JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY [email protected]...

48
JRI + JRI + LOAD TRANSFER DEVICE LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY [email protected] [email protected] www.farobel.com Concrete pavement Asphalt surface layer Cheaper and more Durable Pavements

Transcript of JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY [email protected]...

Page 1: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI +JRI +LOAD TRANSFER DEVICELOAD TRANSFER DEVICE

F A R O B E LCIVIL WORK TECHNOLOGY

[email protected] [email protected]

www.farobel.com

Concrete pavementAsphalt surface layer

Cheaper and more Durable Pavements

Page 2: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Highways & Roads

Introduction to JRI+ load transfer device

Application fields

Trains

Airport Esplanades Harbour Esplanades

Industrial pavements

Streets

…all concrete surfaces resting on the ground

Water courses

Industrial parkings

Page 3: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

This is a new system based on using the JRI+ load transfer devices in concrete pavements

There are two JRI load transfer devices, which work with analogous characteristics:

JRI+4JRI+

The final solution is a concrete pavement

Introduction to JRI+ load transfer device

Object

A proper asphalt layer on top of concrete slabs improves I.R.I and noise levels

Other Other layerlayer

ConcretConcrete e pavemepavementntOther Other

layerlayer

Concrete Concrete pavement with pavement with NEW SYSTEMNEW SYSTEM

Bituminous Bituminous layerlayer

Other Other layerlayer

Bituminous Bituminous layerlayer

Bituminous Bituminous layerlayer

Other Other layerlayer

Other Other layerlayer

New New SYSTEMSYSTEM

Page 4: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Three-dimensional polypropylene surfaces remain embedded in concrete

So, a weak section has been created in concrete

Shrinkage crack follows the tridimensional surface

Introduction to JRI+ load transfer device

Basic Concepts

Shrinkage cracks appear in the surface following the JRI+ shape, which is divided in alternating horizontal surfaces

Page 5: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Concrete slabs with alternate indentation have been created

Concrete teeth end with horizontal surfaces responsible of load transfer

Shrinkage cracks become watertight through a rubber profile at the top

Basic Concepts

Introduction to JRI+ load transfer device

Page 6: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Test-tube manufactured with JRI+ device inside it

The system leads the crack of concrete produced by shrinkage and loads.

It is a three-dimensional load transfer system

The horizontal surface can be noticed observing the crack shape

Introduction to JRI+ load transfer device

Basic Concepts

Page 7: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Above: JRI+4. Notice the alternate trays and rubber profile on top.The height of the JRI+4 device will be shorter than the thickness of the concrete slab

Images

JRI+4

Introduction to JRI+ load transfer device

Page 8: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

The picture shows the JRI+ device placed on the esplanade while pouring concrete The height of the JRI+ device is shorter than the thickness of the concrete slab

Images

Project with JRI+

Introduction to JRI+ load transfer device

Page 9: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Detail

JRI+

Introduction to JRI+ load transfer device

Page 10: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Both JRI+4 & JRI+ have a rubber profile at the top that makes the shrinkage cracks become watertight

The picture on the right side shows the rubber profile. The upper grey line is the top of the concrete slab.

All the rubber gum is embedded inside concrete, protected from the atmosphere and traffic

The zigzag surface at the bottom ensures a watertight crack

Images

Top Watertight rubber gum

Introduction to JRI+ load transfer device

Page 11: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

The JRI+ devices have alternate trays on either sides of the superficial crack line where the rubber is placed

Details

Plan view JRI+4

Introduction to JRI+ load transfer device

Plan view JRI+

Page 12: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+4 device with the rubber to watertight the crack on its top

Images

JRI+4

Introduction to JRI+ load transfer device

Page 13: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Once works were finished, the slabs were separated to observe the JRI+In this case the concrete slab thickness is the height of the JRI+Notice the horizontal trays in the concrete alternate teethIt is proved that the shrinkage crack follows the JRI+ surface

Images

JRI+

Introduction to JRI+ load transfer device

Page 14: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ load transfer devices are located on the esplanade and concrete is directly poured on them

Images

Project with JRI+

Introduction to JRI+ load transfer device

Page 15: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+4 load transfer devices are inserted automatically into the fresh concrete right after pouring it, using a screed and needle vibrators

