Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2...

16
Journal Name RSCPublishing This journal is © The Royal Society of Chemistry 2013 J. Name ., 2013, 00 , 1-3 | 1 Dinuclear uranium complexation and manipulation using robust tetraaryloxides Jordann A. L. Wells, a Megan L. Seymour, a Markéta Suvova, a and Polly L. Arnold a* Contents Compound numbering scheme ............................................................................................................................. 1 Additional Experimental details ............................................................................................................................... 1 K 4 L M ....................................................................................................................................................................... 1 Selected NMR spectra ............................................................................................................................................... 2 Selected cyclic voltammograms ................................................................................................................................ 9 Crystallographic details .......................................................................................................................................... 11 Selected solid-state structure drawings .................................................................................................................. 15 Compound numbering scheme HO HO R 1 R 1 R 2 R 2 OH OH R 1 R 1 R 2 R 2 H 4 L P * R 1 =R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R 2 OH OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu, R 2 = Me Figure S0 The substituted tetraphenols H 4 L P , H 4 L M and the aryl-substituted H 4 L P *, and their cartoon representations. Additional Experimental details K 4 L M A Schlenk flask was charged with H 4 L M (2.00 g, 2.65 mmol) and KN” (2.11 g, 10.60 mmol) and equipped with a stirrer bar. THF was added and the resulting yellow solution was stirred for 16 hours at room temperature. Hexane was subsequently added to precipitate the product as a colourless powder which was isolated by filtration and dried under vacuum. 1 H NMR (d 8 -THF, 329 K, 500 MHz) δ 7.45-6.92 (Aryloxide H, m, 4H), 6.78-6.59 (Aromatic H and Aryloxide H, m, 8H) 5.80 (Trityl H, s, 2H), 2.03 (MeH, s, 12H), 1.32 (tBu H, s, 36H). Mass Spectrometry: (MALDI) m/z 907.601 [K 4 L M ]. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Transcript of Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2...

Page 1: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name RSCPublishing

This journal is © The Royal Society of Chemistry 2013 J. Name., 2013, 00, 1-3 | 1

Dinuclear uranium complexation and manipulation using robust tetraaryloxides

Jordann A. L. Wells,a Megan L. Seymour,a Markéta Suvova,a and Polly L. Arnolda*

ContentsCompound numbering scheme .............................................................................................................................1

Additional Experimental details ...............................................................................................................................1

K4LM .......................................................................................................................................................................1

Selected NMR spectra ...............................................................................................................................................2

Selected cyclic voltammograms ................................................................................................................................9

Crystallographic details ..........................................................................................................................................11

Selected solid-state structure drawings ..................................................................................................................15

Compound numbering scheme

HOHO

R1R1

R2

R2OHOH

R1R1

R2

R2

H4LP* R1 = R2 = Me2Ph

HOHO

OH

OH

H4LR

HOHO

R1R1

R2

R2OHOH

R1R1

R2

R2

HOHO

OH

OH

H4Lp R1 = tBu, R2 = Me H4LM R1 = tBu, R2 = Me

Figure S0 The substituted tetraphenols H4LP, H4LM and the aryl-substituted H4LP*, and their cartoon representations.

Additional Experimental detailsK4LM

A Schlenk flask was charged with H4LM (2.00 g, 2.65 mmol) and KN” (2.11 g, 10.60 mmol) and equipped with a stirrer bar. THF was added and the resulting yellow solution was stirred for 16 hours at room temperature. Hexane was subsequently added to precipitate the product as a colourless powder which was isolated by filtration and dried under vacuum.

1H NMR (d8-THF, 329 K, 500 MHz) δ 7.45-6.92 (Aryloxide H, m, 4H), 6.78-6.59 (Aromatic H and Aryloxide H, m, 8H) 5.80 (Trityl H, s, 2H), 2.03 (MeH, s, 12H), 1.32 (tBu H, s, 36H).Mass Spectrometry: (MALDI) m/z 907.601 [K4LM].

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2016

Page 2: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Selected NMR spectra

1.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.4f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

36.0

0

12.8

1

4.03

2.03

3.89

3.84

3.92

A (d)7.12

B (s)7.06

C (d)6.72

D (s)5.56

E (s)4.95

F (s)2.06

G (s)1.44

1.44

2.06

4.95

5.56

6.71

6.72

7.06

7.12

7.12

Figure S1 1H NMR spectrum of H4LP (C6D6, 500 MHz).

