanger effectiveness 90%, compressor efficiency 50%, P2 =25MPa, P1 = 0.1 MPa.

Page 15: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Utilization of input exergy in a nonideal Kapitza methane liquefier atcompressor efficiency 50%, P2 = 4MPa, and P1 = 0.1 MPa.

Page 16: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Propane‐precooling mixed refrigerant cycle for natural gas liquefaction

Page 17: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

(a) Exergy loss distribution in mixed refrigerant unit. (b) Exergy loss distribution in propane‐precooling unit.

Page 18: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Exergy loss distribution in the C3/MRC natural gas liquefaction system.

Page 19: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

N2‐CH4 expander natural gas liquefaction.

Page 20: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Effect of methane mole fraction in N2‐CH4 mixture on the total power consumption of the liquefaction process.

Page 21: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Exergy loss distribution in N2‐CH4 expander natural gas liquefaction cycle. (a) Single expander cycle with propane precolling unit, (b) Duel expander cycle.

Page 22: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Cascade refrigeration cycle operating with refrigerant mixtures. (C –Compressor; HX – Heat exchanger; SP – Separator; V – Valve; WC – Watercooler)

Page 23: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Temperature profiles in the cascade refrigeration cycle operating with mixed refrigerants.

Page 24: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

LNG physics

Exergy loss distribution in the cascade refrigeration cycle.

Page 25: Juan Manuel Martín Ordax · Juan Manuel Martín Ordax. LNG physics a) The vapor compression refrigeration cycle b) Simplified schematic of refrigeration cycle. LNG physics The reversed

THANK YOU FOR YOUR ATTENTION