Images JRI+4

Introduction to JRI+ load transfer device

Page 16: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Index

-Introduction to JRI+ load transfer device

-JRI+ Characteristics

-Tests & trials

-Projects

-Pavement designing

-Conclusions

J R I+ LOAD TRANSFER DEVICE

Page 17: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

JRI+ watertights the crack

+The load transfer capacity is almost 100% for the whole lifespan. No vertical relative displacement between adjacent slab edges

General

No fine material pumping and ground erosion

Layers with high elastic modulus are not required

No impact between layersLess stress

Page 18: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

As the rubber guarantees a watertight surface , sealing is not needed

General

JRI+ system leads the crack through the whole section

No cut required

The longitudinal compression due to thermal expansion is produced in the whole section so the axial load is centered. There is no buckling because of the compression exerted by the side slabs.

No maintenance required

Page 19: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Stresses on the horizontal surface are lower because there is a larger contact area:

The load transfer capacity doesn’t depend on base and sub-base layers

Comparison with dowel bars

Load carrying capacity is improved with base and/or sub-base layers to reduce contact stress in concrete

Dowel bar System requires a good base layer

JRI+ Characteristics

Page 20: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

The durability of the JRI+ System is higher than the dowel bars one because of the lower tensile values achieved in the concrete transfer in the contact surface by the former system. Eventually, dowel bars will break the concrete due to the high strength causing vertical displacement and lower Load Transfer Efficiency.

Dowel bars can be oxidized while JRI+ polypropylene devices cannot be oxidized.

With JRI+ System load is transferred by the concrete teeth instead of the bars.

The rubber profile embedded into the concrete guarantees a watertight system, so water doesn’t reach the esplanade. No seal maintenance required

With JRI+, the pavement doesn’t lose the flat surface in case of a breakage. Fast concrete crack repair, with no demolition required.

No base layer required

Comparison with dowel bars

JRI+ System: cheaper system with a faster execution

Page 21: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

• Concrete pavements with JRI+ joints don´t need base granulate layers.

• Thinner concrete slabs with JRI+ joints thanks to the lower critical stress. The critical stress is centered in the slabs, not on the edges

• The concrete pavements with JRI+ and same thickness are more durable.

• Shorter slab lengths. This fact also reduces stress.

• The road shoulders are built with the same system. This increase of slab width avoids critical stress on slab edges. It also allows future road widening.

• JRI+ is a transverse joint system.External longitudinal joints (pavement machine edges or construction joints) are built with modified JRI+ joints.Interior longitudinal joints use steel bars. Cutting and sealing with the JRI+ specific rubber

Structural design considerations

Page 22: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

JRI+: Polypropylene tray material

Elastic modulus of polypropylene: 500-1000 MPaElastic modulus of concrete: 25.000- 35.000 MPa

It is checked that polypropilene deformation is not an important factor to take into account when calculating deflection

JRI+ device thickness = 2 mm stress = 1MPa

deformation = 0,002 mm

Deflections are 100 times largerBecause of the different order of magnitude, the deformation of the polypropyleneis a factor that doesn’t have to be considered in deflection with JRI+ system

Polypropylene joint allows rotation in one direction (2 degrees maximum)Polypropylene joint allows free rotation in the other one direction

Page 23: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

1. Lower land occupation

2. Lower excavation

3. Lower transportation

4. Lower execution time

5. Higher durability due to lower stress

6. Lower energy consumption and lower CO2 emission

7. More convenient repair

8. Lower maintenance costs

Lower Environmental Impact

Page 24: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

1. The JRI+ system pavement is cheaper than current ones, either asphalt either concrete

2. Aggregate base layers are saved

3. Building roads with just one concrete layer shorten the execution times

4. Cut and sealing are saved

5. Depth drainage is decreased

6. Excavations are decreased

7. JRI+ joints are cheaper than bars

8. Maintenance costs are decreased

Cost reduction

Page 25: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

JRI+4

Placed after concrete pouring, behind the paving machine

Not anchored to the floor

Located from the top into fresh concrete through needle vibrators

Higher control of execution. Higher Load Transfer Efficiency

Rubber profile placed regarding the concrete top surface

No Spalling

JRI+

Placed before concrete pouring

Anchored to the floor, tight to esplanade reference

Holes avoid being pushed by concrete

Spalling when the rubber profile is below the concrete top surface

In pavement executed with asphalt wearing course, spalling doesn´t affect

Page 26: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

JRI+ Characteristics

Asphalt Pavement on concrete base

• I.R.I. and noise are improved with a proper asphalt layer on top of concrete slabs.