1520253035404550556065707580859095100105110115120125130135140145150155f1 (ppm)

0

50

100

150

200

250

300

350

400

A (s)20.70

B (s)29.63

C (s)34.55

D (s)47.21

E (s)151.18

F (s)140.04

G (s)137.63

H (s)130.10

I (s)129.68

J (s)128.10

1.00

1.36

0.29

-0.0

6

0.37

0.31

0.41

0.26

0.22

0.45

20.7

0

29.6

3

34.5

5

47.2

1

128.

1012

9.68

130.

10

137.

63

140.

04

151.

18

Figure S2 13C NMR spectrum of H4LP (C6D6, 126 MHz).

Page 3: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name COMMUNICATION

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 3

4.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

0

50

100

150

200

250

300

350

400

450

500

A (s)12.68

B (s)10.39

C (s)8.89

D (s)6.63

E (s)4.25

3.73

11.6

4

35.8

5

2.05

4.00

3.73

3.94

4.25

6.63

8.89

10.3

9

12.6

8

Figure S3 1H NMR spectrum of 1P (U2I4LP) (d8-THF, 329K, 500 MHz).

-25-20-15-10-50510152025303540f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

A (s)35.34

B (s)19.97

C (s)5.51

D (s)4.40

E (s)-18.89

F (s)-9.62

39.9

2

36.2

1

12.0

8

4.10

4.01

4.00

-18.

89

-9.6

2

4.31

4.40

5.51

19.9

7

35.3

4

Figure S4 1H NMR spectrum of 2P (U2N"4LP) (C6D6, 500 MHz).

Page 4: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

1.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.4f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

A (d)1.47

B (d)1.65

C (s)4.48

D (s)5.98

E (s)6.89

F (m)6.94

G (t)6.99

H (d)7.03

I (t)7.07

J (d)7.12

K (t)7.20

L (m)7.30

11.7

4

11.1

1

1.36

0.88

1.54

2.23

3.98

2.07

1.99

3.97

3.77

6.37

Figure S5 1H NMR spectrum of H4LP* (C6D6, 500 MHz).

2628303234363840424446120122124126130132134136138140142144146148150152154156f1 (ppm)

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

A (s)151.64

B (s)150.19

C (s)149.36

D (s)142.01

E (s)140.77

F (s)135.35

G (s)131.61

H (s)123.98

I (s)125.87

J (s)126.12

K (s)126.60

L (s)127.12

M (s)127.40

N (s)129.08

O (s)129.46

P (s)44.55

Q (s)42.98

R (s)42.32

S (s)31.43

T (s)30.06

U (s)31.30

V (s)29.80

2.19

2.06

3.73

1.93

2.19

2.57

1.12

1.70

2.15

3.85

1.55

50.6

31.

16

3.81

1.68

1.00

1.12

0.41

1.04

0.98

1.29

1.00

29.8

030

.06

31.1

931

.30

31.4

3

42.3

242

.98

44.5

5

123.

9812

5.87

126.

1212

6.60

127.

0712

7.12

127.

40

129.

0812

9.46

131.

61

135.

35

140.

77

142.

01

149.

3615

0.19

151.

64

Figure S6 13C NMR spectrum of H4LP* (C6D6, 126 MHz).

Page 5: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name COMMUNICATION

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 5

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.5f1 (ppm)

0

50

100

150

200

250

300

350

A (d)13.12

B (d)11.89

C (s)9.05

D (t)7.56

E (d)7.16

F (t)7.05

G (t)6.74

H (t)6.65

I (s)6.37

J (s)1.59

K (s)1.26

12.0

0

12.6

9

10.9

48.

194.

104.

486.

90

11.5

6

4.08

8.08

3.83

1.24

1.26

1.59

1.61

1.63

6.37

6.63

6.65

6.67

6.69

6.72

6.74

6.75

7.04

7.05

7.07

7.10

7.15

7.17

7.20

7.54

7.56

7.58

9.05

11.8

811

.90

13.1

213

.12

Figure S7 1H NMR spectrum of 1P* (U2I4LP*) (C6D6, 500 MHz).

-20-18-16-14-12-10-8-6-4-2024681012141618202224262830f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

A (s)29.06

B (s)19.92

C (d)8.32

E (s)7.29

G (dd)6.96

H (t)6.53

I (s)3.88

J (s)3.37

K (d)3.17

L (d)2.22

M (d)1.73

P (s)-2.58

Q (s)-5.22

R (s)-7.94

S (s)-18.19

33.6

1

11.0

9

11.6

2

5.03

3.17

7.36

12.0

810

.48

10.2

4

3.20

6.79

4.12

6.60

3.59

4.00

-18.

19

-7.9

4-7

.82

-5.3

2-5

.22

-5.0

6

-2.7

2-2

.58

-2.4

8

1.72

1.73

2.21

2.23

3.17

3.18

3.19

3.20

3.37

3.88

6.51

6.53

6.54

6.94

6.95

6.96

6.97

7.29

8.31

8.32

19.9

2

29.0

6

Figure S8 1H NMR spectrum of 2P* (U2N’’4LP*) (C6D6, 345 K, 500 MHz).

Page 6: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

1.52.02.53.03.54.04.55.05.56.06.57.0f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A (s)7.09

C (d)6.68

D (s)5.47

E (s)4.90

F (s)2.05

B (m)7.00

G (s)1.43

38.5

9

12.0

6

4.02

2.09

4.24

3.78

3.75

Figure S9 1H NMR spectrum of H4LM (C6D6, 500 MHz).

102030405060708090100110120130140150160f1 (ppm)

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

320000

340000

A (s)151.12

B (s)141.79

C (s)137.59

D (s)130.68

E (s)129.66

F (s)128.43

G (s)127.96

H (s)47.56

I (s)34.53

J (s)31.58

K (s)29.62

L (s)22.66

M (s)20.73

N (s)13.95

0.28

1.86

0.30

6.25

0.30

1.62

1.01

27.0

70.

991.

330.

45

0.68

0.52

1.00

13.9

5

20.7

322

.66

29.6

231

.58

34.5

3

47.5

6

127.

9612

8.43

129.

6613

0.68

137.

59

141.

79

151.

12

Figure S10 13C NMR spectrum of H4LM (C6D6, 126 MHz).

Page 7: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name COMMUNICATION

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 7

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.0f1 (ppm)

-200

-100

0

100

200

300

400

500

600

700

800

A (s)13.94

B (s)7.53

C (s)7.18

D (s)6.92

E (s)5.93

F (s)5.60

G (s)2.20

H (s)0.90

0.75

2.33

0.81

11.47

1.48

36.00

3.23

3.92

Figure S11 1H NMR spectrum of 1M (U2I4LM) (C6D6, 500 MHz, 329 K).

-20-15-10-50510152025303540f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

I (s)-18.51

H (s)-9.76

G (s)-3.03

F (s)1.50

D (s)16.71

E (s)3.90

B (s)31.62

C (s)27.73

A (s)41.19

36.0

0

36.5

2

1.75

12.1

4

4.06

4.09

1.00

0.98

1.91

Figure S12 1H NMR spectrum of 2M (U2N"4LM) (C6D6, 500 MHz).

Page 8: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

8 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

-20-18-16-14-12-10-8-6-4-202468101214161820222426f1 (ppm)

0

5

10

15

20

25

30

36.5

1

36.0

0

1.81

14.9

3

3.40

3.46

1.21

1.23

2.21

A (d)22.22

B (d)17.50

C (s)14.62

D (d)11.85

E (s)-13.33

F (s)-7.94

G (t)0.89

H (s)2.11

I (s)7.50

-13.

33

-9.2

9-8

.91

-7.9

4-7

.51

-7.3

9

0.75

0.82

0.84

0.85

0.86

0.87

0.89

0.90

0.95

1.99

2.11

2.16

2.20

2.21

7.50

11.3

8

12.3

1

14.6

2

17.2

917

.71

21.9

822

.45

Figure S13 1H NMR spectrum of 3M (U2N"2LM) (C6D6, 500 MHz).

-250-200-150-100-50050f1 (ppm)

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Figure S14 29Si INEPT NMR spectrum of 3M (U2N"2LM) (C6D6, 99.4 MHz).