• Shrinkage cracks in concrete slab finally appear in asphalt layer. We have observed in our projects that these cracks don’t do any damage or spalling, even after 13 years of use.

• Crack edges don’t erode because there are no relative vertical movements between slabs.

• No sealing required. JRI+ joint is already sealed.

• Cracks are thin enough they cannot be noticed from the vehicles.

Page 27: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Index

-Introduction to JRI+ load transfer device

-JRI+ Characteristics

-Tests & trials

-Projects

-Pavement designing

-Conclusions

F A R O B E L CIVIL WORK TECHNOLOGY

Page 28: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Tests & trials

Concrete slab directly executed on top of base course

Falling Weight Deflectometer (FWD) tested in 12 JRI+ in both sides

The average Load Transfer Efficiency (LTE ) > 98 %

The LTE is the ratio between deflections of points which are at the same distance from the applied load (30 cm). The crack is located between both points.

Average deflections in the boundaries of the slabs = 0,164 mm.

FWD results M503 Highway Madrid, May 2006

Page 29: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Tests & trials

A 200 meters stretch was tested. After the results, the relevant gouvernmental agency (Autoridad del Transporte Metropolitano de Barcelona, ATM) decided to build 30 km of double track.

The FWD tested 31 joints JRI+ of concrete directly placed on top of the base course with California Bearing Ratio, CBR = 5 .

Results:

1. The load transfer average was 99.3%.2. The deflection average in the center and boundaries of the slabs was

1,13mm and 1,24mm respectively. 3. The difference between the deflection in the center and in the boundaries

of the slabs was lower than 10%.

FWD results Barcelona Streetcar 2002

Page 30: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Tests & trials

Break strength in boundaries is between 5 and 6 times service strength

When real scale test has been done in order to reach the slab break, it always breaks due to bending moments in the center of the slab. Teeth don’t break

System strength

Page 31: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Tests & trials

JRI+ projects have been carried out since 1998. One of these projects with the higher traffic intensity, more than 4000 trucks per day (Highway A2, Madrid-Barcelona, 1998). It is still in good conditions, no reparations have been required.

In the Barcelona Harbour dynamic tests were made with 45 Tonnes axes. There weren’t any damages with slabs of 16 cm of thickness.

Another example of how the JRI+ system is suitable for high traffic is road in Gijon Harbour built in 2006. Since then, the road has operated. The pavement is in good conditions, no repairs have been required.

Real projects

Page 32: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Index

-Introduction to JRI+ load transfer device

-JRI+ Characteristics

-Tests & trials

-Projects

-Pavement designing

-Conclusions

J R I+ LOAD TRANSFER DEVICE

Page 33: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

M503 Highway, Madrid, 2006

Page 34: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Olean Highway, New York, US, 2006

Page 35: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Tortosa Freeway, Spain, 2004

Page 36: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Airport esplanade, Barcelona, Spain, 2004

Page 37: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Barcelona Streetcar, Spain, 2003

Page 38: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Projects

 