Page 9: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name COMMUNICATION

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 9

Selected cyclic voltammogramsCyclic voltammograms were recorded for quiescent THF solutions using 0.1 M [nBu4N][BPh4] as the supporting electrolyte at variable

scan rates between 100 – 500 mV s-1. A glassy carbon working electrode, platinum gauze counter electrode and a silver-wire quasi-reference electrode were used throughout. The voltammograms were first calibrated against decamethylcobaltocene (CoCp*2), previously dissolved in a small volume of toluene, and measured under the same conditions. They were then calibrated against the ferrocenium/ferrocene (Fc+/Fc = 0V) couple by comparison of the E1/2 potentials of [CoCp*2]+ /CoCp* 2 and Fc+/Fc, measured in THF against the saturated calomel electrode (SCE) taken from a different study.1 The absence of visible redox processes in the negative region of spectra of K4LM suggests that the reductions seen in the cyclic voltammograms of complexes 1R, and 2R are due to the redox active metal and not any ligand based reduction. Figure S9 shows a scan of the reductive region only at 100 mVs-1, overlayed on the voltammogram of 1M in the same region.

-3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

-30

-25

-20

-15

-10

-5

0

5

10

K4LM1M

E/V

I/μA

Figure S15 Cyclic voltammogram of negative region of K4LM (blue) and 1M (orange) in THF/[nBu4N][BPh4] 100 mVs-1 scan rate.

-3 -2.5 -2 -1.5 -1 -0.5

-50

-40

-30

-20

-10

0

10

20

100 mVs-1

200 mVs-1

300 mVs-1

400 mVs-1

500 mVs-1

E/V

I/μA

Figure S16 Cyclic voltammogram of 1M (U2I4LM) in THF\[nBu4N][BPh4]. The small oxidation at -1.7V varies in size during repeated experiments and is not associated with the complex. Control experiments with supporting electrolyte and blank runs show no evidence of compound decomposition.

Page 10: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

10 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-20

-15

-10

-5

0

5

10

15

100 mvs200 mvs300 mvs400 mvs500 mvs

E/V

I/μA

Figure S17 Cyclic voltammogram of of 2M (U2N"4LM) in THF\[nBu4N][BPh4]. The small oxidation at -1.5V varies in size during repeated experiments and is not associated with the complex. Control experiments with supporting electrolyte and blank runs show no evidence of compound decomposition.

Page 11: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name COMMUNICATION

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 11

Crystallographic detailsX-ray diffraction data for all complexes were recorded on an Excalibur Eos diffractometer at 170(2) K using Mo Kα radiation. All

structures were solved using SHELXT 2 and least-square refined using SHELXL3 in Olex2.4 H atoms were treated by constrained refinement. No restraints were applied during the refinement of 1P*. Disordered THF solvent in the unit cell of 1M and 2P* was heavily restrained. The structure of 1M also contained a solvent accessible void. The PLATON SQUEEZE5 function was used to remove residual electron density of 52e− from the void, corresponding to approximately one and a third of a molecule of lattice THF per unit cell.

Figure S18 Solid-state structure of 2P*. For clarity, all methyl groups, hydrogen atoms, and lattice solvent molecules are omitted (displacement ellipsoids are drawn at 50% probability, the remaining atoms and bonds shown as capped stick). Selected bond lengths (Å) and angles (°) for 2P*: U1-O1 2.1276(19), U1-O2 2.1567(19), U1-N1 2.268(2), U1-N2 2.266(2), U1-O1-C11 148.25(17), U1-O2-C21 153.19(17).

The four coordinate uranium centres in complexes 2P, 2P* and 2M all adopt distorted tetrahedral geometry. The complexes have comparable average U-O bond distances of 2.1198(13), 2.1422(19) and 2.122(4) Å respectively, which is also true of the U-N bond distances of 2.2530(16), 2.267(2) and 2.252(6) Å respectively. The slight elongation of U-O and U-N bonds in 2P* compared to 2P and 2M can be rationalised by the increased steric bulk around the metal centre in the larger tetra-aryloxide framework interfering with the sterically demanding silylamide ligands. Similarly to the iodide complexes, the U-O-Cipso bond angles are closer to the homoleptic uranium(IV) aryloxide, as opposed to the I2U(OAr)2 analogues, with average angles of 149.47(12)°, 150.72(17)° and 148.5(4)° for 2P, 2P* and 2M respectively. The U-O bond distances are comparable to those in U(ODtbp)4, as well as the pseudo-tetrahedral mixed aryloxo-amido uranium(IV) complexes Et2NU(ODtbp)3 and N"3U(ODtbp) with average U-O distances of 2.143(4) and 2.145(8) Å respectively. The U-N bond distances of 2R differ from the U-N distance of 2.161(5) Å exhibited by Et2NU(ODtbp)3 slightly, they agree well with the U-N bond distances exhibited by N"3U(ODtbp) and the uranium(V) complex N"3U(Onapth)2 (napth = C10H7) of 2.284(10) and 2.222(6) Å respectively.