PROJECTS IMPLEMENTED WITH JRI LOAD TRANSFER DEVICE

PROJECT TYPE ADMINISTRATION CONTRACTOR YEAR

JRI PROTOTYPE

Las Palmas Harbour esplanade AUTORIDAD PORTUARIA NECSO 1998

Castellbisbal Road GISA FREYSSINET 1998

Vigo Harbour esplanade AUTORIDAD PORTUARIA COVSA 1999

Barcelona Industrial esplanade ZAL CORSAN-CORVIAM 1999

Barcelona Harbour esplanade AUTORIDAD PORTUARIA SATO RUBAU 2000

Sant Carles de la Ràpita Harbour esplanadePUERTOS DE LA GENERALIDAD

LUBASA 2000

Ajalvir Road COMUNIDAD MADRID FERROVIAL 2000

JRI +

Cardedeu Esplanade ATLL BECSA 2001

Santiago de Compostela Esplanade RENFE ALDESA 2001

Barcelona Street AUTORIDAD PORTUARIAUTE DRAGADOS SATO

RUBAU2002 2003

El Goloso Acces road COMUNIDAD DE MADRID A.C.S. 2002

Barcelona Harbour esplanade AUTORIDAD PORTUARIA RUBAU 2003

Barcelona Industrial esplanade AUTORIDAD PORTUARIA RUBAU 2003

Vilanova y la Geltrú Harbour esplanadePUERTOS DE LA GENERALIDAD

SATO 2003

Barcelona Baix Llobregat

Streetcar ATM BarcelonaUTE COMSA-FCC-NECSO-ALSTOM

2001 2003

Bogotá (Colombia) Street HOLCIM HOLCIM 2003

Barcelona (Besòs) Streetcar ATM BarcelonaUTE COMSA-FCC-NECSO-ALSTOM

2003 2004

Page 39: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Projects

 

PROJECTS IMPLEMENTED WITH JRI LOAD TRANSFER DEVICE

PROJECT TYPE ADMINISTRATION CONTRACTOR YEAR

JRI +

Roses (Girona) Coast EsplanadePUERTOS DE LA GENERALIDAD

F.C.C. 2004

St.Carles de la Ràpita Harbour esplanadePUERTOS DE LA GENERALIDAD

CISTERÓ 2004

Barcelona Trucks parking slotAUTORIDAD PORTUARIA

RUBAU 2004

Barcelona Esplanade Z.A.L. CORSAN-CORVIAM 2004

Valls (Tarragona) Road GISA ROMERO POLO 2004

Tortosa (Tarragona) Freeway GISA RUBAU 2004 2005

Bogatell ( Barcelona) Esplanade Barcelona City Hall UTE ESTRUCTURES 2004

Victoria (Australia) Industrial esplanade POLYROAD S.A. POLYROAD S.A. 2004

Valls (Tarragona) Esplanade GISA VICSAN-TEYCO 2004

Aeropuerto de Barcelona

Esplanade AENA RUBAU 2004 2005

Barcelona Esplanade ZAL BENJUMEA 2005

Badalona Harbour esplanadeCity Hall, Autoridad

Portuaria,FCC Construcciones 2005

Barcelona Esplanade ZAL CORSAN-CORVIAM 2005

Mahón (Menorca) Road CONSEJO INSULARUTE ACSA - TOLO

PONS2005

St. Feliu de Llobregat (Barcelona)

Streetcar ATM BarcelonaUTE COMSA-FCC-NECSO-ALSTOM

2005

Barcelona Street Puerto de Barcelona MEPSA 2005

Page 40: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Projects

 

PROJECTS IMPLEMENTED WITH JRI LOAD TRANSFER DEVICE

PROJECT TYPE ADMINISTRATION CONTRACTOR YEAR

JRI +

Bellvei (Tarragona) Esplanade GISA RUBAU 2005

Parla (Madrid) Streetcar City Hall FCC-ACCIONA 2006

Gijón Road Autoridad Portuaria FCC 2006

Olean (New York) Highway New York State Surianello 2006

Madrid (M503) Highway Comunidad de Madrid DRAGADOS 2006

Barcelona Street Puerto de Barcelona COPISA 2006

Sagunto (Valencia) Harbour esplanade Puerto de Sagunto ECISA 2006

Mollerusa (Lleida) Esplanade GISAACSA-SORIGUÉ

2006

Sevilla Streetcar City HallUTE METRO CENTRO

2006

Mexicali (México) RoadSecretaría Transporte de

MéxicoSecretaría Transporte de México

2006

St.Feliu Buixalleu (Girona)

Race Circuit Autodromo S,L.Autodromo, S.L.