Figure S19 Solid-state structure of 1P(dioxane). For clarity, all methyl groups, hydrogen atoms, and lattice solvent molecules are omitted (displacement ellipsoids are drawn at 50% probability, the remaining atoms and bonds shown as capped stick). Selected bond lengths (Å) and angles (°) for 1P: U1-O1 2.087(5), U1-O2 2.088(5), U1-I1 3.0367(7), U1-I2 3.0108(7), U1-O1-C11 157.0(5), U1-O2-C21 155.8(5).

The uranium centres in 1P(dioxane) are in octahedral geometry, the equatorial positions are occupied by the aryloxide and iodide ligands, and the axial positions are occupied by coordinated dioxane. The exo-axial dioxanes act as a bridging ligand, linking two uranium centres intermolecularly, leading to the formation of a one-dimensional polymer in the solid state. The U-O bond lengths in 1P(dioxane) are comparable to those of 1P at 2.088(5) and 2.1120(13) Å respectively. The U-I bond distances are slightly shorter than those of 1P, 3.0238(7) and 3.1032(8) Å respectively. This may be due to the lower coordination number in 1P(dioxane): fewer coordinated solvent molecules shield the uranium centre less, allowing a closer interaction with the iodide ligands. The U-O-C angles in 1P(dioxane) and 1P are identical with values of 156.4(5)° and 157.1(4)°respectively.

Page 12: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Table S1. Crystallographic data summary for complexes 1M and 1P.

Complex [{UI2(THF)2}2LM] (1M) [{UI2(THF)3}2LP] (1P) [{UI2(diox)2}2LP] (1P)

Local code p16001-tri_sq p15141amono p16021d

Chemical formula C68H94I4O8U2·3(C4H8O) C38H55I2O5U·C4H8O C32H43I2O5U·5.5(C6H6)

Mr 2239.40 1155.75 1429.08

Crystal system, space group Triclinic, P-1 Monoclinic, P21/n Triclinic, P-1

Temperature (K) 170 170 170

a, b, c (Å) 15.8678 (6), 16.2835 (7), 21.4232 (7)

13.1203 (2), 15.46388 (16), 22.0950 (3)

13.8429 (3), 15.6696 (4), 15.8357 (5)

, , (°) 68.627 (4), 71.761 (3), 62.142 (4) 94.6475 (13) 69.881 (2), 89.136 (2),

76.2616 (19)

V (Å3) 4488.4 (3) 4468.12 (10) 3124.73 (14)

Z 2 4 2

Radiation type Mo Ka Mo Ka Mo Ka

(mm-1) 5.03 5.06 3.63

Crystal size (mm) 0.29 × 0.11 × 0.02 0.29 × 0.15 × 0.13 0.51 × 0.32 × 0.13

Absorption correction

Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Multi-scan CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Analytical CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Tmin, Tmax 0.850, 1.000 0.577, 1.000 0.991, 0.997

No. of measured, independent and observed [I > 2s(I)] reflections

77490, 14234, 8754 72103, 9141, 7365 58171, 14313, 10213

Rint 0.135 0.056 0.079

(sin /)max (Å-1) 0.575 0.625 0.649

Page 13: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name COMMUNICATION

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 13

R[F2 > 2(F2)], wR(F2), S 0.088, 0.211, 1.03 0.053, 0.125, 1.13 0.067, 0.153, 1.03

No. of reflections 14234 9141 14313

No. of parameters 824 468 528

No. of restraints 210 91 2

max, min (e Å-3) 2.51, -1.31 2.00, -1.81 1.71, -1.04

CCDC number 1478886 1478887 1478888Table S2. Crystallographic data summary for complexes 1P*, 2M and 2P.

Complex [{UI2(THF)2}2LP*] (1P*) [{UN”2}2LM] (2M) [{UN”2}2LP] (2P)

Local code p15180_tri p16033_tri077 p15043

Chemical formula C60H67I2O4U·2(C4H8O) C76H134N4O4Si8U2·C3H7C38H67N2O2Si4U·1.89(C3.17H3.17)

Mr 1488.17 1911.73 1012.43

Crystal system, space group Triclinic, P-1 Triclinic, P-1 Monoclinic, P21/n

Temperature (K) 170 170 170

a, b, c (Å) 14.4316 (3), 15.1187 (3), 16.3119 (3)

12.9013 (3), 18.8759 (4), 21.4638 (4)

13.89502 (11), 17.73106 (18), 20.67049 (18)

, , (°) 90.4479 (17), 92.5407 (16), 118.010 (2)

65.3765 (19), 88.1786 (17), 88.3450 (17) 94.3765 (8)

V (Å3) 3137.41 (12) 4748.51 (18) 5077.81 (8)

Z 2 2 4

Radiation type Mo Ka Mo Ka Mo Ka

(mm-1) 3.62 3.55 3.32

Crystal size (mm) 0.33 × 0.17 × 0.09 0.32 × 0.08 × 0.02 0.54 × 0.31 × 0.13

Absorption correction

AnalyticalCrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Analytical CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Multi-scanCrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Page 14: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

14 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Tmin, Tmax 0.525, 0.783 0.758, 0.971 0.541, 1.000

No. of measured, independent and observed [I > 2s(I)] reflections

57292, 14372, 12061 85138, 16783, 11693 114610, 11616, 10176

Rint 0.043 0.110 0.041

(sin /)max (Å-1) 0.649 0.595 0.649

R[F2 > 2(F2)], wR(F2), S 0.048, 0.128, 1.03 0.054, 0.096, 1.02 0.020, 0.043, 1.03

No. of reflections 14372 16783 11616

No. of parameters 603 915 558

No. of restraints 0 1 867

max, min (e Å-3) 3.55, -1.87 1.07, -0.64 0.54, -0.39

CCDC number 1478889 1478890 1478891

Table S3. Crystallographic data summary for complex 2P*.

Complex [{UN”2}2L*] (2P*)

Local code p15149c

Chemical formula C64H87N2O2Si4U·C4H8O·C3H3

Mr 1377.90

Crystal system, space group Triclinic, P-1

Temperature (K) 170

a, b, c (Å) 13.1696 (3), 13.7113 (3), 20.4909 (4)

, , (°) 105.6517 (16), 103.7133 (17), 95.6555 (16)

V (Å3) 3408.69 (12)

Z 2

Radiation type

(mm-1) 2.50

Crystal size (mm) 0.57 × 0.17 × 0.08

Absorption correction

AnalyticalCrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Analytical numeric absorption

Page 15: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

Journal Name COMMUNICATION

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 15

correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Tmin, Tmax 0.227, 0.724

No. of measured, independent and observed [I > 2s(I)] reflections

70327, 13932, 12437

Rint 0.045

(sin /)max (Å-1) 0.625

R[F2 > 2(F2)], wR(F2), S 0.029, 0.068, 1.06

No. of reflections 13932

No. of parameters 718

No. of restraints 15

max, min (e Å-3) 1.66, -0.98

CCDC number 1478892

Selected solid-state structure drawings

a) b)

Figure S20 Space filling drawing of (a) top and (b) side view of U2I4Lp*. Grey atoms are carbons. H and lattice solvent omitted for clarity.

Page 16: Journal Name - rsc.org · 4 L P * R 1 = R 2 = Me 2 Ph HO HO OH OH H 4 L R HO HO R 1 R 1 R 2 R OH 2 OH R 1 R 1 R 2 R 2 HO HO OH OH H 4 L p R 1 = t Bu, R 2 = Me H 4 L M R 1 = t Bu,

COMMUNICATION Journal Name

16 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Figure S21 Space filling drawing of top view of U2N"4LP*. Grey atoms are carbons. H and lattice solvent omitted for clarity.

References1 Ruiz, J.; Astruc, D. Comptes Rendus 1998, 1, 21-27.2 Sheldrick, G. M. Acta Cryst.A 2015, 71, 3-8.3 Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.4 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. J Applied Cryst. 2009, 42, 339-341.5 Spek, A. L. Acta Cryst.C 2015, 71, 9-18.