2007

Murcia Streetcar City HallSTREETCAR MURCIA UTE

2007

Barcelona Streetcar (Tramo) ATM Barcelona FCC- Construcciones 2008

Argelaguer (Girona) Urban Road Ministerio de Fomento Serviá-Cantó 2008

Page 41: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Projects

 

PROJECTS IMPLEMENTED WITH JRI LOAD TRANSFER DEVICE

PROJECT TYPE ADMINISTRATION CONTRACTOR YEAR

JRI + 4

Tàrrega (Lleida) Urban Road City Hall Dragados 2009

Castellfollit de la Roca

Urban Road Ministerio de Fomento MOVITERRA (FCC) 2009

Llobregat sewage treatment plant

Industrial pool GISA U.T.E. Rio Llobregat 2009

JRI +

Estepona (Málaga) Bicycle Lane City Hall U.T.E. BECSA-ITUVAL 2009

Polígono Segre (Lleida)

Esplanade GISA Cisteró-Cobra 2009

Castellar del Vallès Esplanade GISA ROGASA 2009

JRI + 4

Alpicat (Lleida) Freeway Ministerio de Fomento FCC 2009

Tortosa Land development City Hall UTE VICSAN-Hidrocanal

2010

Zaragoza Streetcar (stretch) City Hall FCC 2010

Málaga Streetcar-Subway Junta Andalucía- Ayunt.

UTE Metro- Málaga 2010-….

Mallorca Streetcar- Train Consejo insular de

Baleares Dragados, Ferrovial,

FCC2010-….

Tárrega Parking slot City Hall Dragados 2010

Alcoletge (Lérida) Esplanade - Industrial pool Private Innoferti 2010

Page 42: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Projects

Catalonia (Spain) Government projects for truck parking slots are designedwith JRI+ system.

JRI+4 system is approved and legalized in Romania

Legal issues

Page 43: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Index

-Introduction to JRI+ load transfer device

-JRI+ Characteristics

-Tests & trials

-Projects

-Pavement designing

-Conclusions

J R I+ LOAD TRANSFER DEVICE

Page 44: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Pavement design

The pavement is design considering:

•Traffic intensity and loads•Soil characteristics•Concrete characteristics•Thermal conditions•Life span (fatigue)

The JRI+ load transfer device transfers perfectly the shear stress

Every project should have its specific design. Other Other layerlayer

ConcretConcrete e pavemepavementntOther Other

layerlayer

Concrete Concrete pavement with pavement with NEW SYSTEMNEW SYSTEM

Bituminous Bituminous layerlayer

Other Other layerlayer

Bituminous Bituminous layerlayer

Bituminous Bituminous layerlayer

Other Other layerlayer

Other Other layerlayer

New New SYSTEMSYSTEM

Page 45: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Pavement design

The optimal solution would be:

• Concrete slabs on top of the esplanade using JRI+4, placed behind the paving machine into the fresh concrete

•Asphalt layer on top to improve the noise level

Page 46: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Pavement design

General design:

• Natural esplanade levelled and compacted.•CBR>3 (K>3Kg/cm3), obeying the organic contain and swelling•4,5MPa flexural strengthen concrete at 28 days•Slab dimensions: 1,32*1,32m2. Ground reaction in 3,96*3,96m2

•Thickness:•16 cm when over 4000 trucks per day &lane•16 cm when 2000-4000 trucks per day &lane•15 cm when 800-2000 trucks per day &lane•14 cm when 200-800 trucks per day &lane•13 cm when 100-200 trucks per day &lane•13 cm when 50-100 trucks per day &lane

(if using bigger slab dimensions and low strength concrete then the slab thickness should be increased)

3cm asphalt layer with modified bitumen

Page 47: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Conclusions

High Load Transfer Efficiency during the whole lifes pan

Watertight cracks

Lower execution and maintenance costs

Faster execution

Lower environmental impact

Higher durability

J R I+LOAD TRANSFER DEVICE

J R I+ LOAD TRANSFER DEVICE

Page 48: JRI + LOAD TRANSFER DEVICE F A R O B E L CIVIL WORK TECHNOLOGY jvazquez@farobel.com amlancuentra@farobel.com  Concrete pavement Asphalt.

Thank you for your attention

We are at your disposal to design the specific JRI+ solution for your needs

F A R O B E LCIVIL WORK TECHNOLOGY

[email protected] [email protected]

www.farobel.com